scipy stats.chi() | Python Last Updated : 20 Mar, 2019 Summarize Comments Improve Suggest changes Share Like Article Like Report scipy.stats.chi() is an chi continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; 'm' = mean, 'v' = variance, 's' = Fisher's skew and 'k' = Fisher's kurtosis. (default = 'mv'). Results : chi continuous random variable Special Cases : chi(1, loc, scale) = halfnormal chi(2, 0, scale) = rayleigh chi(3, 0, scale) : maxwell Code #1 : Creating chi continuous random variable Python3 # importing scipy from scipy.stats import chi numargs = chi.numargs [a] = [0.6, ] * numargs rv = chi(a) print ("RV : \n", rv) Output : RV : <scipy.stats._distn_infrastructure.rv_frozen object at 0x000002948537C6D8> Code #2 : chi random variates and probability distribution. Python3 1== import numpy as np quantile = np.arange (0.01, 1, 0.1) # Random Variates R = chi.rvs(a, scale = 2, size = 10) print ("Random Variates : \n", R) # PDF R = chi.pdf(a, quantile, loc = 0, scale = 1) print ("\nProbability Distribution : \n", R) Output : Random Variates : [2.40483665 1.68478304 0.01664071 2.48977805 3.66286843 1.68463842 0.14434643 0.67812242 0.46190886 1.99973997] Probability Distribution : [0.01384193 0.14349716 0.25719966 0.35519439 0.43801475 0.50641521 0.56131243 0.60373433 0.63477687 0.65556791] Code #3 : Graphical Representation. Python3 import numpy as np import matplotlib.pyplot as plt distribution = np.linspace(0, np.minimum(rv.dist.b, 5)) print("Distribution : \n", distribution) plot = plt.plot(distribution, rv.pdf(distribution)) Output : Distribution : Distribution : [0. 0.10204082 0.20408163 0.30612245 0.40816327 0.51020408 0.6122449 0.71428571 0.81632653 0.91836735 1.02040816 1.12244898 1.2244898 1.32653061 1.42857143 1.53061224 1.63265306 1.73469388 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857 3.67346939 3.7755102 3.87755102 3.97959184 4.08163265 4.18367347 4.28571429 4.3877551 4.48979592 4.59183673 4.69387755 4.79591837 4.89795918 5. ] Code #4 : Varying Positional Arguments Python3 1== import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 5, 100) # Varying positional arguments y1 = chi.pdf(x, 1, 6) y2 = chi.pdf(x, 1, 4) plt.plot(x, y1, "*", x, y2, "r--") Output : Comment More infoAdvertise with us Next Article scipy stats.chi() | Python V vishal3096 Follow Improve Article Tags : Python Python-scipy Python scipy-stats-functions Practice Tags : python Similar Reads scipy.stats.chi2() | Python scipy.stats.chi2() is an chi square continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale param 2 min read scipy stats.f() | Python scipy.stats.f() is an F continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability a, b : shape parameters x : quantiles loc : [optional] location parameter. Default = 0 scale : [optiona 2 min read scipy stats.cosine() | Python scipy.stats.cosine() is an cosine continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale paramet 2 min read scipy stats.cauchy() | Python scipy.stats.cauchy() is an cauchy continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale paramet 2 min read sciPy stats.alpha() | Python scipy.stats.alpha() is an alpha continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles a : shape parameter loc : [optional] location parameter. Default = 0 scale : [opt 1 min read Like