Invert Binary Tree - Change to Mirror Tree
Last Updated :
06 Feb, 2025
Given a binary tree, the task is to convert the binary tree to its Mirror tree. Mirror of a Binary Tree T is another Binary Tree M(T) with left and right children of all non-leaf nodes interchanged.
Example 1:
Explanation: In the inverted tree, every non-leaf node has its left and right child interchanged.
Example 2:
Explanation: In the inverted tree, every non-leaf node has its left and right child interchanged.
Recursive Approach - O(n) Time and O(h) Space
The idea is to use recursion to traverse the tree in Post Order (left, right, root) and while traversing each node, swap the left and right subtrees.
C++
//Driver Code Starts
// C++ Program Invert a Binary Tree using Recursive Postorder
#include <iostream>
#include <queue>
using namespace std;
class Node {
public:
int data;
Node *left, *right;
Node(int x) {
data = x;
left = nullptr;
right = nullptr;
}
};
//Driver Code Ends
// function to return the root of inverted tree
void mirror(Node* root) {
if (root == nullptr)
return ;
// Invert the left and right subtree
mirror(root->left);
mirror(root->right);
// Swap the left and right subtree
swap(root->left, root->right);
}
// Print tree as level order
void levelOrder(Node *root) {
if (root == nullptr) {
cout << "N ";
return ;
}
queue<Node*> qq;
qq.push(root);
while (!qq.empty()) {
Node *curr = qq.front();
qq.pop();
if (curr == nullptr) {
cout << "N ";
continue;
}
cout << (curr->data) << " ";
qq.push(curr->left);
qq.push(curr->right);
}
}
//Driver Code Starts
int main() {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
return 0;
}
//Driver Code Ends
C
//Driver Code Starts
// C Program Invert a Binary Tree using Recursive Postorder
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct Node {
int data;
struct Node* left;
struct Node* right;
} Node;
// Function to create a new node
Node* newNode(int x) {
Node* node = (Node*)malloc(sizeof(Node));
node->data = x;
node->left = NULL;
node->right = NULL;
return node;
}
//Driver Code Ends
// Function to return the root of inverted tree
void mirror(Node* root) {
if (root == NULL)
return ;
// Invert the left and right subtree
mirror(root->left);
mirror(root->right);
// Swap the left and right subtree
struct Node* temp = root->left;
root->left = root->right;
root->right = temp;
}
// Print tree as level order
void levelOrder(Node* root) {
if (root == NULL) {
printf("N ");
return;
}
Node* queue[100];
int front = 0, rear = 0;
queue[rear++] = root;
while (front < rear) {
Node* curr = queue[front++];
if (curr == NULL) {
printf("N ");
continue;
}
printf("%d ", curr->data);
queue[rear++] = curr->left;
queue[rear++] = curr->right;
}
}
//Driver Code Starts
int main() {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
return 0;
}
//Driver Code Ends
Java
//Driver Code Starts
// Java Program Invert a Binary Tree using Recursive Postorder
import java.util.LinkedList;
import java.util.Queue;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
//Driver Code Ends
// Function to return the root of inverted tree
static void mirror(Node root) {
if (root == null)
return ;
// Invert the left and right subtree
mirror(root.left);
mirror(root.right);
// Swap the left and right subtree
Node temp = root.left;
root.left = root.right;
root.right = temp;
}
// Print tree as level order
static void levelOrder(Node root) {
if (root == null) {
System.out.print("N ");
return;
}
Queue<Node> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
Node curr = queue.poll();
if (curr == null) {
System.out.print("N ");
continue;
}
System.out.print(curr.data + " ");
queue.add(curr.left);
queue.add(curr.right);
}
}
//Driver Code Starts
public static void main(String[] args) {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
}
}
//Driver Code Ends
Python
#Driver Code Starts
# Python Program Invert a Binary Tree using Recursive Postorder
from collections import deque
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
#Driver Code Ends
# Function to return the root of inverted tree
def mirror(root):
if root is None:
return
# Invert the left and right subtree
mirror(root.left)
mirror(root.right)
# Swap the left and right subtree
temp = root.left
root.left = root.right
root.right = temp
# Print tree as level order
def levelOrder(root):
if root is None:
print("N ", end="")
return
queue = deque([root])
while queue:
curr = queue.popleft()
if curr is None:
print("N ", end="")
continue
print(curr.data, end=" ")
queue.append(curr.left)
queue.append(curr.right)
#Driver Code Starts
if __name__ == "__main__":
# Input Tree:
# 1
# / \
# 2 3
# / \
# 4 5
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
mirror(root)
# Mirror Tree:
# 1
# / \
# 3 2
# / \
# 5 4
levelOrder(root)
#Driver Code Ends
C#
//Driver Code Starts
// C# Program Invert a Binary Tree using Recursive Postorder
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
//Driver Code Ends
// Function to return the root of inverted tree
static void mirror(Node root) {
if (root == null)
return ;
// Invert the left and right subtree
mirror(root.left);
mirror(root.right);
// Swap the left and right subtree
Node temp = root.left;
root.left = root.right;
root.right = temp;
}
// Print tree as level order
static void levelOrder(Node root) {
if (root == null) {
Console.Write("N ");
return;
}
Queue<Node> queue = new Queue<Node>();
queue.Enqueue(root);
while (queue.Count > 0) {
Node curr = queue.Dequeue();
if (curr == null) {
Console.Write("N ");
continue;
}
Console.Write(curr.data + " ");
queue.Enqueue(curr.left);
queue.Enqueue(curr.right);
}
}
//Driver Code Starts
static void Main(string[] args) {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
}
}
//Driver Code Ends
JavaScript
//Driver Code Starts
// JavaScript Program Invert a Binary Tree using Recursive Postorder
class Node {
constructor(x) {
this.data = x;
this.left = null;
this.right = null;
}
}
//Driver Code Ends
// Function to return the root of inverted tree
function mirror(root) {
if (root === null)
return;
// Invert the left and right subtree
mirror(root.left);
mirror(root.right);
// Swap the left and right subtree
let temp = root.left;
root.left = root.right;
root.right = temp;
}
// Print tree as level order
function levelOrder(root) {
if (root === null) {
process.stdout.write("N ");
return;
}
let queue = [];
queue.push(root);
while (queue.length > 0) {
let curr = queue.shift();
if (curr === null) {
process.stdout.write("N ");
continue;
}
process.stdout.write(curr.data + " ");
queue.push(curr.left);
queue.push(curr.right);
}
}
//Driver Code Starts
// Driver Code
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
//Driver Code Ends
Output1 3 2 N N 5 4 N N N N
Time Complexity: O(n), Visiting all the nodes of the tree of size n.
Auxiliary Space: O(h), where h is the height of binary tree.
Iterative Approach - O(n) Time and O(n) Space
The idea is to perform Level Order Traversal using a queue to store the nodes whose left and right pointers need to be swapped. Start with the root node. Till queue is not empty, remove the node from the front, swap its left and right child and push both of the children into the queue. After iterating over all the nodes, we will get the mirror tree.
C++
//Driver Code Starts
// C++ Program Invert a Binary Tree using Iterative Level Order
#include <iostream>
#include <queue>
using namespace std;
struct Node {
int data;
Node *left, *right;
Node(int x) {
data = x;
left = nullptr;
right = nullptr;
}
};
//Driver Code Ends
// function to return the root of inverted tree
void mirror(Node* root) {
if (root == nullptr)
return ;
queue<Node*> q;
q.push(root);
// Traverse the tree, level by level
while(!q.empty()) {
Node* curr = q.front();
q.pop();
// Swap the left and right subtree
swap(curr->left, curr->right);
// Push the left and right node to the queue
if(curr->left != nullptr)
q.push(curr->left);
if(curr->right != nullptr)
q.push(curr->right);
}
}
// Print tree as level order
void levelOrder(Node *root) {
if (root == nullptr) {
cout << "N ";
return ;
}
queue<Node*> qq;
qq.push(root);
while (!qq.empty()) {
Node *curr = qq.front();
qq.pop();
if (curr == nullptr) {
cout << "N ";
continue;
}
cout << (curr->data) << " ";
qq.push(curr->left);
qq.push(curr->right);
}
}
//Driver Code Starts
int main() {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
return 0;
}
//Driver Code Ends
C
//Driver Code Starts
// C Program Invert a Binary Tree using Iterative Level Order
#include <stdio.h>
#include <stdlib.h>
// Node structure
typedef struct Node {
int data;
struct Node* left;
struct Node* right;
} Node;
// Function to create a new node
Node* newNode(int x) {
Node* node = (Node*)malloc(sizeof(Node));
node->data = x;
node->left = NULL;
node->right = NULL;
return node;
}
//Driver Code Ends
// Function to return the root of inverted tree
void mirror(Node* root) {
if (root == NULL)
return;
Node* queue[100];
int front = 0, rear = 0;
queue[rear++] = root;
// Traverse the tree, level by level
while (front < rear) {
Node* curr = queue[front++];
// Swap the left and right subtree
Node* temp = curr->left;
curr->left = curr->right;
curr->right = temp;
// Push the left and right node to the queue
if (curr->left != NULL)
queue[rear++] = curr->left;
if (curr->right != NULL)
queue[rear++] = curr->right;
}
}
// Print tree as level order
void levelOrder(Node* root) {
if (root == NULL) {
printf("N ");
return;
}
Node* queue[100];
int front = 0, rear = 0;
queue[rear++] = root;
while (front < rear) {
Node* curr = queue[front++];
if (curr == NULL) {
printf("N ");
continue;
}
printf("%d ", curr->data);
queue[rear++] = curr->left;
queue[rear++] = curr->right;
}
}
//Driver Code Starts
int main() {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
return 0;
}
//Driver Code Ends
Java
//Driver Code Starts
// Java Program Invert a Binary Tree using Iterative Level Order
import java.util.LinkedList;
import java.util.Queue;
class Node {
int data;
Node left, right;
Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
//Driver Code Ends
// Function to return the root of inverted tree
static void mirror(Node root) {
if (root == null)
return;
Queue<Node> queue = new LinkedList<>();
queue.add(root);
// Traverse the tree, level by level
while (!queue.isEmpty()) {
Node curr = queue.poll();
// Swap the left and right subtree
Node temp = curr.left;
curr.left = curr.right;
curr.right = temp;
// Push the left and right node to the queue
if (curr.left != null)
queue.add(curr.left);
if (curr.right != null)
queue.add(curr.right);
}
}
// Print tree as level order
static void levelOrder(Node root) {
if (root == null) {
System.out.print("N ");
return;
}
Queue<Node> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
Node curr = queue.poll();
if (curr == null) {
System.out.print("N ");
continue;
}
System.out.print(curr.data + " ");
queue.add(curr.left);
queue.add(curr.right);
}
}
//Driver Code Starts
public static void main(String[] args) {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
}
}
//Driver Code Ends
Python
#Driver Code Starts
# Python Program Invert a Binary Tree using Iterative Level Order
from collections import deque
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
#Driver Code Ends
# Function to return the root of inverted tree
def mirror(root):
if root is None:
return
queue = deque([root])
# Traverse the tree, level by level
while queue:
curr = queue.popleft()
# Swap the left and right subtree
curr.left, curr.right = curr.right, curr.left
# Push the left and right node to the queue
if curr.left:
queue.append(curr.left)
if curr.right:
queue.append(curr.right)
# Print tree as level order
def levelOrder(root):
if root is None:
print("N ", end="")
return
queue = deque([root])
while queue:
curr = queue.popleft()
if curr is None:
print("N ", end="")
continue
print(curr.data, end=" ")
queue.append(curr.left)
queue.append(curr.right)
#Driver Code Starts
if __name__ == "__main__":
# Input Tree:
# 1
# / \
# 2 3
# / \
# 4 5
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
mirror(root)
# Mirror Tree:
# 1
# / \
# 3 2
# / \
# 5 4
levelOrder(root)
#Driver Code Ends
C#
//Driver Code Starts
// C# Program Invert a Binary Tree using Iterative Level Order
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node left, right;
public Node(int x) {
data = x;
left = null;
right = null;
}
}
class GfG {
//Driver Code Ends
// Function to return the root of inverted tree
static void mirror(Node root) {
if (root == null)
return;
Queue<Node> queue = new Queue<Node>();
queue.Enqueue(root);
// Traverse the tree, level by level
while (queue.Count > 0) {
Node curr = queue.Dequeue();
// Swap the left and right subtree
Node temp = curr.left;
curr.left = curr.right;
curr.right = temp;
// Push the left and right node to the queue
if (curr.left != null)
queue.Enqueue(curr.left);
if (curr.right != null)
queue.Enqueue(curr.right);
}
}
// Print tree as level order
static void levelOrder(Node root) {
if (root == null) {
Console.Write("N ");
return;
}
Queue<Node> queue = new Queue<Node>();
queue.Enqueue(root);
while (queue.Count > 0) {
Node curr = queue.Dequeue();
if (curr == null) {
Console.Write("N ");
continue;
}
Console.Write(curr.data + " ");
queue.Enqueue(curr.left);
queue.Enqueue(curr.right);
}
}
//Driver Code Starts
static void Main(string[] args) {
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
}
}
//Driver Code Ends
JavaScript
//Driver Code Starts
// JavaScript Program Invert a Binary Tree using Iterative Level Order
class Node {
constructor(x) {
this.data = x;
this.left = null;
this.right = null;
}
}
//Driver Code Ends
// Function to return the root of inverted tree
function mirror(root) {
if (root === null)
return;
let queue = [];
queue.push(root);
// Traverse the tree, level by level
while (queue.length > 0) {
let curr = queue.shift();
// Swap the left and right subtree
[curr.left, curr.right] = [curr.right, curr.left];
// Push the left and right node to the queue
if (curr.left)
queue.push(curr.left);
if (curr.right)
queue.push(curr.right);
}
}
// Print tree as level order
function levelOrder(root) {
if (root === null) {
process.stdout.write("N ");
return;
}
let queue = [];
queue.push(root);
while (queue.length > 0) {
let curr = queue.shift();
if (curr === null) {
process.stdout.write("N ");
continue;
}
process.stdout.write(curr.data + " ");
queue.push(curr.left);
queue.push(curr.right);
}
}
//Driver Code Starts
// Driver Code
// Input Tree:
// 1
// / \
// 2 3
// / \
// 4 5
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
mirror(root);
// Mirror Tree:
// 1
// / \
// 3 2
// / \
// 5 4
levelOrder(root);
//Driver Code Ends
Output1 3 2 N N 5 4 N N N N
Time Complexity: O(n), fro traversing over the tree of size n.
Auxiliary Space: O(n), used by queue to store the nodes of the tree.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read