
1

Checked C: Making C Safe by Extension
Archibald Samuel Elliott, University of Washington

Andrew Ruef and Michael Hicks, University of Maryland
David Tarditi, Microsoft Research

Abstract—This paper presents Checked C, an extension to C designed to support spatial safety, implemented in Clang and LLVM. Checked C’s
design is distinguished by its focus on backward-compatibility, incremental conversion, developer control, and enabling highly performant code.
Like past approaches to a safer C, Checked C employs a form of checked pointer whose accesses can be statically or dynamically verified.
Performance evaluation on a set of standard benchmark programs shows overheads to be relatively low. More interestingly, Checked C
introduces the notions of a checked region and bounds-safe interfaces.

F

1 INTRODUCTION

Vulnerabilities that compromise memory safety are at the heart of
many attacks. Memory safety has two aspects. Temporal safety
is ensured when memory is never used after it is freed. Spatial
safety is ensured when any pointer dereference is always within
the memory allocated to that pointer. Buffer overruns—a spatial
safety violation—still constitute a frequent and pernicious source
of vulnerability, despite their long history. During the period
2012–2018, buffer overruns were the source of 9.7% to 18.4%
of CVEs reported in the NIST vulnerability database [1], with
the highest numbers occurring in 2017. During that time, buffer
overruns were the leading single cause of CVEs.

As discussed in depth in Section 2, several efforts have
attempted to make C programs safe. Static analysis tools [2],
[3], [4] aim to find vulnerabilities pre-deployment, but may miss
bugs, have trouble scaling, or emit too many alarms. Security
mitigations, such as CFI [5] and DEP [6], can mute the impact
of vulnerabilities by making them harder to exploit, but provide
no guarantee; e.g., data leaks and mimicry attacks may still be
possible. Several efforts have aimed to provide spatial safety by
adding run-time checks; these include CCured [7], Softbound [8],
and ASAN [9]. The added checks can add substantial overhead
and can complicate interoperability with legacy code when
pointer representations are changed. Lower overhead can be
achieved by reducing safety, e.g., by checking only writes, or
ignoring overruns within a memory region (e.g., from one stack
variable to another, or one struct field to another). In the end, no
existing approach is completely satisfying.

This paper presents a new effort towards achieving a
spatially-safe C that we call Checked C. Checked C borrows
many ideas from prior safe-C efforts but ultimately differs
in that its design focuses on allowing incremental conversion
while balancing control, interoperability, and high performance.
Technically speaking, Checked C’s design has three key fea-
tures. First, all pointers in Checked C are represented as in
normal C—no changes to pointer layout are imposed. This
eases interoperability. Second, the legal boundaries of pointed-
to memory are specified explicitly; the goal here is to enhance
human readability and maintainability while supporting efficient
compilation and running times. Checked C supports pointers to
single objects, arrays, and NUL-terminated arrays. The types and

bounds are used by the compiler to either prove that an access
is safe, or else to insert a run-time bounds check when such a
proof is too difficult. Programmers can use dynamic checks and
annotations to convince the compiler to eschew unnecessary
checks in performance-critical code.

Finally, Checked C is designed to support incremental port-
ing from legacy C. Programs may consist of a mix of checked
and legacy pointers, and fully ported code can be annotated
as within a checked region, which can be held blameless for any
spatial safety violation. This guarantee is made possible by re-
stricting any use of unchecked pointers and casts within the
region. To allow existing unchecked code to be accessed by
checked regions and with checked pointers, Checked C allows
unchecked code to be annotated with bounds-safe interfaces. These
describe the expected behavior and requirements of the code
and can be added to parameters and return values of function
declarations/definitions, function and record types, and global
variables. Such interfaces support modular porting and use of
legacy libraries. In the Checked C universe, programmers can
add safety with each use of a checked pointer, and then extend
the safety guarantee by expanding the scope of checked regions.
At every step, they enjoy a working software artifact. Ultimately,
a fully-ported program is assuredly safe, and in the meantime
scrutiny can be focused on any unchecked regions.

We are implementing Checked C as an extension to the
LLVM compiler infrastructure. Preliminary results are promising.
On a standard benchmark suite, Checked C adds an average run-
time overhead of 8.6%, with about 90% of the code in checked
regions. Code changes were modest: 17.5% of benchmark lines of
code were changed, and most (> 80%, on average) were trivial
to perform.

Checked C is under active and ongoing development. We are
porting more programs to evaluate its utility. We are developing
a tool to rewrite legacy programs semi-automatically. We are also
improving Checked C’s analysis, and formalizing a proof of its
safety guarantee. Checked C’s code and in-depth specification
are available at https://github.com/Microsoft/checkedc.

2 PRIOR WORK

There has been extensive research addressing out-of-bounds
memory accesses in C [10]. The research falls into four categories:

c©2018 IEEE

https://github.com/Microsoft/checkedc

2

C(-like) dialects, compiler implementations, static analyses, and
security mitigations.

Safe C Dialects. Cyclone [11] and Deputy [12], [13] are type-
safe dialects of C. Cyclone’s key novelty is its support for GC-free
temporal safety [14], [15]. Checked C differs from Cyclone by
being backward compatible (Cyclone disallowed many legacy
idioms) and avoiding pointer format changes (e.g., Cyclone
used “fat” pointers to support arithmetic). Deputy keeps pointer
layout unchanged by allowing a programmer to describe the
bounds using other program expressions. Deputy incorporates
the bounds information into the types of pointers by using
dependent types. Deputy requires that values of all pointers stay
in bounds so that they match their types. To enforce this invariant
(and make type checking decidable), it inserts runtime checks
before pointer arithmetic, not at memory accesses. Checked
C uses separate annotations that describe bounds invariants
instead of incorporating bounds into pointer types and inserts
runtime checks at memory accesses.

Non C-based programming languages like D [16] and Rust
[17] also aim to support safe, low-level systems-oriented pro-
gramming. Legacy programs would need to be ported wholesale
to take advantage of these languages, which could be a costly
affair (but could be partially automated [18]).

Safe C implementations. Rather than use a new language,
several projects have looked at new ways to implement legacy
C programs so as to make them spatially safe. The bcc source-
to-source translator [19] and the rtcc compiler [20] changed the
representations of pointers to include bounds. The rtcc-generated
code was 3 times larger and about 10 times slower. Fail-Safe
C [21] changed the representation of pointers and integers to
be pairs. Benchmarks were 2 to 4 times slower. CCured [7]
employed a whole-program analysis for transforming programs
to be safe. Its transformation involved changes to data layout
(e.g., fat and “wild” pointers), which could cause interoperation
headaches. Compilation was all-or-nothing: unhandled code
idioms in one compilation unit could inhibit compilation of the
entire program.

Safety can also be offered by the loader and run-time system.
“Red zones”, used by Purify [22], [23] are inserted before and after
dynamically-allocated objects and between statically-allocated
objects, where bytes in the red zone are marked as inaccessible
(at a cost of 2 bits per protected byte). Red-zone approaches
cannot detect out-of-bounds accesses that occur entirely within
valid memory for other objects or intra-object buffer overruns (a
write to an array in a struct that overwrites another member of
the struct). Checked C detects accesses to unrelated objects and
intra-object overruns.

Checking that accesses are to the proper objects can be done
using richer side data structures that track object bounds and
by checking that pointer arithmetic stays in bounds [24], [25],
[26], [27], [8], [28], [29]. Baggy Bounds Checking [27] provides
a fast implementation of object bounds by reserving 1/n of the
virtual address space for a table, where n is the smallest allowed
object size and requiring object sizes be powers of 2. It increases
SPECINT 2000 execution time by 60% and memory usage by
20%. SoftBound [8] tracks bounds information by using a hash
table or a shadow copy of memory. It increases execution time for
a set of benchmarks by 67% and average memory footprint by
64%. SoftBound can check only writes, in which case execution
time increases by 22%.

There is also work on adding temporal safety with differ-

ent memory allocation implementations, e.g., via conservative
garbage collection (GC) [30] or regions [14], [15]. Checked C
focuses on spatial safety both due to its importance at stopping
code injection style attacks as well as information disclosure
attacks. Temporal safety can be added by linking Checked C
programs with a conservative GC; overcoming the cost of doing
so (e.g., as done in Cyclone or Rust) is something we plan to
investigate in the future.

Static analysis. Static analysis tools take source or binary
code and attempt to find possible bugs, such as out-of-bounds
array accesses, by analyzing the code. Commercial tools include
CodeSonar, Coverity Static Analysis, HP Fortify, IBM Security
AppScan, Klocwork, Microsoft Visual Studio Code Analysis for
C/C++, and Polyspace Static Analysis [2], [31], [32]. Static anal-
ysis tools have difficulty balancing precision and performance.
To be precise, they may not scale to large programs. While
imprecision can aid scalability, it can result in false positives,
i.e., error reports that do not correspond to real bugs. False
positives are a significant problem [2]. As a result, tools may
make unsound assumptions (e.g., inspecting only a limited
number of paths through function [31]) but the result is they
may also miss genuine bugs (false negatives). Alternatively, they
may focus on supporting coding styles that avoid problematic
code constructs, e.g., pointer arithmetic and dynamic memory
allocation [4], [33], [34], [3]. Or, they may require sophisticated
side conditions on specifications, i.e., as pre- and post-conditions
at function boundaries, so that the analysis can be modular, and
thus more scalable [35].

Checked C occupies a different design point than static
analysis tools. It avoids problems with false positives by de-
ferring bounds checks to runtime—in essence, it trades run-time
overhead for soundness and coding flexibility.

Security mitigations. Security mitigations employ runtime-
only mechanisms that detect whether memory has been cor-
rupted or prevent an attacker from taking control of a system
after such corruption. They include data execution prevention
(DEP) [6], software fault isolation (SFI) [36] , address-space layout
randomization (ASLR) [37], [38], stack canaries [39], shadow
stacks [40], [41], and control-flow integrity (CFI) [5]. DEP, ASLR,
and CFI focus on preventing execution of arbitrary code and
control-flow modification. Stack protection mechanisms focus
on protecting data or return addresses on the stack.

Checked C provides protection against data modification
and data disclosure attacks, which the other approaches do not.
For example, ASLR does not protect against data modification
or data disclosure attacks. Data may be located on the stack
adjacent to a variable that is subject to a buffer overrun; the
buffer overrun can be be used reliably to overwrite or read the
data. Shadow stacks do not protect stack-allocated buffers or
arrays, heap data, and statically-allocated data. Chen et al. [42]
show that data modification attacks that do not alter control-flow
(Heartbleed is an example) pose a serious long-term threat.

3 CHECKED C
This section presents an overview of Checked C’s main features.

3.1 Basics

The Checked C extension extends the C language with two
additional checked pointer types: _Ptr<T> and _Array_ptr<

3

void
read_next(int *b, int idx, _Ptr<int>out) {
int tmp = *(b+idx);
*out = tmp;

}

Figure 1. Example use of _Ptr<T>

T>.1 The _Ptr<T> type indicates a pointer that is used for
dereference only and has no arithmetic performed on it, while
_Array_ptr<T> supports arithmetic with bounds declarations
provided in the type. The compiler dynamically confirms that
checked pointers are valid when they are dereferenced. In blocks
or functions specifically designated as checked regions, it imposes
stronger restrictions on uses of unchecked pointers that could
corrupt checked pointers, e.g., via aliases. We also extend C
with checked array types (including NUL-terminated ones), by
prefixing array dimensions with the _Checked keyword, as in
int buf _Checked[10]. We expect a Checked C program to
involve a mix of both checked and unchecked regions, and a mix
of checked and unchecked pointer and array types.

3.2 Simple pointers

Using _Ptr<T> is straightforward: any pointer to an object
that is only referenced indirectly, without any arithmetic or
array subscript operations, can be replaced with a _Ptr<T>. For
example, one frequent idiom in C programs is an outparameter,
used to indicate an object found or initialized during parsing.
Figure 1 shows using a _Ptr<int> for the out parameter.
When this function is called, the compiler will confirm that it is
given a valid pointer, or null. Within the function, the compiler
will insert a null check before writing to out. Such null checks
are elided when the compiler can prove they are unnecessary.

3.3 Arrays

The _Array_ptr<T> type identifies a pointer to an array of
values. Prior safe-C efforts sometimes involve the use of fat
pointers, which consist both of the actual pointer and information
about the bounds of pointed-to memory. Rather than changing
the run-time representation of a pointer in order to support
bounds checking, in Checked C the programmer associates a
bounds expression with each _Array_ptr<T>-typed variable
and member to indicate where the bounds are stored. The
compiler inserts a run-time check that ensures that deferencing
an _Array_ptr<T> is safe (the compiler may optimize away
the runtime check if it can prove it always passes). Bounds
expressions consist of non-modifying C expressions and can
involve variables, parameters, and struct field members. For
bounds on members, the bounds can refer only to other members
declared in the same structure. Bounds declarations on mem-
bers are type-level program invariants that can be suspended
temporarily when updating a specific struct object.

Figure 2 shows using _Array_ptr<T> with declared
bounds as parameters to a function. In particular, the types of
the dst and src arrays have bound expressions that refer to
the function’s other two respective parameters. In the body of
the function, both src and dst are accessed as expected. The

1. We use the C++ style syntax for programmer familiarity, and precede
the names with an underscore to avoid parsing conflicts in legacy libraries.

void append(
_Array_ptr<char> dst : count(dst_count),
_Array_ptr<char> src : count(src_count),
size_t dst_count, size_t src_count)

{
_Dynamic_check(src_count <= dst_count);
for (size_t i = 0; i < src_count; i++) {
if (src[i] == ’\0’) {

break;
}
dst[i] = src[i];

}
}

Figure 2. Example use of _Array_ptr<T>

size_t my_strlcpy(
_Nt_array_ptr<char> dst: count(dst_sz - 1),
_Nt_array_ptr<char> src, size_t dst_sz)

{
size_t i = 0;
_Nt_array_ptr<char> s : count(i) = src;
while (s[i] != ’\0’ && i < dst_sz - 1) {
dst[i] = s[i];
++i;

}
dst[i] = ’\0’;
return i;

}

Figure 3. Example use of _Nt_array_ptr<T>

compiler inserts runtime checks before accessing the memory lo-
cations src[i] and dst[i]. The compiler optimizes away the
check on src[i] because it can prove that i < src_count,
the size of src. The compiler also optimizes away the check
dst[i] thanks to the _Dynamic_check placed outside the
loop. Like an assert, this predicate evaluates the given condi-
tion and signals a run-time error if the condition is false; unlike
assert, this predicate is not removed unless proven redundant.
Here, its existence assures the compiler that i < dst_count
(transitively), so no per-iteration checks are needed.

There are two other ways to specify array bounds. The
first is a range, specified by base and upper bound pointers.
For example, the bounds expression on dst from Figure 2
could have been written bounds(dst,dst+dst_count). The
second is an alternative to count called bytecount, which
can be applied to either void* or _Array_ptr<void> types.
A bytecount(n) expression applied to a pointer p would be
equivalent to the range p through (char *)p+n. An example
of this is given at the end of this section.

We can also annotate an array declaration as _Checked. Any
implicit conversion of the array to a pointer value is treated as a
_Array_ptr<T>. We add a restriction that all inner dimensions
of checked arrays also be checked. We see both of these situations
in Figure 4, shortly. Parameters with checked array types are
treated as having _Array_ptr<T> types. If no bounds are
declared, the bounds are implied by the array size, if it is known.
T _Checked[] is a synonym for _Array_ptr<T>.

3.4 NUL-terminated Arrays
The _Nt_array_ptr<T> type identifies a pointer to an array of
values (often chars) that ends with a NUL (’\0’). The bounds

4

expression identifies the known-to-be-valid range of the pointer.
This range can be expanded by reading the character just past
the bounds to see if it is NUL.2 If not, then the bounds can
be expanded by one. Otherwise, the current bounds cannot be
expanded, and only a ’\0’ may be written to this location.
_Nt_array_ptr<T> types without explicit bounds default to
bounds of count(0), meaning that index 0 can be read safely. A
_Nt_array_ptr<T> can be cast to a _Array_ptr<T> safely—
for an _Array_ptr<T>, the character just past the bounds
can not be read or written, which ensures the zero-termination
invariant is maintained for any aliases.

An example use of _Nt_array_ptr<T> is given in Figure 3.
It implements the strlcpy libC routine, which copies at most
dst_sz characters from src to dst. We must alias src into
the local variable s so that its count, i, can grow dynamically
as the loop executes.

NUL-terminated arrays can be declared by using the key-
word _Nt_checked instead of _Checked. An implicit con-
version of an _Nt_checked array to a pointer produces an
_Nt_array_ptr<T>.

3.5 Checked and unchecked regions

The safety provided by checked pointers can be thwarted by
unsafe operations, such as writes to traditional pointers. For
example, consider this variation of the code in Figure 1:

void more(int *b, int idx, _Ptr<int *>out) {
int oldidx = idx, c;
do {
c = readvalue();
b[idx++] = c;

} while (c != 0);
*out = b+idx-oldidx;

}

This function repeatedly reads an input value into b until a 0
is read, at which point it returns an updated b pointer via the
checked out parameter. While we might expect that writing to
out is safe, since it is a checked pointer, it will not be safe if the
loop overflows b and in the process modifies out to point to
invalid memory.

In a program with a mix of checked and unchecked pointers
we cannot and should not expect complete safety. However,
we would like to provide some assurance about which code
is possibly dangerous, i.e., whether it could be the source of a
safety violation. Code review and other efforts can then focus on
that code. For this purpose Checked C provides checked regions
of code. Such code is designated specifically at the level of a file
(using a pragma), a function (by annotating its prototype), or a
single block (by labeling that block, similar to an asm block).

An example checked block is shown in Figure 4. Outside of
the _Checked-annotated region, an unchecked pointer is cast
to a checked one. This cast is a potential source of problems (if
out is bogus) and so would not be permitted in checked regions.
Within the checked block, checked pointers declared inside and
outside the block can be freely manipulated and the compiler
performs the expected checks. The compiler also treats uses of
the address-of operator & in a checked block as producing a
checked pointer, not an unchecked one. When doing this to a
struct field, the bounds are defined as the extent of that field.

2. This means that bounds of count(n) requires allocating n+1 bytes.

void foo(int *out) {
_Ptr<int> ptrout;
if (out != (int *)0) {

ptrout = (_Ptr<int>)out; // cast OK
} else { return; }
_Checked {
int b _Checked[5][5];
for (int i = 0; i < 5; i++) {

for (int j = 0; j < 5; j++) {
b[i][j] = -1; // access safe

} }
*ptrout = b[0][0];

}
}

Figure 4. Example _Checked block, and _Checked array

size_t fwrite(void *p : byte_count(s*n),
size_t s,
size_t n,
FILE *st : itype(_Ptr<FILE>));

Figure 5. Standard library checked interface

In general, within a checked region both null and bounds
checks on checked pointers are employed as usual, but additional
restrictions are also imposed. In particular, explicit casts to
checked pointer types are disallowed, as are reads from and
writes to unchecked pointers. Checked regions may neither use
varargs nor K&R-style prototypes. All of these restrictions are
meant to ensure that the entire execution of a checked region is
spatially safe.

Checked blocks allow for incremental conversion at a finer
level of granularity than functions. A porting effort can identify
that some code in a function can be made to use checked pointers
entirely, while other code in the function can use a mixture of
checked and unchecked pointers, as well as casts that can’t be
cheaply proven to be safe. Over time, the scope of the checked
blocks can increase until they encompass the entire function.

In a sense, we can think of each use (e.g., a dereference)
of a checked pointer as being contained with a tiny checked
region consisting only of that use. This use is safe if the pointer
itself is valid. _Checked regions expand the scope of such a
safety guarantee to include not just the use of the pointer, but all
code around it within the region. We have formalized a simple
language that constitutes the core of Checked C and proved
that this property holds. We are continuing to flesh out this
formalization to include more tricky elements of Checked C’s
type system.

3.6 Bounds safe interfaces

Checked C permits ascribing checked types and bounds expres-
sions to unchecked functions, members, and global variables via
bounds safe interfaces. This allows checked regions to use legacy
libraries and for the interactions to be checked. As an example,
the type we give to the fwrite standard library function is
shown in Figure 5. The first argument to the function is the
target buffer whose size (in bytes) is given by the second and
third arguments. The presence of a bounds expression indicates
that an argument with type T* should have a checked type
_Array_ptr<T> ascribed to it. For p this is _Array_ptr<

5

void>. The final argument is a FILE pointer, which is ascribed
the checked type given by the itype annotation.

The type used during type checking depends on whether
the function is called from a checked or unchecked region.
For a checked region, it is the ascribed the checked type. For
an unchecked region, an argument can have the unchecked
or unchecked type. The type checker tries both types when
checking the call. If the checked type is used, the argument must
meet the requirements of a parameter’s bounds expression also.

Bounds-safe interfaces may also be used to give checked
types to as-yet unconverted code. As a project is converted, some
files can be left alone, but have their externally visible signatures
converted so that invoking their functions or using the types
in checked blocks is allowed. For example, callers in a checked
region could use the interface in Figure 5 to provide checked
pointer types as parameters, while callers in an unchecked region
can provide parameters with either unchecked or checked types.

3.7 Restrictions and limitations

Checked C is work in progress and currently has several
limitations. First, to ensure that checked pointers are valid by
construction, we require that checked pointer variables and
structs/arrays containing checked pointers are initialized when
they are declared. In addition, heap-allocated memory that con-
tains checked pointers (like a struct or array of checked pointers)
or is pointed to by a _Nt_array_ptr<T> must use calloc
to ensure safe initialization. We plan to employ something akin
to Java’s definite initialization analysis to relax this requirement.

Second, we disallow taking the address of variables/struct
members with bounds, variables used in bounds expressions,
and members used in member bounds expressions. Such point-
ers could be used to subvert the validity of bounds checks.

Third, _Array_ptr<T> values can be dereferenced follow-
ing essentially arbitrary arithmetic; e.g., if x is an _Array_ptr<
int>we could dereference it via *(x+y-n+1) and the compiler
will insert any needed checks to ensure the access is legal.
However, updates to _Array_ptr<T> variables are currently
more limited. The bounds for a variable are declared when the
variable is declared. It is possible, however, that a variable may
need different bounds at different points in the program. For
example, we might like to replace the loop in Figure 2 with:

size_t i = 0;
for (; i < src_count; i++) {
if (*src == ’\0’) break;
*dst = *src;
src++; dst++;

}

The problem is that the bounds declared for src are tantamount
to the range (src,src+src_count). This means that updating
src to src+1 would invalidate them, as the upper bound
would be off by one. We would like to declare src to have
new bounds before entering the loop, such as

(src - i, src + src_count - i)

We plan to support flow-sensitive declarations of bounds, so that
variables can have different bounds at different program points.

Finally, the design for checking statically that declared
bounds are valid is incomplete. We could fall back on a combi-
nation of static and dynamic checking if necessary. We describe
the state of our implementation in the next section.

4 IMPLEMENTATION

This section briefly describes our current implementation.
Compiler Implementation. We have been implementing

Checked C as an extension to the Clang/LLVM compiler. The
extension is enabled as a flag passed to Clang. We extended
the C grammar [43] to support bounds declarations, the new
_Ptr<T>, _Array_ptr<T>, and T _Checked[N] types, and
adding _Checked or _Unchecked annotations to blocks and
functions. We chose reserved identifiers so that they will not
conflict with identifiers in existing code.

We include a set of checked headers which ascribe bounds-safe
interfaces to C standard library functions. These are used in lieu
of the standard headers when the Checked C flag is present.

In order to support Checked C’s new types, we extended
Clang’s type representation and type checker. We added a
pointer kind discriminator to Clang’s compile-time pointer type
representation, and a “checked” flag to Clang’s compile-time
array type representation.

Checked C’s bounds expressions provide a static description
of the bounds on a pointer. We check statically that the sub-
expressions of a bounds expression are non-modifying expressions:
they do not contain any assignment, increment or decrement op-
erators, or function calls. This ensures that using the expressions
at bounds checks does not cause unexpected side-effects.

Checked C performs inference to compute a bounds ex-
pression that conservatively describes the bounds on a pointer-
typed expression. Inference uses bounds expressions normalized
into bounds(l,u) form. The inferred bounds are used to check
memory accesses using the value of the pointer expression.

For pointer variables, the inferred bounds are the declared
bounds. For pointer arithmetic expressions, the inferred bounds
are those of the pointer-typed subexpression. When taking the
address of a struct’s member (&p->f), the bounds are those
of the particular field. On the other hand, the address of an array
element retains the bounds of the whole array. For example, the
bounds of int x[5] are

bounds(x, x+5*sizeof(int))

as are the bounds of &x[3], rather than (say)

bounds(x+3*sizeof(int),x+4*sizeof(int))

The compiler must statically ensure that bounds declarations
are valid after assignments and initialization. This requires two
steps. First, a subsumption check confirms that assigning to a
variable (an lvalue, more generally) meets the bounds required
of pointers stored in the variable (lvalue). The required pointer
bounds must be within (subsumed) by the inferred bounds
of the right-hand expression. (Subsumption also applies to
initialization and function parameter passing.) This check allows
assignment to narrow, but not to widen, the bounds of the right-
hand side value. Determining the required bounds is generally
straightforward. In the simplest case, the bounds for pointers
stored in a variable (lvalue) are directly declared, e.g., for a
local variable or function parameter. For assignments to struct
members, uses of struct members within the bounds expression
for the member are replaced with an appropriate struct access,
For example, given

struct S {
int len;
_Array_ptr<int> buf : count(len);

};

6

the required bounds for an assignment to a.buf are a.len.
Second, the compiler must ensure bounds expressions are

still valid after a statement modifies a variable used in a bounds
expression. For example, in Figure 3 the bounds of s is count
(i), but i is modified in a loop that iterates over s looking
for a NUL terminator. For _Array_ptr<T> types, the modifi-
cation is justified by subsumption: The updated bounds can be
narrowed but not widened. For _Nt_array_ptr<T> types, we
can widen the bounds by 1 byte if we know that the rightmost
byte is ’\0’, e.g., due to a prior check, as is the case in Figure 3.

At the moment subsumption checking is rather primitive.
Some subsumption checks for bounds declarations that could
be statically proven are not. Currently, the static analysis can
only reason about bounds expressions that are syntactically
equivalent (modulo constant-folding and ignoring non-value
changing operations) and bounds expressions that are constant-
sized ranges (syntactically equivalent base expressions +/- con-
stant offsets). The main issue is the need to perform a more
sophisticated dataflow analysis (at the Clang AST level) to gather
and consider relevant facts about relationships between variables
(such as equalities and inequalities).

The compiler complains when it cannot (dis)prove a sub-
sumption check in checked code. In our experimental eval-
uation, we manually review the warnings. We insert the
code in an _Unchecked block (for checks that are trivially
obvious) or perform a dynamic subsumption check with
_Dynamic_bounds_cast (which eliminates the error).

We have designed but not yet implemented the analysis that
checks assignments to variables used in bounds declarations.
For our experimental evaluation, we verified by hand that such
assignments do not happen.

The Checked C compiler inserts run-time checks into the
evaluation of lvalue expressions whose results are derived from
checked pointers and that will be used to access memory. The
code for these checks is handed to LLVM, which we allow to
remove checks if it can prove they will always pass. In general,
such checks are the only source of Checked C run-time overhead
(aside from programmer use of _Dynamic_check).

Before any _Ptr<T> accesses the compiler inserts a run-
time check that the pointer is non-null. Before any _Array_ptr
<T> accesses the compiler inserts a non-null check followed by
the required bounds check computed from the inferred bounds.
The compiler does not perform any range checks during pointer
arithmetic (unless the arithmetic accesses memory).

5 PRELIMINARY EXPERIMENTAL EVALUATION

We (mostly) converted two existing C benchmarks as an initial
evaluation of the consequences of porting code to Checked C.
We quantify both the changes required for the code to become
checked, and the overhead imposed on compilation, running
time, and executable size.

We chose the Olden [44] and Ptrdist [45] benchmark suites,
described in Table 1, because they are specifically designed
to test pointer-intensive applications, and they are the same
benchmarks used to evaluate both Deputy [12] and CCured [7].
We did not convert bc from the Ptrdist suite and voronoi from the
Olden suite for lack of time.

The evaluation results are presented in Table 2. These were
produced using a 12-Core Intel Xeon X5650 2.66GHz, with 24GB
of RAM, running Red Hat Enterprise Linux 6. All compilation

and benchmarking was done without parallelism. We ran each
benchmark 21 times with and without the Checked C changes
using the test sizes from the LLVM versions of these benchmarks.
We report the median; we observed little variance.

Code Changes. On average, we modified around 17.5% of
benchmark lines of code. Most of these changes were in declara-
tions, initializers, and type definitions rather than in the program
logic. In the evaluation of Deputy [13], the reported figure of lines
changed ranges between 0.5% and 11% for the same benchmarks,
showing they have a lower annotation burden than Checked C.

We modified the benchmarks to use checked blocks and
the top-level checked pragma. We placed code that could not
be checked because it used unchecked pointers in unchecked
blocks. On average, about 9.3% of the code remained unchecked
after conversion, with a minimum and maximum of 3.9%
and 20.4%. The cause was almost entirely variable-argument
printf functions.

We manually inspected changes and divided them into easy
changes and hard changes. Easy changes include: replacing
included headers with their checked versions; converting a T*
to a _Ptr<T>; adding the _Checked keyword to an array

declaration; introducing a _Checked or _Unchecked region;
adding an initializer; and replacing a call to malloc with a call
to calloc. The remaining “hard” changes include changing
a T* to a _Array_ptr<T> and adding a bounds declaration,
adding structs, struct members, and local variables to represent
run-time bounds information, and code modernization.

In all of our benchmarks, we found the majority—more than
80% on average–of changes were easy. In six of the benchmarks,
the only “hard” changes were adding bounds annotations
relating to the parameters of main.

In three benchmarks—em3d, mst, and yacr2—we had to
add intermediate structs so that we could represent the bounds
on _Array_ptr<T>s nested inside arrays. In mst we also had
to add a member to a struct to represent the bounds on an
_Array_ptr<T>. In the first case, this is because we cannot rep-
resent the bounds on nested _Array_ptr<T>s, in the second
case this is because we only allow bounds on members to refer-
ence other members in the same struct. In em3d and anagram
we also added local temporary variables to represent bounds
information. In yacr2 there are a lot of bounds declarations that
are all exactly the same where global variables are passed as
arguments, inflating the number of “hard” changes.

Running time overhead. The average run-time overhead
introduced by added dynamic checks was 8.6%. In more than
half of the benchmarks the overhead was less than 1%. We
believe this to be an acceptably low overhead that better static
analysis may reduce even further.

In all but two benchmarks—treadd and ft—the added over-
head matches (is within 2%) or betters that of Deputy. For yacr2
and em3d, Checked C does substantially better than Deputy,
whose overheads are 98% and 56%, respectively. Checked C’s
overhead betters or matches that reported by CCured in every
case but ft.

Compile-time overhead. On average, the overhead added
to compilation time by using Checked C is 24.3%. The maximum
overhead is 83.1%, and the minimum is 4.9% faster than com-
piling with C. Across the benchmarks, there is an average 7.4%
code size overhead from the introduction of dynamic checks.
Ten of the programs have a code size increase of less than 10%.

7

Name LoC Description

bh 1,162 Barnes & Hut N-body force computation
bisort 262 Sorts using two disjoint bitonic sequences
em3d 476 Simulates electromagnetic waves in 3D
health 338 Simulates Columbian health-care system
mst 325 Minimum spanning tree using linked lists
perimeter 399 Perimeter of quad-tree encoded images
power 452 The Power System Optimization problem
treadd 180 Sums values in a tree
tsp 415 Estimates Traveling-salesman problem
voronoi 814 Voronoi diagram of a set of points

anagram 346 Generates anagrams from a list of words
bc 5,194 An arbitrary precision calculator
ft 893 Fibonacci heap Minimum spanning tree
ks 549 Schweikert-Kernighan partitioning
yacr2 2,529 VLSI channel router

Table 1
Compiler Benchmarks. Top group is the Olden suite, bottom group is the

Ptrdist suite. Descriptions are from [44], [45]. We did not convert voronoi from
the Olden suite and bc from the Ptrdist suite.

Code Changes Observed Overheads
Name LM % EM % LU % RT ±% CT ±% ES ±%

bh 10.0 76.7 5.2 +0.2 +23.8 +6.2
bisort 21.8 84.3 7.0 0.0 +7.3 +3.8
em3d 35.3 66.4 16.9 +0.8 +18.0 -0.4
health 24.0 97.8 9.3 +2.1 +18.5 +6.7
mst 30.1 75.0 19.3 0.0 +6.3 -5.0
perimeter 9.8 92.3 5.2 0.0 +4.9 +0.8
power 15.0 69.2 3.9 0.0 +21.6 +8.5
treadd 17.2 92.3 20.4 +8.3 +83.1 +7.0
tsp 9.9 94.5 10.3 0.0 +47.6 +4.6

anagram 26.6 67.5 10.7 +23.5 +16.8 +5.1
ft 18.7 98.5 6.3 +25.9 +16.5 +11.3
ks 14.2 93.4 8.1 +12.8 +32.3 +26.7
yacr2 14.5 51.5 16.2 +49.3 +38.4 +24.5

Mean: 17.5 80.1 9.3 +8.6 +24.3 +7.4
Table 2

Benchmark Results. Key: LM %: Percentage of Source LoC Modified,
including Additions; EM %: Percentage of Code Modifications deemed to be
Easy; LU %: Percentage of Lines remaining Unchecked; RT ±%: Percentage
Change in Run Time; CT ±%: Percentage Change in Compile Time; ES ±%:

Percentage Change in Executable Size (.text section only). Mean:
Geometric Mean.

6 FUTURE WORK

Developing a practical, industrial-strength language is a substan-
tial effort. As such, we have several threads of ongoing work.

Automatically rewrite C programs to Checked C: We are in
the process of porting more and larger programs to Checked C.
To help, we have been developing a tool that uses a simple
analysis (inspired by that of CCured [7]) to convert pointer
types to use _Ptr<T>. We are working on extending this tool to
support both the placement of casts and bounds safe interfaces,
as well as inferring bounds for array accesses that will allow
conversion to _Array_ptr<T> types as well.

Improve the checking of bounds declarations: A key de-
sign goal of Checked C is to keep static checking fast and pre-
dictable. To nevertheless support sophisticated static reasoning,
we are working on an analysis that infers relational invariants
and adds them as source-level assertions. These assertions can
be easily proved by the static checker and then used to justify
eliminating costly dynamic checks.

Supporting polymorphism with safe casts: Polymorphic
data structures such as lists and trees often declare their contents
with type void*, casting to/from that type when inserting/re-
moving data. Casts are also used to implement “poor man’s
subtyping” for struct types. We are extending Checked C to
support these and other forms of safe cast, for greater flexibility.

Formalization: We have mechanized a formalization of a
core subset of Checked C and used it to prove that any violation
of spatial safety is due, directly or indirectly, to code occurring
an unchecked region; checked code cannot be blamed. We are
working to expand this formalism to include features such
dynamically sized arrays and flow-sensitive updates to array
lengths due to pointer assignments or NUL checks.

7 CONCLUSION

We have presented Checked C, an extension to C to help ensure
spatial safety. Checked C’s design is focused on interoperability
with legacy C, usability, and high performance. Any part of
a program may contain, and benefit from, checked pointers.
Such pointers are binary-compatible with legacy, unchecked

pointers but have explicitly annotated and enforced bounds.
Code units annotated as checked regions provide guaranteed
safety: The code within may not use unchecked pointers or
unsafe casts that could result in spatial safety violations. Checked
C’s bounds-safe interfaces provide checked types to unchecked
code, which is useful for retrofitting third party and standard
libraries. Together, these features permit incrementally adding
safety to a legacy program, rather than making it an all-or-
nothing proposition. Our implementation of Checked C as an
LLVM extension enjoys good performance, with relatively low
run-time and compilation overheads. It is freely available at
https://github.com/Microsoft/checkedc and continues to be
actively developed.

REFERENCES

[1] “NIST vulnerability database,” https://nvd.nist.gov, accessed May 17,
2017.

[2] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines of code
later: Using static analysis to find bugs in the real world,” Commun.
ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[3] Mathworks, “Polyspace code prover: prove the absence of run-
time errors in software,” http://www.mathworks.com/products/
polyspace-code-prover/index.html, 2016, accessed May 12, 2016.

[4] AbsOmt, “Astrée: Fast and sound runtime error analysis,” http://www.
absint.com/astree/index.htm, 2016, accessed May 12, 2016.

[5] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti, “Control-flow
integrity,” in ACM Conference on Computer and Communications Security,
2005.

[6] S. Andersen and V. Abella, “Data execution prevention. changes to
functionality in microsoft windows xp service pack 2, part 3: Memory
protection technologies,” 2004.

[7] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3, pp.
477–526, 2005.

[8] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for C,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[9] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference, 2012.

[10] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,”
in Proceedings of the 2013 IEEE Symposium on Security and Privacy, 2013.

https://github.com/Microsoft/checkedc
https://nvd.nist.gov
http://www.mathworks.com/products/polyspace-code-prover/index.html
http://www.mathworks.com/products/polyspace-code-prover/index.html
http://www.absint.com/astree/index.htm
http://www.absint.com/astree/index.htm

8

[11] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, , and Y. Wang,
“Cyclone: A safe dialect of C,” in USENIX Annual Technical Conference.
Monterey, CA: USENIX, 2002, pp. 275–288.

[12] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer, “SafeDrive: Safe and recoverable extensions
using language-based techniques,” in 7th Symposium on Operating
System Design and Implementation (OSDI’06). Seattle, Washington:
USENIX Association, 2006.

[13] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “De-
pendent types for low-level programming,” in Proceedings of European
Symposium on Programming (ESOP ’07), 2007.

[14] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney,
“Region-based memory management in Cyclone,” in PLDI, 2002.

[15] N. Swamy, M. Hicks, G. Morrisett, D. Grossman, and T. Jim, “Safe
manual memory management in Cyclone,” Sci. of Comp. Programming,
vol. 62, no. 2, pp. 122–144, Oct. 2006, special issue on memory manage-
ment. Expands ISMM conference paper of the same name.

[16] dlang.org, “D,” http://dlang.org/, 2016, accessed May 13, 2016.
[17] Rust-lang.org, “Rust documentation,” https://www.rust-lang.org/

documentation.html, 2016, accessed May 13, 2016.
[18] “C to rust translation, refactoring, and cross-checking,” https://c2rust.

com/, 2018.
[19] S. C. Kendall, “Bcc: runtime checking for C programs,” in USENIX

Toronto 1983 Summer Conference. Berkeley, CA, USA: USENIX Associa-
tion, 1983.

[20] J. L. Steffen, “Adding run-time checking to the Portable C Compiler,”
Softw. Pract. Exper., vol. 22, no. 4, pp. 305–316, Apr. 1992.

[21] Y. Oiwa, “Implementation of the memory-safe full ANSI-C compiler,”
in Proceedings of the ACM Conference on Programming Language Design
and Implementation, 2009.

[22] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and
access errors,” in Proceedings of the Winter 1992 USENIX Conference.
Berkeley, CA, USA: USENIX Association, 1992, pp. 125–138.

[23] I. Unicom Systems, “Purifyplus,” http://unicomsi.com/products/
purifyplus/, 2016, accessed May 6, 2016.

[24] R. W. M. Jones and P. H. J. Kelly, “Backwards-compatible bounds
checking for arrays and pointers in C programs,” in Third International
Workshop on Automated Debugging, ser. Linkoping Electronic Conference
Proceedings, M. Kamkar and D. Byers, Eds. Linkoping University
Electronic Press, May 1997, ”http://www.ep.liu.se/ea/cis/1997/009/”.

[25] H. Patil and C. Fischer, “Low-cost, concurrent checking of pointer and
array accesses in C programs,” Software: Practice & Experience, vol. 27,
no. 1, pp. 87–110, Jan. 1997.

[26] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow
detector,” in Proceedings of the 11th Annual Network and Distributed System
Security Symposium, 2004.

[27] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in Proceedings of the 2008 IEEE
Symposium on Security and Privacy, 2008.

[28] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
W. Joosen, “Paricheck: An efficient pointer arithmetic checker for c
programs,” in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, 2010.

[29] G. J. Duck and R. H. C. Yap, “Heap bounds protection with low fat
pointers,” in Proceedings of the 25th International Conference on Compiler
Construction, 2016.

[30] H.-J. Boehm and M. Weiser, “Garbage collection in an uncooperative
environment,” Softw. Pract. Exper., vol. 18, no. 9, pp. 807–820, Sep. 1988.

[31] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A static analyzer for finding
dynamic programming errors,” Softw. Pract. Exper., vol. 30, no. 7, pp.
775–802, Jun. 2000.

[32] P. Emanuelsson and U. Nilsson, “A comparative study of industrial
static analysis tools,” Electron. Notes Theor. Comput. Sci., vol. 217, pp.
5–21, Jul. 2008.

[33] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “A static analyzer for large safety-critical
software,” in PLDI, 2003.

[34] D. Delmas and J. Souyris, “Astrée: From research to industry,” in
Proceedings of the 14th International Conference on Static Analysis, 2007.

[35] B. Hackett, M. Das, D. Wang, and Z. Yang, “Modular checking for buffer
overflows in the large,” in ICSE, 2006.

[36] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, 1993.

[37] P. Team, http://pax.grsecurity.net/docs/aslr.txt, 2001.
[38] Wikipedia, “Address space layout randomization,” https://en.

wikipedia.org/wiki/Address space layout randomization, 2016, ac-
cessed April 25, 2016.

[39] C. Cowan, C. Pu, D. Maiere, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th Conference on USENIX Security Symposium - Volume 7, 1998.

[40] A. Baratloo, N. Singh, and T. Tsai, “Transparent run-time defense against
stack smashing attacks,” in Proceedings of the Annual Conference on
USENIX Annual Technical Conference, 2000.

[41] T.-c. Chiueh and F.-H. Hsu, “RAD: A compile-time solution to buffer
overflow attacks,” in Proceedings of the The 21st International Conference
on Distributed Computing Systems, 2001.

[42] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, 2005.

[43] ISO, “ISO/IEC 9899:2011 - Information Technology - Programming
Languages - C (C11 standard),” Geneva, 2011.

[44] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren, “Supporting
dynamic data structures on distributed-memory machines,” ACM Trans.
Program. Lang. Syst., vol. 17, no. 2, pp. 233–263, Mar. 1995.

[45] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of all
pointer and array access errors,” SIGPLAN Not., vol. 29, no. 6, Jun. 1994.

http://dlang.org/
https://www.rust-lang.org/documentation.html
https://www.rust-lang.org/documentation.html
https://c2rust.com/
https://c2rust.com/
http://unicomsi.com/products/purifyplus/
http://unicomsi.com/products/purifyplus/
"http://www.ep.liu.se/ea/cis/1997/009/"
http://pax.grsecurity.net/docs/aslr.txt
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization

	Introduction
	Prior Work
	Checked C
	Basics
	Simple pointers
	Arrays
	NUL-terminated Arrays
	Checked and unchecked regions
	Bounds safe interfaces
	Restrictions and limitations

	Implementation
	Preliminary Experimental Evaluation
	Future Work
	Conclusion
	References

