
Authors: Jonathan Wakely and Bjarne Stroustrup

Date: 2011-02-26

N3257=11-0027

Range-based for statements and ADL

This paper summarizes of an issue raised on the committee reflectors [1] which identified a

potential problem with the new range-based for statement in C++0x. The problem can be

demonstrated by this example:

#include <vector>

namespace n

{

 struct X { void begin(); };

 struct Y { void begin(); };

 template<typename T> void begin(T& t) { t.begin(); }

}

int main()

{

 std::vector<n::X> v;

 for (auto i : v) // error

 {

 // ...

 }

}

This produces the following error on the line indicated:

error: call of overloaded 'begin(std::vector<n::X>)&' is ambiguous

The ambiguity arisees because 6.5.4 [stmt.ranged] specifies that a range-based for statement

calls begin and end and that:

begin and end are looked up with argument-dependent lookup (3.4.2). For the purposes of

this name lookup, namespace std is an associated namespace.

In the example n is also an associated namespace, so ADL finds std::begin and n::begin.

Both templates are "greedy" and accept any type, so neither is more specialized and overload

resolution cannot select the best function. Because the unqualified calls are not present in the

code but are inserted by the implementation the author cannot qualify them to resolve the

ambiguity. The only easy way to make the code compile is to ensure n::begin is not in scope,

which may not be possible if the contents of namespace n are in a third-party header.

Although in the example only the call to begin is ambiguous, the same problem exists with end.

The problem is not purely speculative and has already been encountered by users of Boost.Range

and compilers providing C++0x features.

Problems due to ADL have been known for some time (see [2] and [3]) but this case is caused by

the introduction of a new C++0x core language feature and is difficult for users to avoid.

Changing the specification of range-based for would not break any existing code so it would be

unfortunate to publish a new standard with this problem present.

There are two sides of the problem.

 The new C++0x functions std::begin and std::end are "greedy" and match anything.

Often ambiguities with such functions can be resolved by qualifying calls with a

namespace, but this isn't possible for generic code which wants to use those functions as

customization points and therefore relies on ADL to find suitable user-defined overloads.

This means that namespace std effectively claims ownership of the customization point,

similarly to std::swap. This makes sense for swap where the default version provided by

std::swap is a sensible default. The C++0x draft makes begin and end into similar

curomization points, owned by namespace std. Because those functions weren't

customization points in C++03 this can break existing code.

 The second problem is that the range-based for statement relies on ADL to find the

begin/end functions, with no way to disable ADL in cases where it doesn't work.

As a result of these two problems libraries should not define their own greedy begin/end

functions.

Suggested Solutions

Solutions where offered in the original thread following [1], then those solutions and several

others where suggested, refined and/or discarded on the lib reflector in the thread beginning with

[4]. The most popular suggestions are listed below.

N.B. none of these options alter how built-in arrays are handled by range-based for, there is no

suggestion to change that, so these only apply to the second bullet at the end of [stmt.range].

0. Do nothing

It's very late to make a change to core wording. Users of for-range and library writers would

have to avoid writing "greedy" templates called begin or end. This option did not seem to have a

lot of support on the reflector.

1. Provide more-specialized overloads of begin() and end().

The example would not be ambiguous if ADL found more specialized functions in namespace

std, which could be defined for each standard container e.g.

template <class T, class A> typename vector<T,A>::iterator begin(vector<T,A>&

c);

template <class T, class A> typename vector<T,A>::const_iterator begin(const

vector<T,A>& c);

template <class T, class A> typename vector<T,A>::iterator end(vector<T,A>&

c);

template <class T, class A> typename vector<T,A>::const_iterator end(const

vector<T,A>& c);

These overloads would be selected instead of either of the "greedy" begin overloads.

This solution doesn't change the fact that the begin/end customization points are owned by

namespace std, nor that range-based for uses ADL. It solves the problem for the given example,

but doesn't help user-defined containers which meet the general container requirements (23.3.1)

so containers authors would be required to provide their own specialized overloads of every

container they write. This makes user-defined containers "second-class citizens" because (unlike

the standard containers) they cannot be used with range-based for unless they provide non-

member begin and end overloads for each type, in addition to providing begin and end member

functions to meet the general container requirements. This is quite a significant burden for users

just to enable a way of iterating over a range that works automatically for the standard

containers.

2. Make qualified calls and define a new customization point.

The range-based for statement could be changed to make qualified calls so that ADL is not

used.

This avoids ambiguities in range-based for statements, but means that an alternative technique

must be used to enable begin and end to behave as customization points. The canonical way to

do so is to allow users to specialize a class template such as:

template<class T>

struct range_traits

{

 static typename T::iterator begin(T& t) { return t.begin(); }

 static typename T::iterator end(T& t) { return t.end(); }

 // similar overloads for const T

};

This template could be used in two ways, either by changing range-based for to call

range_traits<_RangeT>::begin(__range) and range_traits<_RangeT>::end(__range)

directly or more generally by changing range-based for to call std::begin and std::end and

making those functions use range_traits. The latter option is a smaller change to the core

language and allows improvements or fixes to be made to the library only, by altering the

definitions of std::begin/std::end if such fixes become necessary later on.

This supports user-defined containers that meet the container requirements without needing any

additional code. Customization for other types is possible by specializing range_traits. Such

specializations can choose to call begin and end from user-defined namespaces if desired, by

making qualified calls e.g.

template<>

struct range-traits<std::vector<foo::bar>>

{

 static auto begin(std::vector<foo::bar>& v) -> decltype(foo::begin(v))

 { return foo::begin(v); }

 // similarly for const begin and for end ...

};

The downside of this option is that specialization is quite complicated and verbose compared to

providing function overloads. It also claims ownership of the customization point: all

customization related to begin/end must be done via the traits template. This option also fails to

address the problem of ADL finding the greedy std::begin and std::end templates in contexts

outside of range-based for statements.

3. Option 2 plus disabling ADL.

In addition to defining range_traits and making range-based for use qualified calls, the

greedy overloads in namespace std could be moved into a nested namespace:

namespace std

 {

 namespace unspecified

 {

 // for exposition only

 template<class C>

 using RT = range_traits<typename remove_cv<typename

remove_reference<C>::type>::type>

 // std::begin() on any range-enabled container will get the begin

iterator

 template<class C> auto begin(C&& c) ->

decltype(RT::begin(forward<C>(c)));

 template<class C> auto end(C&& c) ->

decltype(RT::end(forward<C>(c)));

 }

 using namespace unspecified; // using directive suppresses ADL.

 }

This has the additional advantage that unqualified calls to begin and end will not find the greedy

overloads, so that namespace std does not own the "begin" and "end" customization points.

Qualified calls can be made if std::begin and std::end are really desired but they won't be

found by ADL.

This is a fairly large change and alters the API in non-trivial ways using an idiom which is not

used elsewhere in the standard library. Whatever faults the current design has, it went through

the standardization process and was voted into the current draft.

4. Replace unqualified calls with calls to member functions.

Another suggestion early in the thread was to change range-based for to call begin and end

member functions on the range instead of making unqualified calls with the range as an

argument. This avoids ADL entirely, relying instead of the general container requirements.

Types which do not provide those member functions can be used via an adaptor e.g.

template<typename T>

struct NonStdContainer {

 T* getFirst();

 T* getLast();

};

template<typename T>

struct adaptor {

 NonStdContainer<T>* ptr;

 T* begin() { return ptr->getFirst(); }

 T* end() { return ptr->getLast() + 1; }

};

void f(NonStdContainer<int>& c)

{

 for (auto i : adaptor<int>{&c})

 { /* ... */ }

}

Such adaptors are simple, and several such adaptors can be provided without conflicting, with

the user choosing which one (if any) to use. This avoids problems present in the previous options

that arise when two different libraries both try to specialize a customization point for the same

type, introducing a new problem that is difficult for users of those libraries to resolve e.g. if two

libraries both provide overloads of begin(NonStdContainer<T>&) or both provide

specializations of range_traits<NonStdContainer<T>> then a user has no way to pick

between them. If the libraries instead provide bar::adaptor and baz::adaptor they don't

conflict and the user can choose whichever one they want.

5. Option 4, with fallback to unqualified calls.

A further suggestion was to call begin() and end() members if they exist, and if not then to

make unqualified calls as specified in the current draft. This has the benefits of option 4

(absolute simplicity and absence of ambiguity opportunity for the simplest cases), while also

allowing customization (at the risk of ambiguities or hijacking) via ADL. Users would have the

option of using an adaptor or non-member overloads to resolve problems if necessary. This has a

slightly higher burden on implementers to detect the presence of the member functions. On the

other hand, it preserves status quo for all containers that do not define member begin() and

end(). It resembles the C# rules for range for.

What happens if a class provides a begin or an end that isn’t suitable for iteration? My

suggestion is that is a compile-time error. For example:

struct C {

 int* begin();

 // I forgot end() or misspelled end() or gave end the wrong type for end

};

C cont;

// ...

template<class T> T* begin(T); // the nastiest example I could come up with in a hurry

template<class T> T* end(T);

// ...

for (auto x : cont) // I'd prefer this to fail

I prefer the error to be caught rather than the likely user error be ignored and a non-local

begin(c)/end(c) chosen. I think that this will lead to by far the fewest errors and confusions.

This suggested rule does mean that if

(1) you have a class with a member begin or a member end that is not part of a

begin()/end() pair and

(2) you want to use an object of that class as a sequence in a range-for loop

then you have to write and adapter as shown for "option 4" rather than simply a begin()/end()

pair.

If you don't have begin or end members you can use a simple begin()/end() pair as currently.

Given that change the various range access begin() and end() standard library functions can be

removed. For example:

// 18.9.3 initializer list range access
template<class E> const E* begin(initializer_list<E> il);

template<class E> const E* end(initializer_list<E> il);

24.6.5 range access [iterator.range]

template <class C> auto begin(C& c) -> decltype(c.begin());
template <class C> auto begin(const C& c) -> decltype(c.begin());

 Returns: c.begin().

template <class C> auto end(C& c) -> decltype(c.end());

template <class C> auto end(const C& c) -> decltype(c.end());

Returns: c.end().

template <class T, size_t N> T* begin(T (&array)[N]);

Returns: array.
template <class T, size_t N> T* end(T (&array)[N]);

 Returns: array + N.

This removal is of course a separable from giving preference to member begin() and end(), but

I think it would be a good idea to eliminate these potentially troublesome namespace functions

when they are no longer essential.

Possible Solutions

Of the options 1 and 3 elicited the most opposition in the –lib reflector discussion. Option 1 is

not general enough, only helping for the standard library containers types and not solving either

of the underlying problems. Option 3 is too far-reaching and tries to solve potential ADL

problems with "begin" and "end" but doesn't do the same for any other names which can

potentially be affected in the same way.

Option 2 is a significant change to how a customization point is defined and used, while such a

change might be desirable it is very late to make such a change. There has been interest in a

"range" feature being added to the library in future, but even Boost has only recently acquired

such a library and so the idea is not ready for standardization. Adding range_traits to the

standard library now would make that the preferred customization point and would probably

make it much more difficult to provide a better range API at a later date.

Option 4 is a very small change, requiring a simple, localized change to the core wording and no

library changes, and doesn't rule out adding a richer range-based API in the future. It consists of

a change of a single language rule.

Option 5 is a also very small change, requiring a simple, localized change to the core wording

and no library changes, and doesn't rule out adding a richer range-based API in the future. It

consists of the addition of a single language rule and the removal of now-redundant begin() and

end()functions.

Proposed Wording

Option 4:

Make the following changes to 6.5.4 [stmt.ranged] paragraph 1:

— otherwise, begin-expr and end-expr are __range.begin() and __range.end(),

respectively. begin(__range) and end(__range), respectively, where begin and end are

looked up with argument-dependent lookup (3.4.2). For the purposes of this name lookup,

namespace std is an associated namespace.

Option 5:

Add the following as the middle (second) bullet point in the list in 6.5.4 [stmt.ranged] paragraph

1:

— otherwise, if _rangeT has a member begin or a member end, begin-expr and end-expr

are __range.begin() and __range.end(), respectively.

In 18.9 Initializer lists [support.initlist] [1], delete
// 18.9.3 initializer list range access
template<class E> const E* begin(initializer_list<E> il);
template<class E> const E* end(initializer_list<E> il);

Delete section 18.9.3 Initializer list range access [support.initlist.range].

Delete section 4.6.5 range access [iterator.range].

Authorship comment

Jonathon Wakely wasn’t able to complete this note in time and (with permission) Bjarne

Stroustrup cleaned up the last few paragraphs and added comments base on the late February

reflector discussion..

References

[1] c++std-ext-11387, "ADL bites", Dave Abrahams, 20 Dec 2010

http://accu.org/cgi-bin/wg21/message?wg=ext&msg=11387

[2] N1691, "Explicit Namespaces", David Abrahams, 7 Sep 2004

http://www.boostpro.com/writing/n1691.html

[3] N2103, "A Modest Proposal: Fixing ADL (revision 2)", Herb Sutter, 31 Oct 2006

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2103.pdf

[4] c++std-lib-29687, "Avoiding unqualified begin()/end() hijacking", Alberto Ganesh Barbati,

28 Dec 2010

http://accu.org/cgi-bin/wg21/message?wg=lib&msg=29687

http://accu.org/cgi-bin/wg21/message?wg=ext&msg=11387
http://www.boostpro.com/writing/n1691.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2103.pdf
http://accu.org/cgi-bin/wg21/message?wg=lib&msg=29687

