Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering spaCy

You're reading from   Mastering spaCy Build structured NLP solutions with custom components and models powered by spacy-llm

Arrow left icon
Product type Paperback
Published in Feb 2025
Publisher Packt
ISBN-13 9781835880463
Length 238 pages
Edition 2nd Edition
Languages
Tools
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Déborah Mesquita Déborah Mesquita
Author Profile Icon Déborah Mesquita
Déborah Mesquita
Duygu Altınok Duygu Altınok
Author Profile Icon Duygu Altınok
Duygu Altınok
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Getting Started with spaCy
2. Chapter 1: Getting Started with spaCy FREE CHAPTER 3. Chapter 2: Core Operations with spaCy 4. Part 2: Advanced Linguistic and Semantic Analysis
5. Chapter 3: Extracting Linguistic Features 6. Chapter 4: Mastering Rule-Based Matching 7. Chapter 5: Extracting Semantic Representations with spaCy Pipelines 8. Chapter 6: Utilizing spaCy with Transformers 9. Part 3: Customizing and Integrating NLP Workflows
10. Chapter 7: Enhancing NLP Tasks Using LLMs with spacy-llm 11. Chapter 8: Training an NER Component with Your Own Data 12. Chapter 9: Creating End-to-End spaCy Workflows with Weasel 13. Chapter 10: Training an Entity Linker Model with spaCy 14. Chapter 11: Integrating spaCy with Third-Party Libraries 15. Index 16. Other Books You May Enjoy

Overview of spaCy

NLP is a subfield of AI that analyzes text, speech, and other forms of human-generated language data. Human language is complicated – even a short paragraph contains references to the previous words, pointers to real-world objects, cultural references, and the writer’s or speaker’s personal experiences. Figure 1.1 shows such an example sentence, which includes a reference to a relative date (recently), phrases that can be resolved only by another person who knows the speaker (regarding the city that the speaker’s parents live in), and who has general knowledge about the world (a city is a place where human beings live together):

Figure 1.1 – An example of human language, containing many cognitive and cultural aspects

Figure 1.1 – An example of human language, containing many cognitive and cultural aspects

How do we process such a complicated structure using computers? With spaCy, we can easily model natural language with statistical models, and process linguistic features to turn the text...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering spaCy
You have been reading a chapter from
Mastering spaCy - Second Edition
Published in: Feb 2025
Publisher: Packt
ISBN-13: 9781835880463
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon