Open In App

statsmodels.robust_skewness() in python

Last Updated : 22 Apr, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
With the help of statsmodels.robust_skewness() method, we can calculate the four skewness measures in Kim & White.
Syntax : statsmodels.robust_skewness(array, axis) Return : Return the four skewness measures value.
Example #1 : In this example we can see that by using statsmodels.robust_skewness() method, we are able to get the value of the four skewness measure by using this method. Python3 1=1
# import numpy and statsmodels
import numpy as np
from statsmodels.stats.stattools import robust_skewness
 
g = np.array([1, 2, 3, 4, 7, 8])
# Using statsmodels.robust_skewness() method
gfg = medcouple(g)
 
print(gfg)
Output :
0.2857142857142857
Example #2 : Python3 1=1
# import numpy and statsmodels
import numpy as np
from statsmodels.stats.stattools import robust_skewness
 
g = np.array([1, 2, 8, 9, 10])
# Using statsmodels.robust_skewness() method
gfg = medcouple(g)
 
print(gfg)
Output :
-0.5555555555555556

Article Tags :

Explore