Queries for elements greater than K in the given index range using Segment Tree
Last Updated :
12 Jul, 2025
Given an array arr[] of N elements and a number of queries where each query will contain three integers L, R, and K. For each query, the task is to find the number of elements in the subarray arr[L...R] which are greater than K.
Examples:
Input: arr[] = {7, 3, 9, 13, 5, 4}, q[] = {{0, 3, 6}, {1, 5, 8}}
Output:
3
2
Query 1: Only 7, 9 and 13 are greater
than 6 in the subarray {7, 3, 9, 13}.
Query 2: Only 9 and 13 are greater
than 8 in the subarray {3, 9, 13, 5, 4}.
Input: arr[] = {0, 1, 2, 3, 4, 5, 6, 7}, q[] = {{0, 7, 3}, {4, 6, 10}}
Output:
4
0
Prerequisite: Segment tree
Naive approach: Find the answer for each query by simply traversing the array from index l till r and keep adding 1 to the count whenever the array element is greater than k.
Below is the implementation of the above approach:
C++14
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Query function to get the answer
// for each query l and r are query range
int query(int arr[], int n, int l, int r, int k)
{
int count = 0;
for (int i = l; i <= r; i++) {
if (arr[i] > k) {
count++;
}
}
return count;
}
// Driver code
int main()
{
int arr[] = { 7, 3, 9, 13, 5, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
// queries
int q[][3] = { { 0, 3, 6 }, { 1, 5, 8 } };
// no. of queries
int num_queries = sizeof(q) / sizeof(q[0]);
for (int i = 0; i < num_queries; i++) {
int l = q[i][0], r = q[i][1], k = q[i][2];
cout << query(arr, n, l, r, k) << endl;
}
return 0;
}
Java
// Added by: Nikunj Sonigara
import java.util.*;
public class Main {
// Query function to get the answer
// for each query l and r are query range
static int query(int[] arr, int n, int l, int r, int k) {
int count = 0;
for (int i = l; i <= r; i++) {
if (arr[i] > k) {
count++;
}
}
return count;
}
public static void main(String[] args) {
int[] arr = { 7, 3, 9, 13, 5, 4 };
int n = arr.length;
// queries
int[][] q = { { 0, 3, 6 }, { 1, 5, 8 } };
// no. of queries
int num_queries = q.length;
for (int i = 0; i < num_queries; i++) {
int l = q[i][0], r = q[i][1], k = q[i][2];
System.out.println(query(arr, n, l, r, k));
}
}
}
Python3
# Added by: Nikunj Sonigara
# Query function to get the answer
# for each query l and r are query range
def query(arr, l, r, k):
count = 0
for i in range(l, r + 1):
if arr[i] > k:
count += 1
return count
# Driver code
if __name__ == "__main__":
arr = [7, 3, 9, 13, 5, 4]
n = len(arr)
# queries
q = [[0, 3, 6], [1, 5, 8]]
# no. of queries
num_queries = len(q)
for i in range(num_queries):
l, r, k = q[i]
print(query(arr, l, r, k))
C#
using System;
class Program
{
// Query function to get the answer
// for each query l and r are query range
static int Query(int[] arr, int l, int r, int k)
{
int count = 0;
for (int i = l; i <= r; i++)
{
if (arr[i] > k)
{
count++;
}
}
return count;
}
// Driver code
static void Main()
{
int[] arr = { 7, 3, 9, 13, 5, 4 };
int n = arr.Length;
// queries
int[,] q = { { 0, 3, 6 }, { 1, 5, 8 } };
// no. of queries
int num_queries = q.GetLength(0);
for (int i = 0; i < num_queries; i++)
{
int l = q[i, 0], r = q[i, 1], k = q[i, 2];
Console.WriteLine(Query(arr, l, r, k));
}
}
}
JavaScript
// Added by: Nikunj Sonigara
// Query function to get the answer
// for each query l and r are query range
function query(arr, l, r, k) {
let count = 0;
for (let i = l; i <= r; i++) {
if (arr[i] > k) {
count++;
}
}
return count;
}
// Driver code
const arr = [7, 3, 9, 13, 5, 4];
const n = arr.length;
// queries
const q = [[0, 3, 6], [1, 5, 8]];
// no. of queries
const numQueries = q.length;
for (let i = 0; i < numQueries; i++) {
const [l, r, k] = q[i];
console.log(query(arr, l, r, k));
}
Output:
3
2
Time Complexity: O(n * q)
Space Complexity: O(1)
Efficient approach: Build a Segment Tree with a vector at each node containing all the elements of the sub-range in sorted order. Answer each query using the segment tree where Binary Search can be used to calculate how many numbers are present in each node whose sub-range lies within the query range which is greater than K. Time complexity of this approach will be O(q * log(n) * log(n))
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Merge procedure to merge two
// vectors into a single vector
vector<int> merge(vector<int>& v1, vector<int>& v2)
{
int i = 0, j = 0;
// Final vector to return
// after merging
vector<int> v;
// Loop continues until it reaches
// the end of one of the vectors
while (i < v1.size() && j < v2.size()) {
if (v1[i] <= v2[j]) {
v.push_back(v1[i]);
i++;
}
else {
v.push_back(v2[j]);
j++;
}
}
// Here, simply add the remaining
// elements to the vector v
for (int k = i; k < v1.size(); k++)
v.push_back(v1[k]);
for (int k = j; k < v2.size(); k++)
v.push_back(v2[k]);
return v;
}
// Procedure to build the segment tree
void buildTree(vector<int>* tree, int* arr,
int index, int s, int e)
{
// Reached the leaf node
// of the segment tree
if (s == e) {
tree[index].push_back(arr[s]);
return;
}
// Recursively call the buildTree
// on both the nodes of the tree
int mid = (s + e) / 2;
buildTree(tree, arr, 2 * index, s, mid);
buildTree(tree, arr, 2 * index + 1, mid + 1, e);
// Storing the final vector after merging
// the two of its sorted child vector
tree[index] = merge(tree[2 * index], tree[2 * index + 1]);
}
// Query procedure to get the answer
// for each query l and r are query range
int query(vector<int>* tree, int index, int s,
int e, int l, int r, int k)
{
// out of bound or no overlap
if (r < s || l > e)
return 0;
// Complete overlap
// Query range completely lies in
// the segment tree node range
if (s >= l && e <= r) {
// binary search to find index of k
return (tree[index].size()
- (lower_bound(tree[index].begin(),
tree[index].end(), k)
- tree[index].begin()));
}
// Partially overlap
// Query range partially lies in
// the segment tree node range
int mid = (s + e) / 2;
return (query(tree, 2 * index, s,
mid, l, r, k)
+ query(tree, 2 * index + 1, mid + 1,
e, l, r, k));
}
// Function to perform the queries
void performQueries(int L[], int R[], int K[],
int n, int q, vector<int> tree[])
{
for (int i = 0; i < q; i++) {
cout << query(tree, 1, 0, n - 1,
L[i] - 1, R[i] - 1, K[i])
<< endl;
}
}
// Driver code
int main()
{
int arr[] = { 7, 3, 9, 13, 5, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
vector<int> tree[4 * n + 1];
buildTree(tree, arr, 1, 0, n - 1);
// 1-based indexing
int L[] = { 1, 2 };
int R[] = { 4, 6 };
int K[] = { 6, 8 };
// Number of queries
int q = sizeof(L) / sizeof(L[0]);
performQueries(L, R, K, n, q, tree);
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class GFG {
// Merge procedure to merge two
// vectors into a single vector
static Vector<Integer> merge(Vector<Integer> v1,
Vector<Integer> v2)
{
int i = 0, j = 0;
// Final vector to return
// after merging
Vector<Integer> v = new Vector<>();
// Loop continues until it reaches
// the end of one of the vectors
while (i < v1.size() && j < v2.size())
{
if (v1.elementAt(i) <= v2.elementAt(j))
{
v.add(v1.elementAt(i));
i++;
}
else
{
v.add(v2.elementAt(j));
j++;
}
}
// Here, simply add the remaining
// elements to the vector v
for (int k = i; k < v1.size(); k++)
v.add(v1.elementAt(k));
for (int k = j; k < v2.size(); k++)
v.add(v2.elementAt(k));
return v;
}
// Procedure to build the segment tree
static void buildTree(Vector<Integer>[] tree, int[] arr,
int index, int s, int e)
{
// Reached the leaf node
// of the segment tree
if (s == e)
{
tree[index].add(arr[s]);
return;
}
// Recursively call the buildTree
// on both the nodes of the tree
int mid = (s + e) / 2;
buildTree(tree, arr, 2 * index, s, mid);
buildTree(tree, arr, 2 * index + 1, mid + 1, e);
// Storing the final vector after merging
// the two of its sorted child vector
tree[index] = merge(tree[2 * index], tree[2 * index + 1]);
}
// Query procedure to get the answer
// for each query l and r are query range
static int query(Vector<Integer>[] tree, int index, int s,
int e, int l, int r, int k)
{
// out of bound or no overlap
if (r < s || l > e)
return 0;
// Complete overlap
// Query range completely lies in
// the segment tree node range
if (s >= l && e <= r)
{
// binary search to find index of k
return (tree[index].size() - lowerBound(tree[index],
tree[index].size(), k));
}
// Partially overlap
// Query range partially lies in
// the segment tree node range
int mid = (s + e) / 2;
return (query(tree, 2 * index, s, mid, l, r, k) +
query(tree, 2 * index + 1, mid + 1, e, l, r, k));
}
// Function to perform the queries
static void performQueries(int L[], int R[], int K[],
int n, int q, Vector<Integer> tree[])
{
for (int i = 0; i < q; i++)
{
System.out.println(query(tree, 1, 0, n - 1,
L[i] - 1, R[i] - 1, K[i]));
}
}
static int lowerBound(Vector<Integer> array,
int length, int value)
{
int low = 0;
int high = length;
while (low < high)
{
final int mid = (low + high) / 2;
if (value <= array.elementAt(mid))
{
high = mid;
}
else
{
low = mid + 1;
}
}
return low;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 7, 3, 9, 13, 5, 4 };
int n = arr.length;
@SuppressWarnings("unchecked")
Vector<Integer>[] tree = new Vector[4 * n + 1];
for (int i = 0; i < (4 * n + 1); i++)
{
tree[i] = new Vector<>();
}
buildTree(tree, arr, 1, 0, n - 1);
// 1-based indexing
int L[] = { 1, 2 };
int R[] = { 4, 6 };
int K[] = { 6, 8 };
// Number of queries
int q = L.length;
performQueries(L, R, K, n, q, tree);
}
}
// This code is contributed by
// sanjeev2552
Python3
# Python3 implementation of the approach
from bisect import bisect_left as lower_bound
# Merge procedure to merge two
# vectors into a single vector
def merge(v1, v2):
i = 0
j = 0
# Final vector to return
# after merging
v = []
# Loop continues until it reaches
# the end of one of the vectors
while (i < len(v1) and j < len(v2)):
if (v1[i] <= v2[j]):
v.append(v1[i])
i += 1
else:
v.append(v2[j])
j += 1
# Here, simply add the remaining
# elements to the vector v
for k in range(i, len(v1)):
v.append(v1[k])
for k in range(j, len(v2)):
v.append(v2[k])
return v
# Procedure to build the segment tree
def buildTree(tree,arr,index, s, e):
# Reached the leaf node
# of the segment tree
if (s == e):
tree[index].append(arr[s])
return
# Recursively call the buildTree
# on both the nodes of the tree
mid = (s + e) // 2
buildTree(tree, arr, 2 * index, s, mid)
buildTree(tree, arr, 2 * index + 1, mid + 1, e)
# Storing the final vector after merging
# the two of its sorted child vector
tree[index] = merge(tree[2 * index], tree[2 * index + 1])
# Query procedure to get the answer
# for each query l and r are query range
def query(tree, index, s, e, l, r, k):
# out of bound or no overlap
if (r < s or l > e):
return 0
# Complete overlap
# Query range completely lies in
# the segment tree node range
if (s >= l and e <= r):
# binary search to find index of k
return len(tree[index]) - (lower_bound(tree[index], k))
# Partially overlap
# Query range partially lies in
# the segment tree node range
mid = (s + e) // 2
return (query(tree, 2 * index, s,mid, l, r, k)
+ query(tree, 2 * index + 1, mid + 1,e, l, r, k))
# Function to perform the queries
def performQueries(L, R, K,n, q,tree):
for i in range(q):
print(query(tree, 1, 0, n - 1,L[i] - 1, R[i] - 1, K[i]))
# Driver code
if __name__ == '__main__':
arr = [7, 3, 9, 13, 5, 4]
n = len(arr)
tree = [[] for i in range(4 * n + 1)]
buildTree(tree, arr, 1, 0, n - 1)
# 1-based indexing
L = [1, 2]
R = [4, 6]
K = [6, 8]
# Number of queries
q = len(L)
performQueries(L, R, K, n, q, tree)
# This code is contributed by mohit kumar 29
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG {
// Merge procedure to merge two
// vectors into a single vector
static List<int> merge(List<int> v1,
List<int> v2)
{
int i = 0, j = 0;
// Final vector to return
// after merging
List<int> v = new List<int>();
// Loop continues until it reaches
// the end of one of the vectors
while (i < v1.Count && j < v2.Count)
{
if (v1[i] <= v2[j])
{
v.Add(v1[i]);
i++;
}
else
{
v.Add(v2[j]);
j++;
}
}
// Here, simply add the remaining
// elements to the vector v
for (int k = i; k < v1.Count; k++)
v.Add(v1[k]);
for (int k = j; k < v2.Count; k++)
v.Add(v2[k]);
return v;
}
// Procedure to build the segment tree
static void buildTree(List<int>[] tree, int[] arr,
int index, int s, int e)
{
// Reached the leaf node
// of the segment tree
if (s == e)
{
tree[index].Add(arr[s]);
return;
}
// Recursively call the buildTree
// on both the nodes of the tree
int mid = (s + e) / 2;
buildTree(tree, arr, 2 * index, s, mid);
buildTree(tree, arr, 2 * index + 1, mid + 1, e);
// Storing the readonly vector after merging
// the two of its sorted child vector
tree[index] = merge(tree[2 * index], tree[2 * index + 1]);
}
// Query procedure to get the answer
// for each query l and r are query range
static int query(List<int>[] tree, int index, int s,
int e, int l, int r, int k)
{
// out of bound or no overlap
if (r < s || l > e)
return 0;
// Complete overlap
// Query range completely lies in
// the segment tree node range
if (s >= l && e <= r)
{
// binary search to find index of k
return (tree[index].Count - lowerBound(tree[index],
tree[index].Count, k));
}
// Partially overlap
// Query range partially lies in
// the segment tree node range
int mid = (s + e) / 2;
return (query(tree, 2 * index, s, mid, l, r, k) +
query(tree, 2 * index + 1, mid + 1, e, l, r, k));
}
// Function to perform the queries
static void performQueries(int []L, int []R, int []K,
int n, int q, List<int> []tree)
{
for (int i = 0; i < q; i++)
{
Console.WriteLine(query(tree, 1, 0, n - 1,
L[i] - 1, R[i] - 1, K[i]));
}
}
static int lowerBound(List<int> array,
int length, int value)
{
int low = 0;
int high = length;
while (low < high)
{
int mid = (low + high) / 2;
if (value <= array[mid])
{
high = mid;
}
else
{
low = mid + 1;
}
}
return low;
}
// Driver Code
public static void Main(String[] args)
{
int []arr = { 7, 3, 9, 13, 5, 4 };
int n = arr.Length;
List<int>[] tree = new List<int>[4 * n + 1];
for (int i = 0; i < (4 * n + 1); i++)
{
tree[i] = new List<int>();
}
buildTree(tree, arr, 1, 0, n - 1);
// 1-based indexing
int []L = { 1, 2 };
int []R = { 4, 6 };
int []K = { 6, 8 };
// Number of queries
int q = L.Length;
performQueries(L, R, K, n, q, tree);
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// JavaScript implementation of the approach
// Merge procedure to merge two
// vectors into a single vector
function merge(v1, v2) {
let i = 0, j = 0;
// Final vector to return
// after merging
let v = new Array();
// Loop continues until it reaches
// the end of one of the vectors
while (i < v1.length && j < v2.length) {
if (v1[i] <= v2[j]) {
v.push(v1[i]);
i++;
}
else {
v.push(v2[j]);
j++;
}
}
// Here, simply add the remaining
// elements to the vector v
for (let k = i; k < v1.length; k++)
v.push(v1[k]);
for (let k = j; k < v2.length; k++)
v.push(v2[k]);
return v;
}
// Procedure to build the segment tree
function buildTree(tree, arr, index, s, e) {
// Reached the leaf node
// of the segment tree
if (s == e) {
tree[index].push(arr[s]);
return;
}
// Recursively call the buildTree
// on both the nodes of the tree
let mid = Math.floor((s + e) / 2);
buildTree(tree, arr, 2 * index, s, mid);
buildTree(tree, arr, 2 * index + 1, mid + 1, e);
// Storing the final vector after merging
// the two of its sorted child vector
tree[index] = merge(tree[2 * index], tree[2 * index + 1]);
}
// Query procedure to get the answer
// for each query l and r are query range
function query(tree, index, s, e, l, r, k) {
// out of bound or no overlap
if (r < s || l > e)
return 0;
// Complete overlap
// Query range completely lies in
// the segment tree node range
if (s >= l && e <= r) {
// binary search to find index of k
return (tree[index].length
- (lowerBound(tree[index], tree[index].length, k)));
}
// Partially overlap
// Query range partially lies in
// the segment tree node range
let mid = Math.floor((s + e) / 2);
return (query(tree, 2 * index, s,
mid, l, r, k)
+ query(tree, 2 * index + 1, mid + 1,
e, l, r, k));
}
function lowerBound(array, length, value) {
let low = 0;
let high = length;
while (low < high) {
let mid = Math.floor((low + high) / 2);
if (value <= array[mid]) {
high = mid;
}
else {
low = mid + 1;
}
}
return low;
}
// Function to perform the queries
function performQueries(L, R, K, n, q, tree) {
for (let i = 0; i < q; i++) {
document.write(
query(tree, 1, 0, n - 1, L[i] - 1, R[i] - 1, K[i]) +
"<br>"
);
}
}
// Driver code
let arr = [7, 3, 9, 13, 5, 4];
let n = arr.length;
let tree = new Array();
for (let i = 0; i < 4 * n + 1; i++) {
tree.push([])
}
buildTree(tree, arr, 1, 0, n - 1);
// 1-based indexing
let L = [1, 2];
let R = [4, 6];
let K = [6, 8];
// Number of queries
let q = L.length;
performQueries(L, R, K, n, q, tree);
</script>
The space complexity of the segment tree is O(n log n). The tree has at most 4n nodes, and each node stores a vector of size at most n, which leads to the space complexity of O(n log n).
Another Approach:
Another way of doing it using segment trees is by storing the first element greater than K in each node (if present) in that range, otherwise storing 0.
Here, we need to consider 3 cases for building the tree.
- If both left and right children contain a number other than 0, the answer is always the left child. (we need to consider the very first occurrence of the number greater than K.)
- If any one of the left or right child contains 0, the answer is always a number other than 0.
- If both left and right children contain 0, the answer is always 0 (indicating that no number greater than K is present in that range).
The query function remains the same as always.
Consider the following example: arr[] = {7, 3, 9, 13, 5, 4} , K = 6
The tree in this case will look like this:

Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
vector<int> arr(1000000), tree(4 * arr.size());
// combine function to make parent node
int combine(int a, int b)
{
if (a != 0 && b != 0) {
return a;
}
if (a >= b) {
return a;
}
return b;
}
// building the tree
void buildTree(int ind, int low, int high, int x)
{
// leaf node
if (low == high) {
if (arr[low] > x) {
tree[ind] = arr[low];
}
else {
tree[ind] = 0;
}
return;
}
int mid = (low + high) / 2;
buildTree(2 * ind + 1, low, mid, x);
buildTree(2 * ind + 2, mid + 1, high, x);
// merging the nodes while backtracking.
tree[ind]
= combine(tree[2 * ind + 1], tree[2 * ind + 2]);
}
// performing query
int query(int ind, int low, int high, int l, int r)
{
int mid = (low + high) / 2;
// Out of Bounds
if (low > r || high < l) {
return 0;
}
// completely overlaps
if (l <= low && r >= high) {
return tree[ind];
}
// partially overlaps
return combine(query(2 * ind + 1, low, mid, l, r),
query(2 * ind + 2, mid + 1, high, l, r));
}
// Driver Code
int main()
{
arr = { 7, 3, 9, 13, 5, 4 };
int n = 6;
int k = 6;
// 1-based indexing
int l = 1, r = 4;
buildTree(0, 0, n - 1, k);
cout << query(0, 0, n - 1, l - 1, r - 1);
return 0;
}
// This code is contributed by yashbeersingh42
Java
// Java implementation of the approach
public class GFG {
int[] arr, tree;
// combine function to make parent node
int combine(int a, int b)
{
if (a != 0 && b != 0) {
return a;
}
if (a >= b) {
return a;
}
return b;
}
// building the tree
void buildTree(int ind, int low, int high, int x)
{
// leaf node
if (low == high) {
if (arr[low] > x) {
tree[ind] = arr[low];
}
else {
tree[ind] = 0;
}
return;
}
int mid = (high - low) / 2 + low;
buildTree(2 * ind + 1, low, mid, x);
buildTree(2 * ind + 2, mid + 1, high, x);
// merging the nodes while backtracking
tree[ind]
= combine(tree[2 * ind + 1], tree[2 * ind + 2]);
}
// performing query
int query(int ind, int low, int high, int l, int r)
{
int mid = (high - low) / 2 + low;
// Out of Bounds
if (low > r || high < l) {
return 0;
}
// completely overlaps
if (l <= low && r >= high) {
return tree[ind];
}
// partially overlaps
return combine(
query(2 * ind + 1, low, mid, l, r),
query(2 * ind + 2, mid + 1, high, l, r));
}
// Driver Code
public static void main(String args[])
{
GFG ob = new GFG();
ob.arr = new int[] { 7, 3, 9, 13, 5, 4 };
int n = ob.arr.length;
int k = 6;
ob.tree = new int[4 * n];
// 1-based indexing
int l = 1, r = 4;
ob.buildTree(0, 0, n - 1, k);
System.out.println(
ob.query(0, 0, n - 1, l - 1, r - 1));
}
}
// This code is contributed by sarvjot.
Python3
# Python implementation of the approach
import math
# combine function to make parent node
def combine(a, b):
if a != 0 and b != 0:
return a
if a >= b:
return a
return b
# building the tree
def build_tree(arr, tree, ind, low, high, x):
# leaf node
if low == high:
if arr[low] > x:
tree[ind] = arr[low]
else:
tree[ind] = 0
return
mid = (high - low) / 2 + low
mid = math.floor(mid)
mid = int(mid)
build_tree(arr, tree, 2 * ind + 1, low, mid, x)
build_tree(arr, tree, 2 * ind + 2, mid + 1, high, x)
# merging the nodes while backtracking
tree[ind] = combine(tree[2 * ind + 1], tree[2 * ind + 2])
# performing query
def query(tree, ind, low, high, l, r):
mid = (high - low) / 2 + low
mid = math.floor(mid)
mid = int(mid)
# out of bounds
if low > r or high < l:
return 0
# complete overlaps
if l <= low and r >= high:
return tree[ind]
# partial overlaps
q1 = query(tree, 2 * ind + 1, low, mid, l, r)
q2 = query(tree, 2 * ind + 2, mid + 1, high, l, r)
return combine(q1, q2)
# Driver Code
if __name__ == '__main__':
arr = [7, 3, 9, 13, 5, 4]
n = len(arr)
k = 6
tree = [[] for i in range(4 * n)]
# 1-based indexing
l = 1
r = 4
build_tree(arr, tree, 0, 0, n - 1, k)
print(query(tree, 0, 0, n - 1, l - 1, r - 1))
# This code is contributed by sarvjot.
C#
// C# implementation of the approach
using System;
class GFG {
static int[] arr, tree;
// combine function to make parent node
static int combine(int a, int b)
{
if (a != 0 && b != 0) {
return a;
}
if (a >= b) {
return a;
}
return b;
}
// building the tree
static void buildTree(int ind, int low, int high, int x)
{
// leaf node
if (low == high) {
if (arr[low] > x) {
tree[ind] = arr[low];
}
else {
tree[ind] = 0;
}
return;
}
int mid = (high - low) / 2 + low;
buildTree(2 * ind + 1, low, mid, x);
buildTree(2 * ind + 2, mid + 1, high, x);
// merging the nodes while backtracking
tree[ind]
= combine(tree[2 * ind + 1], tree[2 * ind + 2]);
}
// performing query
static int query(int ind, int low, int high, int l, int r)
{
int mid = (high - low) / 2 + low;
// Out of Bounds
if (low > r || high < l) {
return 0;
}
// completely overlaps
if (l <= low && r >= high) {
return tree[ind];
}
// partially overlaps
return combine(
query(2 * ind + 1, low, mid, l, r),
query(2 * ind + 2, mid + 1, high, l, r));
}
static void Main() {
arr = new int[] { 7, 3, 9, 13, 5, 4 };
int n = arr.Length;
int k = 6;
tree = new int[4 * n];
// 1-based indexing
int l = 1, r = 4;
buildTree(0, 0, n - 1, k);
Console.Write(query(0, 0, n - 1, l - 1, r - 1));
}
}
// This code is contributed by suresh07.
JavaScript
<script>
// Javascript implementation of the approach
let arr, tree;
// combine function to make parent node
function combine(a, b)
{
if (a != 0 && b != 0) {
return a;
}
if (a >= b) {
return a;
}
return b;
}
// building the tree
function buildTree(ind, low, high, x)
{
// leaf node
if (low == high) {
if (arr[low] > x) {
tree[ind] = arr[low];
}
else {
tree[ind] = 0;
}
return;
}
let mid = parseInt((high - low) / 2, 10) + low;
buildTree(2 * ind + 1, low, mid, x);
buildTree(2 * ind + 2, mid + 1, high, x);
// merging the nodes while backtracking
tree[ind]
= combine(tree[2 * ind + 1], tree[2 * ind + 2]);
}
// performing query
function query(ind, low, high, l, r)
{
let mid = parseInt((high - low) / 2, 10) + low;
// Out of Bounds
if (low > r || high < l) {
return 0;
}
// completely overlaps
if (l <= low && r >= high) {
return tree[ind];
}
// partially overlaps
return combine(
query(2 * ind + 1, low, mid, l, r),
query(2 * ind + 2, mid + 1, high, l, r));
}
arr = [ 7, 3, 9, 13, 5, 4 ];
let n = arr.length;
let k = 6;
tree = new Array(4 * n);
tree.fill(0);
// 1-based indexing
let l = 1, r = 4;
buildTree(0, 0, n - 1, k);
document.write(query(0, 0, n - 1, l - 1, r - 1));
// This code is contributed by divyesh072019.
</script>
Output:
7
Time Complexity: O(N * log N) to build the tree and O(log N) for each query.
Space Complexity: O(N)
Similar Reads
Queries for elements having values within the range A to B in the given index range using Segment Tree Given an array arr[] of N elements and two integers A to B, the task is to answer Q queries each having two integers L and R. For each query, the task is to find the number of elements in the subarray arr[L...R] which lies within the range A to B (both included). Examples: Input: arr[] = {7, 3, 9, 1
13 min read
Number of elements greater than K in the range L to R using Fenwick Tree (Offline queries) Prerequisites: Fenwick Tree (Binary Indexed Tree)Given an array of N numbers, and a number of queries where each query will contain three numbers(l, r and k). The task is to calculate the number of array elements that are greater than K in the subarray[L, R]. Examples: Input: n=6 q=2 arr[ ] = { 7, 3
15+ min read
Number of elements greater than K in the range L to R using Fenwick Tree (Offline queries) Prerequisites: Fenwick Tree (Binary Indexed Tree)Given an array of N numbers, and a number of queries where each query will contain three numbers(l, r and k). The task is to calculate the number of array elements that are greater than K in the subarray[L, R]. Examples: Input: n=6 q=2 arr[ ] = { 7, 3
15+ min read
Queries for the minimum element in an array excluding the given index range Given an array arr[] of N integers and Q queries where each query consists of an index range [L, R]. For each query, the task is to find the minimum element in the array excluding the elements from the given index range. Examples: Input: arr[] = {3, 2, 1, 4, 5}, Q[][] = {{1, 2}, {2, 3}} Output: 3 2
15+ min read
Queries for the minimum element in an array excluding the given index range Given an array arr[] of N integers and Q queries where each query consists of an index range [L, R]. For each query, the task is to find the minimum element in the array excluding the elements from the given index range. Examples: Input: arr[] = {3, 2, 1, 4, 5}, Q[][] = {{1, 2}, {2, 3}} Output: 3 2
15+ min read
Dynamic Segment Trees : Online Queries for Range Sum with Point Updates Prerequisites: Segment TreeGiven a number N which represents the size of the array initialized to 0 and Q queries to process where there are two types of queries: 1 P V: Put the value V at position P.2 L R: Output the sum of values from L to R. The task is to answer these queries. Constraints: 1 ? N
15+ min read