Open In App

Select a single column of data as a Series in Pandas

Last Updated : 01 Oct, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
In this article, we will discuss how to select a single column of data as a Series in Pandas.
For example, Suppose we have a data frame :
Name Age  MotherTongue
Akash 21   Hindi
Ashish 23  Marathi
Diksha 21  Bhojpuri
Radhika 20 Nepali
Ayush   21 Punjabi
Now when we select column Mother Tongue as a Series we get the following output:
Hindi Marathi Bhojpuri Nepali Punjabi
Now let us try to implement this using Python: Step1: Creating data frame: Python3 1==
# importing pandas as library
import pandas as pd

# creating data frame:
df = pd.DataFrame({'name': ['Akash', 'Ayush', 'Ashish',
                            'Diksha', 'Shivani'],
                   
                   'Age': [21, 25, 23, 22, 18],
                   
                   'MotherTongue': ['Hindi', 'English', 'Marathi',
                                    'Bhojpuri', 'Oriya']})

print("The original data frame")
df
Output: select-singly-column-pandas-1 Step 2: Selecting Column using dataframe.column name: Python3 1==
print("Selecting Single column value using dataframe.column name")
series_one = pd.Series(df.Age)
print(series_one)

print("Type of selected one")
print(type(series_one))
Output: single-column-pandas-dataframe-2 Step 3: Selecting column using dataframe[column_name] Python3 1==
# using [] method
print("Selecting Single column value using dataframe[column name]")
series_one = pd.Series(df['Age'])
print(series_one)

print("Type of selected one")
print(type(series_one))
Output: select-single-column-pandas-3 In the above two examples we have used pd.Series() to select a single column of a data frame as a series.

Next Article

Similar Reads