
1
Bonus Chapter 19:
Automated Testing

In this chapter, we will cover the following:

Generating and running a default test script class
Performing a simple unit test
Parameterizing tests with a data provider method
Unit testing a simple health script class
Creating and executing a unit test in PlayMode
PlayMode testing a door animation
PlayMode and unit testing a player health bar with events, logging, and
exceptions

Introduction
For a very simple computer program, we can write code, then run it, entering a
variety of valid and invalid data, and see whether the program behaves as we expect
it to. This is known as a code-then-test approach. However, this approach has several
significant weaknesses:

Each time we change the code, as well as running new tests relating to the
code we are improving, we have to run all the old tests to ensure that no
unexpected modified behaviors have been introduced (in other words, our
new code has not broken another part of our program)
Running tests manually is time consuming
We are relying on a human to rerun the test each time, and this test may be
run using different data, or some data may be omitted, or different team
members may take a different approach to running tests

Bonus Chapter 19: Automated Testing Chapter 1

[2]

Therefore, even for simple programs (and most are not simple), some kind of fast,
automated testing system makes a lot of sense.

The big picture
There is an approach to software development called Test-Driven Development
(TDD), whereby code is only written until all tests pass. So, if we want to add or
improve the behavior of our game program, we must specify what we want in terms
of tests, and then the programmers write code to pass the tests. This avoids a situation
whereby programmers write code and features that are not needed, or spend time
over-optimizing things that would have been fine, and so on. It means that the game
development team directs its work toward agreed goals understood by all, since they
have been specified as tests.

The following diagram illustrates basic TDD in that we only write code until all tests
pass. Then it's time to write more tests:

Another way that TDD is often summarized is as red-green-refactor:

red: We write code that fails the test (in other words, for the new
feature/improved behavior we wish to add to our system)
green: We write code that passes the new test (and all the existing ones)
refactor: We (may) choose to improve the code (and ensure that the
improved code passes all the tests)

Two kinds of software test are the following:

Unit tests
Integration tests

Bonus Chapter 19: Automated Testing Chapter 1

[3]

Unit tests
A Unit Test tests a "unit" of code, which can be a single method, but which may
include some other computer work being executed between the method being tested
and the end result(s) being checked.

"A unit test is a piece of code that invokes a unit of work and checks one specific end
result of that unit of work. If the assumptions on the end result turn out to be wrong, the
unit test has failed."
 —Roy Oshergrove (p. 5, The Art of Unit Testing (Second edition).

Unit tests should be as follows:

automated (runnable at the "push of a button")
fast
easy to implement
easy to read
executed in isolation (tests should be independent from one another)
assessed as either having being passed or failed
relevant tomorrow
consistent (the same results each time!)
able to easily pinpoint what was at fault for each test that fails

Most computer languages have an xUnit unit testing system available, for example:

C#: NUnit
Java: JUnit
PHP: PHPUnit

Unity offers an easy way to write and execute NUnit tests in its editor (and at the
command line).

Typically, each unit test will be written in three sections, a sequence of:

Arrange: Set any initial values needed (sometimes, we are just giving a
value to a variable in order to improve code readability)
Act: Invoke some code (and, if appropriate, store the results)
Assert: Make assertions for what should be true about the code invoked
(and any stored results)

Observe that the naming of a unit test method (by convention) is quite verbose—it is

Bonus Chapter 19: Automated Testing Chapter 1

[4]

made up of lots of words that describe what it does. For example, you might have a
unit test method named TestHealthNotGoAboveOne(). The idea is that if a test
fails, the name of the test should give a programmer a very good idea of what
behavior is being tested and, therefore, how to quickly establish whether the test is
correct and, if so, where to look in your program code for what was being tested.
Another part of the convention of naming unit tests is that numerals are not
used—ust words—so we write "one", "two", and so on, in the name of the test
method.

Integration tests (PlayMode tests in Unity)
An Integration Test involves checking the behavior of interacting software
components, for example, ones that use real time, or a real filesystem, or that
communicate with the web or other applications running on the computer.
Integration tests are usually not as fast as unit tests, and may not produce consistent
results (since the components may interact in different ways at different times).

Both Unit and Integration Test are important, but they are different and should be
treated differently.

Unity offers Play Mode testing, allowing integration testing as Unity scenes execute
with testing code in them.

Places where you can learn more about Unity Testing include the following:

Unity Test Runner and PlayMode documentation pages:
https:/ ​/​docs. ​unity3d. ​com/ ​Manual/ ​testing-
editortestsrunner. ​html

https://docs.unity3d.com/Manual/PlaymodeTestFramewor
k.html

A website for the book "The Art of Unit Testing" (and lots of other learning
resources associated with testing): http://artofunittesting.com/
A great dual article tutorial about Unity testing by Tomek Paszek of Unity
(talking about the old Unity test tools, but most of the content is still very
relevant):
https://blogs.unity3d.com/2014/06/03/unit-testing-part-2-unit-tes
ting-monobehaviours/

YouTube, where you can learn lots about Unity testing (and other topics)
from Infalliblecode: https://www.youtube.com/infalliblecode
CodeProject.com's introduction to TDD and NUnit:
https://www.codeproject.com/Articles/162041/Introduction-to-NUnit

https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/PlaymodeTestFramework.html
https://docs.unity3d.com/Manual/PlaymodeTestFramework.html
http://artofunittesting.com/
https://blogs.unity3d.com/2014/06/03/unit-testing-part-2-unit-testing-monobehaviours/
https://blogs.unity3d.com/2014/06/03/unit-testing-part-2-unit-testing-monobehaviours/
https://www.youtube.com/infalliblecode
https://www.codeproject.com/Articles/162041/Introduction-to-NUnit-and-TDD

Bonus Chapter 19: Automated Testing Chapter 1

[5]

-and-TDD

Generating a default test script class
Unity can create a default C# test script for you, thereby enabling you to quickly start
creating and executing tests on your project:

How to do it...
To generate a default test script class, follow these steps:

In the Project panel, create a folder called Editor1.
Display the Test Runner panel by choosing the following menu: Window |2.
General | Test Runner
Ensure that the EditMode button is selected in the Test Runner panel3.
Ensure that your new Editor folder is selected in the Project panel4.
In the Test Runner panel, click the Create Test Script in the current5.
folder button
You should now have a new C# script added to your Editor folder6.
To run the tests in your script class, click the Run All button in the Test7.
Running panel
You should now see all green ticks (check marks) in the panel8.

https://www.codeproject.com/Articles/162041/Introduction-to-NUnit-and-TDD

Bonus Chapter 19: Automated Testing Chapter 1

[6]

How it works...
Unity checks that you have a folder named Editor selected in the Project panel, and
then creates a C# NewTestScript script class for you containing the following:

 using UnityEngine;
 using UnityEngine.TestTools;
 using NUnit.Framework;
 using System.Collections;

 public class NewTestScript {
 [Test]
 public void NewTestScriptSimplePasses() {
 // Use the Assert class to test conditions.
 }

 // A UnityTest behaves like a coroutine in PlayMode
 // and allows you to yield null to skip a frame in EditMode
 [UnityTest]
 public IEnumerator NewTestScriptWithEnumeratorPasses() {
 // Use the Assert class to test conditions.
 // yield to skip a frame
 yield return null;
 }
 }

In the Test Runner panel, you should see the script class and its two methods listed.
Note that the first line in the Test Runner panel is the Unity project name, the second
line will say Assembly-CSharp-Editor.dll, followed by your script class name,
and then each of the test methods:

There are three symbols to indicate the status of each test/class:

Empty circle: Test not executed since the script class was last changed

Bonus Chapter 19: Automated Testing Chapter 1

[7]

Green tick (check mark): The test was passed successfully
Red cross: The test was failed

There's more...
Here are some details that you won't want to miss.

Create a default test script from the Project panel's
Create menu
Another way of creating a default Unit Test script is as follows:

From the Project panel, chose the following menu: Create | Testing | C#
Test Script

Edit mode minimum skeleton unit test script
Be aware that if you are only going to use this script class for testing in EditMode,
you can delete the second method and some of the using statements as follows, so as
to give you a minimal skeleton to work from:

 using NUnit.Framework;

 public class UnitTestSkeleton
 {
 [Test]
 public void NewTestScriptSimplePasses()
 {
 // write your assertion(s) here
 }
 }

A simple unit test
In the same way as printing "hello world" is most programmers first program
statement, asserting that 1 + 1 = 2 is perhaps the most common first test executed for
those learning unit testing. That's what we'll create in this recipe:

Bonus Chapter 19: Automated Testing Chapter 1

[8]

How to do it...
To create and execute a simple unit test, follow these steps:

In the Project panel, create a folder called Editor.1.
Inside your Editor folder, create a new C# SimpleTester.cs script2.
class containing the following:

 using NUnit.Framework;

 class SimpleTester
 {
 [Test]
 public void TestOnePlusOneEqualsTwo()
 {
 // Arrange
 int n1 = 1;
 int n2 = 1;
 int expectedResult = 2;

 // Act
 int result = n1 + n2;

 // Assert
 Assert.AreEqual(expectedResult, result);
 }
 }

Display the Test Runner panel by choosing the following menu: Window |3.
General | Test Runner.
Ensure that the EditMode button is selected in the Test Runner panel.4.
Click Run All.5.

Bonus Chapter 19: Automated Testing Chapter 1

[9]

You should see the results of your Unit Test being executed – if the test6.
was concluded successfully, it should have a green 'tick' next to it.

How it works...
You have declared that the TestOnePlusOneEqualsTwo() method in the C#
SimpleTester.cs script class is a test method. When executing this test method, the
Unity Test Runner executes each statement in sequence, so variables n1, n2, and
expectedResult are set, then the calculation of 1 + 1 is stored in the variable result,
and finally (the most important bit), we make an assertion of what should be true
after executing that code. Our assertion states that the value of the expectedResult
variable should be equal to the value of the variable result.

If the assertion is true, the test is passed, otherwise it is failed. Generally, as
programmers, we expect our code to pass, so we inspect each fail very carefully, first
to see whether we have an obvious error, then perhaps to check whether the test itself
is correct (especially if it's a new test), and then to begin to debug and understand
why our code behaved in such a way that it did not yield the anticipated result.

There's more...
Here are some details that you won't want to miss.

Shorter tests with values in the assertion
For simple calculations, some programmers prefer to write less test code by putting
the values directly into the assertion. So, as shown below, our 1 + 1 = 2 test could be
expressed in a single assertion, where the expected value of 2, and the expression 1 +
1, are entered directly into an AreEqual(...) method invocation:

 using NUnit.Framework;

 class SimpleTester
 {
 [Test]
 public void TestOnePlusOneEqualsTwo()
 {
 // Assert
 Assert.AreEqual(2, 1 + 1);
 }

Bonus Chapter 19: Automated Testing Chapter 1

[10]

 }

However, if you are new to testing, you may prefer the previous approach, whereby
the preparation, code execution, and storage of results, and the assertion of properties
about those results, are structured clearly in a sequence of Arrange/Act/Assert.

Expected value followed by the actual value
When comparing values with assertions, it is customary for the expected (correct)
value to be given first, followed by the actual value:

 Assert.AreEqual(<expectedValue>, <actualValue>);

While it makes no difference to the true or false nature of equality, and so on, it can
make a difference to messages when tests fail with some testing frameworks (for
example, "got 2 but expected 3" has a very different meaning to "got 3 but expected
2"). Hence, the following assertion would output a message that would be confusing,
since 2 was our expected result:

 public void TestTwoEqualsThreeShouldFail() {
 // Arrange
 int expectedResult = 2;

 // Act
 int result = 1 + 2; // 3 !!!

 // Assert
 Assert.AreEqual(result, expectedResult);
 }

Refer to the following screenshot:

Parameterizing tests with a data provider

Bonus Chapter 19: Automated Testing Chapter 1

[11]

method
If we are testing our code using a range of test data, then sometimes there is little
difference between each test apart from the the values. Rather than duplicating our
Arrange/Act/Assert statements, we can re-use a single method, and the Unity Test
Runner will loop through a collection of test data, running the test method for each
set of test data. The special method that provides multiple sets of test data to a test
method is known as a DataProvider, and we'll create one in this recipe:

How to do it...
To parameterize tests with a data provider method, follow these steps:

In the Project panel, create a folder called Editor.1.
Inside your Editor folder, create a new C#2.
DataProviderTester.cs script class containing the following:

 using NUnit.Framework;

 class DataProviderTester
 {
 [Test, TestCaseSource("AdditionProvider")]
 public void TestAdd(int num1, int num2, int expectedResult)
 {
 // Arrange
 // (not needed - since values coming as arguments)

 // Act

Bonus Chapter 19: Automated Testing Chapter 1

[12]

 int result = num1 + num2;

 // Assert
 Assert.AreEqual(expectedResult, result);
 }

 // the data provider
 static object[] AdditionProvider =
 {
 new object[] { 0, 0, 0 },
 new object[] { 1, 0, 1 },
 new object[] { 0, 1, 1 },
 new object[] { 1, 1, 2 }
 };
 }

Display the Test Runner panel by choosing the following menu: Window |3.
General | Test Runner.
Ensure that the EditMode button is selected in the Test Runner panel.4.
Click Run All.5.
You should see the results of your Unit Test being executed. You should6.
see four sets of results for the TestAdd(...) test method, one for each of
the datasets provided by the AdditionProvider method.

How it works...
We have indicated that the TestAdd(...) method is a test method with a compiler
attribute [Test]. However, in this case, we have added additional information to state
that the data source for this method is the AdditionProvider method.

This means that the Unity Test Runner will retrieve the data objects from the
additional provider, and create multiple tests for the TestAdd(...) method, one for
each set of data from the AdditionProvider() method.

In the Test Runner panel, we can see a line for each of these tests:

 TestAdd(0,0,0)
 TestAdd(1,0,1)
 TestAdd(0,1,1)
 TestAdd(1,1,2)

Bonus Chapter 19: Automated Testing Chapter 1

[13]

Unit testing a simple health script class
Let's create something that might be used in a game, and that can easily be unit
tested. Classes that do not subclass from Monobehavior are much easier to unit test,
since instance objects can be created using the keyword new. If the class is carefully
designed with private data and public methods with clearly declared dependencies as
parameters, it becomes easy to write a set of tests to make us confident that objects of
this class will behave as expected in terms of default values, as well as valid and
invalid data.

In this recipe, we will create a health script class, and a set of tests for this class. This
kind of class can be reused for both the health of human players, and also Artificial
Intelligence (AI)-controlled enemies in a game:

How to do it...
To unit test a health script class, follow these steps:

In the Project panel, create a _Scripts folder.1.
Inside your _Scripts folder, create a new C# Health.cs script2.
class containing the following:

 using UnityEngine;
 using System.Collections;

 public class Health
 {

Bonus Chapter 19: Automated Testing Chapter 1

[14]

 private float health = 1;

 public float GetHealth()
 {
 return health;
 }

 public bool AddHealth(float heathPlus)
 {
 if(heathPlus > 0){
 health += heathPlus;
 return true;
 } else {
 return false;
 }
 }

 public bool KillCharacter()
 {
 health = 0;
 return true;
 }
 }

Inside your _Scripts folder, create a new folder named Editor.3.
Inside your Editor folder, create a new C# TestHealth.cs script4.
class containing the following:

using NUnit.Framework;

class TestHealth {
 [Test]
 public void TestReturnsOneWhenCreated() {
 // Arrange
 Health h = new Health ();
 float expectedResult = 1;

 // Act
 float result = h.GetHealth ();

 // Assert
 Assert.AreEqual (expectedResult, result);
 }

 [Test]
 public void TestPointTwoAfterAddPointOneTwiceAfterKill()
{
 // Arrange

Bonus Chapter 19: Automated Testing Chapter 1

[15]

 Health h = new Health();
 float healthToAdd = 0.1f;
 float expectedResult = 0.2f;

 // Act
 h.KillCharacter();
 h.AddHealth(healthToAdd);
 h.AddHealth(healthToAdd);
 float result = h.GetHealth();

 // Assert
 Assert.AreEqual(expectedResult, result);
 }

 [Test]
 public void
TestNoChangeAndReturnsFalseWhenAddNegativeValue() {
 // Arrange
 Health h = new Health();
 float healthToAdd = -1;
 bool expectedResultBool = false;
 float expectedResultFloat = 1;

 // Act
 bool resultBool = h.AddHealth(healthToAdd);
 float resultFloat = h.GetHealth();

 // Assert
 Assert.AreEqual(expectedResultBool, resultBool);
 Assert.AreEqual(expectedResultFloat, resultFloat);
 }

 [Test]
 public void TestReturnsZeroWhenKilled() {
 // Arrange
 Health h = new Health();
 float expectedResult = 0;

 // Act
 h.KillCharacter();
 float result = h.GetHealth();

 // Assert
 Assert.AreEqual(expectedResult, result);
 }

Bonus Chapter 19: Automated Testing Chapter 1

[16]

 [Test]
 public void TestHealthNotGoAboveOne() {
 // Arrange
 Health h = new Health();
 float expectedResult = 1;

 // Act
 h.AddHealth(0.1f);
 h.AddHealth(0.5f);
 h.AddHealth(1);
 h.AddHealth(5);
 float result = h.GetHealth();

 // Assert
 Assert.AreEqual(expectedResult, result);
 }
}

Display the Test Runner panel by choosing the following menu: Window |5.
Debug | Test Runner.
Ensure that the EditMode button is selected in the Test Runner panel.6.
Click Run All.7.
You should see the results of your unit tests being executed.8.

How it works...
Each of the C# script-classes is described below.

Script-class Health.cs
This script class has one private property; as it is private, it can only be changed by
methods. Its initial value is 1.0, in other words, 100% health:

health (float): The valid range is from 0 (dead!) to 1.0 (100% health)

There are 3 public methods:

GetHealth(): This returns the current value of the health float number
(which should be between 0 and 1.0)
AddHealth(float): This takes as input a float (the amount to add to the
health), and returns a Boolean true/false, as to whether the value was valid.
Note the logic of this method is that it accepts values of 0 or more (and will

Bonus Chapter 19: Automated Testing Chapter 1

[17]

return true), but it will ensure that the value of health is never more than 1
KillCharacter(): This method sets health to zero, and returns true, since
it is always successful in this action

Script-class TestHealth.cs
This script class has five methods:

TestReturnsOneWhenCreated(): This tests that the initial value of health
is 1, when a new Health object is created.
TestPointTwoAfterAddPointOneTwiceAfterKill(): This tests that
after a kill (health set to zero), and then adding 0.1 on two occasions, the
health should be 0.2.
TestReturnsZeroWhenKilled(): This tests that the health value is set to
zero immediately after the KillCharacter() method has been called.
TestNoChangeAndReturnsFalseWhenAddNegativeValue(): This tests
that attempting to add a negative value to health should return false and
that the value of health should not have changed. This method is an
example of a test with more than one assertion (but both are related to
the actions.
TestHealthNotGoAboveOne(): This test verifies that even when lots of
values are added to health, totaling more than 1.0, the value returned from
GetHealth() is one.

Hopefully, all the tests pass when you run them, giving some confidence that the
logic implementation in the Health.cs script class does behave as intended.

Creating and executing a unit test in Play
mode
It's a good idea to write as much of the logic for a game as isolated, non-
Monobehavior classes, that are easy to unit test in Edit mode. However, some of the
logic in a game relates to things that happen when the game is running. Examples
include physics, collisions, and timing-based events. We test these parts of our games
in Play Mode.

In this recipe, we'll create one very simple Play Mode test, to check that physics
affects a RigidBody (based on an example from the Unity documentation):

Bonus Chapter 19: Automated Testing Chapter 1

[18]

How to do it...
To create and execute a unit test in Play mode, follow these steps:

Display the Test Runner panel by choosing the following menu: Window |1.
General | Test Runner
Enable PlayMode tests for all assemblies. Do this by displaying the drop-2.
down menu in the top-right corner of the Test Runner panel, and then
selecting Enable playmode tests for all assemblies (click OK to any
message concerned with restarting the editor):

Now, restart the Unity Editor (just close the application and then reopen it3.
with your project).

It is very important that you restart the Unity Editor application
after enabling PlayMode. If you fail to do this, then you may not be
able to locate your PlayMode test script classes where they can see
(and refer to) your Monobehavior classes.

Ensure that the PlayMode button is selected in the Test Runner panel.4.
In the Test Runner panel, click the Create PlayMode Test Assembly5.
Folder button. A new folder, named Tests, should have been created.
In the Project panel, open the Tests folder. It should contain an assembly6.

Bonus Chapter 19: Automated Testing Chapter 1

[19]

definition file Tests.asmdef.
In the Test Runner panel, click the Create Test Script in the current folder7.
button – you may wish to rename this script from the default
name, NewTestScript.
Edit your new test script, replacing the content with the following:8.

 using UnityEngine;
 using UnityEngine.TestTools;
 using NUnit.Framework;
 using System.Collections;

 public class NewTestScript
 {
 [UnityTest]
 public IEnumerator
GameObject_WithRigidBody_WillBeAffectedByPhysics()
 {
 // Arrange
 var go = new GameObject();
 go.AddComponent<Rigidbody>();
 var originalPosition = go.transform.position.y;

 // Act
 yield return new WaitForFixedUpdate();

 // Assert
 Assert.AreNotEqual(originalPosition,
go.transform.position.y);
 }
 }

Click Run All.9.
In the Hierarchy, you'll see that a temporary scene is created (named10.
something along the lines of InitTestScene6623462364), and that a
GameObject named Code Based Test Runner is created.
In the Game panel, you will briefly see the message Display 1 No Cameras11.
Rendering.
You should see the results of your unit test being executed – if the test is12.
concluded successfully, it should have a green tick next to it.

Bonus Chapter 19: Automated Testing Chapter 1

[20]

How it works...
Methods marked with the [UnityTest] attribute are run as coroutines. A coroutine
has the ability to pause execution (when it meets a yield statement) and return control
to Unity, but then to continue where it left off when called again (for example, the
next frame, second, or whatever). The yield statement indicates the statement after
which, and for how long, execution of the method is to be paused. Examples of
different types of yield include:

Waiting until until the next frame: null
Waiting for a given length of time: WaitForSeconds(<seconds>)
Waiting until the next fixed-update time period (physics is not applied each
frame (since the framerate varies), but after a fixed period of time):
WaitForFixedUpdate()

Method GameObject_WithRigidBody_WillBeAffectedByPhysics() creates a
new GameObject and attaches to it a RigidBody. It also stores the original Y position.
The yield statement makes the PlayMode Test Runner wait until physics has begun
at the next fixed update period. Finally, an assertion is made that the original Y
position is not equal to the new Y position (after the physics fixed update). Since the
defaults for a RigidBody are that gravity will be applied, this is a good test that
physics is being applied to the new object (in other words, it should have started
falling down once physics had been applied).

PlayMode testing a door animation
Having learned the basics of PlayMode testing in the previous recipe, now let's test
something non-trivial that we might find in a game. In this recipe, we'll create a
PlayMode test to ensure that a door opening animation plays when the player's
sphere object enters a collider.

A scene has been provided with the player's sphere initialized to roll toward a red
door. When the sphere hits the collider (OnTriggerEnter event), some code sets the
door's Animator Controller Opening variable to true, which transitions the door
from its closed state to its open state, as can be seen in the following screenshot:

Bonus Chapter 19: Automated Testing Chapter 1

[21]

Thanks should go to the creator of the ground texture; it was designed by Starline,
and published at Freepik.com.

Getting ready
For this recipe, a Unity Package has been provided (doorScene.unitypackage) in
the 19_06 folder.

How to do it...
To PlayMode test a door animation, follow these steps:

Create a new Unity project, and delete the default folder Scenes.1.
Import the Unity package provided (doorScene.unitypackage).2.
Add the following scenes – doorScene and menuScene – to the project3.
Build (the sequence doesn't matter).
Ensure that the scene currently open is menuScene.4.
Display the Test Runner panel by choosing the following menu: Window |5.
General | Test Runner
Enable playmode tests for all assemblies. Do this by displaying the drop-6.
down menu in the top-right corner of the Test Runner panel, and selecting
Enable playmode tests for all assemblies (click OK to any message
concerned with restarting the editor).
Now restart the Unity Editor (just close the application and then reopen it7.
with your project).

http://Freepik.com

Bonus Chapter 19: Automated Testing Chapter 1

[22]

Ensure that the PlayMode button is selected in the Test Runner panel.8.
In the Project panel, select the top-level folder Assets.9.
In the Test Runner panel, click the "Create PlayMode Test Assembly10.
Folder" button. A new folder, named Tests, should have been created.
In the Project panel, open the Tests folder. It should contain an assembly11.
definition file Tests.asmdef.
In the Test Runner panel, click the "Create Test Script in the current12.
folder" button. Rename this script class DoorTest.
Edit the DoorTest.cs script class, replacing the content with the13.
following:

 using System.Collections;
 using NUnit.Framework;
 using UnityEngine;
 using UnityEngine.SceneManagement;
 using UnityEngine.TestTools;

 public class DoorTest
 {
 const int BASE_LAYER = 0;
 private string initialScenePath;
 private Animator doorAnimator;
 private Scene tempTestScene;

 // name of scene being tested by this class
 private string sceneToTest = "doorScene";

 [SetUp]
 public void Setup()
 {
 // setup - load the scene
 tempTestScene = SceneManager.GetActiveScene();
 }
 }

Add the following test method to DoorTest.cs:14.

 [UnityTest]
 public IEnumerator TestDoorAnimationStateStartsClosed()
 {
 // load scene to be tested
 yield return SceneManager.LoadSceneAsync(sceneToTest,
LoadSceneMode.Additive);
SceneManager.SetActiveScene(SceneManager.GetSceneByName(sceneT
oTest));

Bonus Chapter 19: Automated Testing Chapter 1

[23]

 // Arrange
 doorAnimator =
GameObject.FindWithTag("Door").GetComponent<Animator>();
 string expectedDoorAnimationState = "DoorClosed";

 // immediate next frame
 yield return null;

 // Act
 AnimatorClipInfo[] currentClipInfo =
doorAnimator.GetCurrentAnimatorClipInfo(BASE_LAYER);
 string doorAnimationState =
currentClipInfo[0].clip.name;

 // Assert
 Assert.AreEqual(expectedDoorAnimationState,
doorAnimationState);

 // teardown - reload original temp test scene
 SceneManager.SetActiveScene(tempTestScene);
 yield return
SceneManager.UnloadSceneAsync(sceneToTest);
 }

Add the following test method to DoorTest.cs:15.

 [UnityTest]
 public IEnumerator TestIsOpeningStartsFalse()
 {
 // load scene to be tested
 yield return SceneManager.LoadSceneAsync(sceneToTest,
LoadSceneMode.Additive);
SceneManager.SetActiveScene(SceneManager.GetSceneByName(sceneT
oTest));

 // Arrange
 doorAnimator =
GameObject.FindWithTag("Door").GetComponent<Animator>();

 // immediate next frame
 yield return null;

 // Act
 bool isOpening = doorAnimator.GetBool("Opening");

 // Assert
 Assert.IsFalse(isOpening);

Bonus Chapter 19: Automated Testing Chapter 1

[24]

 // teardown - reload original temp test scene
 SceneManager.SetActiveScene(tempTestScene);
 yield return
SceneManager.UnloadSceneAsync(sceneToTest);
 }

Add the following test method to DoorTest.cs:16.

 [UnityTest]
 public IEnumerator
TestDoorAnimationStateOpenAfterAFewSeconds()
 {
 // load scene to be tested
 yield return SceneManager.LoadSceneAsync(sceneToTest,
LoadSceneMode.Additive);
SceneManager.SetActiveScene(SceneManager.GetSceneByName(sceneT
oTest));

 // wait a few seconds
 int secondsToWait = 3;
 yield return new WaitForSeconds(secondsToWait);

 // Arrange
 doorAnimator =
GameObject.FindWithTag("Door").GetComponent<Animator>();
 string expectedDoorAnimationState = "DoorOpen";

 // Act
 AnimatorClipInfo[] currentClipInfo =
doorAnimator.GetCurrentAnimatorClipInfo(BASE_LAYER);
 string doorAnimationState =
currentClipInfo[0].clip.name;
 bool isOpening = doorAnimator.GetBool("Opening");

 // Assert
 Assert.AreEqual(expectedDoorAnimationState,
doorAnimationState);
 Assert.IsTrue(isOpening);

 // teardown - reload original temp test scene
 SceneManager.SetActiveScene(tempTestScene);
 yield return
SceneManager.UnloadSceneAsync(sceneToTest);
 }

Click Run All.17.
As the tests run, you will see first in the Hierarchy, Game and Scene panels18.

Bonus Chapter 19: Automated Testing Chapter 1

[25]

that a temporary scene is created, then the doorScene running, with the
sphere rolling toward the red door.
You should see the results of your unit test being executed – if all tests are19.
concluded successfully, there should be green ticks (check marks) next to
each test.

How it works...
You added two scenes to the build, so they can be selected in our scripts using the
SceneManager during PlayMode testing.

We opened the menuScene so that we can clearly see when Unity runs different
scenes during our PlayMode testing – and we'll see the menu scene reopened after
testing takes place.

There is a SetUp() method that is executed before each test. SetUp and TearDown
methods are very useful for preparing things before each test, and resetting things
back to how they were before the test took place. Unfortunately, aspects such as
loading our door scene before running each test, and then reloading the menu after
each test, involve waiting until the scene load process has completed. We can't place
yield statements in our SetUp() and TearDown() methods, so you'll see each test has
repeated scene loading at the beginning and end of each test:

// load scene to be tested
 yield return SceneManager.LoadSceneAsync(sceneToTest,
LoadSceneMode.Additive);
SceneManager.SetActiveScene(SceneManager.GetSceneByName(sceneToTest));

 // Arrange-Act-Assert goes here

 // teardown - reload original temp test scene
 SceneManager.SetActiveScene(tempTestScene);
 yield return SceneManager.UnloadSceneAsync(sceneToTest);

For each test, we wait, either for a single frame (yield null), or for a few seconds
(yield return new WaitForSeconds(...)). This ensures that all objects have been
created and physics is started before our test starts running. The first two tests check
the initial conditions, in other words, that the door begins in the DoorClosed
animation state, and that the Animation Controller's isOpening variable is false.

The final test waits for a few seconds (which is enough time for the sphere to roll up
to the door and trigger the opening animation), and tests that the door is entering/has

Bonus Chapter 19: Automated Testing Chapter 1

[26]

entered the DoorOpen animation state, and that the Animation Controller's
isOpening variable is true.

As can be seen, there is quite a bit more to PlayMode testing than Unit Testing, but it
means that we have a way to test actual GameObject interactions when features such
as timers and physics are running. As this recipe demonstrates, we can also load our
own scenes for PlayMode testing, be they special scenes created just to test
interactions, or actual scenes that are to be included in our final game build.

PlayMode and Unit Testing a player
health bar with events, logging, and
exceptions
In this recipe, we combine many different kinds of tests on a feature of many games –
a visual health bar representing the player's numeric health value (in this case, a float
number from 0.0 - 1.0). Although far from comprehensively testing all aspects of the
health bar, this recipe gives a good sample of how we can go about testing many
different parts of a game using the Unity Testing tools.

A Unity Package is provided that contains the following:

Player.cs: a player script class, managing values for player health, and
using delegates-and-events to publish health changes to any listening View
classes
Two View classes that register to listen for player health change events:

HealthBarDisplay.cs: this updates the fillAmount for a
UI image for each new player health value received
HealthChangeLogger.cs: this prints messages about the
new player health value received to the Debug.Log file

PlayerManager.cs: a manager script, which initializes player and
HealthChangeLogger objects, and also allows the user to change the health
of the player by pressing the Up and Down arrow keys (simulating
healing/damage during a game)
A scene that has 2 UI images – one is a health bar outline (red heart and a
black outline), the second is the filler image – showing dark blue to light
blue to green, for weak to strong health values)

This recipe allows several different kinds of testing to be demonstrated:

Bonus Chapter 19: Automated Testing Chapter 1

[27]

PlayMode testing, to check that the actual fillAmount of the UI image
displayed matches the 0.0 ... 1.0 range of the player's health
Unit Testing, to check that player health starts with the correct default
value, and correctly increases and decreases after calls to
the AddHealth(...) and ReduceHealth(...) methods
Unit testing, to check that health change events are published by the player
object
Unit testing, to check that expected messages are logged in the Debug.Log
Unit testing, to check that argument out-of-range exceptions are thrown if
negative values are passed to the player's AddHealth(...) or
ReduceHealth(...) methods. This is demonstrated in the following
screenshot:

Thanks to Pixel Art Maker for the health bar image:
http://pixelartmaker.com/art/49e2498a414f221

Getting ready
For this recipe, a Unity Package has been provided
(healthBarScene.unitypackage) in the 19_07 folder.

How to do it...
To PlayMode and Unit Test a player health bar, follow these steps:

Create a new Unity project, create a new empty scene, and delete the1.
default folder Scenes.
Import the Unity package provided (healthBarScene.unitypackage).2.
Open the HealthBarScene scene.3.

http://pixelartmaker.com/art/49e2498a414f221
http://pixelartmaker.com/art/49e2498a414f221

Bonus Chapter 19: Automated Testing Chapter 1

[28]

Add HealthBarScene to the project Build (menu: File | Build Settings ...).4.
Display the Test Runner panel by choosing the following menu: Window |5.
General | Test Runner.
Enable PlayMode tests for all assemblies. Do this by displaying the drop-6.
down menu in the top-right corner of the Test Runner panel, and selecting
Enable playmode tests for all assemblies (click OK to any message
concerned with restarting the editor).
Now restart the Unity Editor (just close the application and then reopen it7.
with your project).
Ensure that the PlayMode button is selected in the Test Runner panel.8.
In the Project panel, select the top-level folder Assets.9.
In the Test Runner panel, click the "Create PlayMode Test Assembly10.
Folder" button. A new folder, named Tests, should have been created.
Ensure that the Assets folder is selected in the Project panel. Create a new11.
folder named PlayModeTests (this should now appear in the Assets
folder).
Ensure that the PlayModeTests folder is selected in the Project panel. In12.
the Test Runner panel, click the "Create Test Script in the current folder"
button. Rename this script class HealthBarPlayModeTests.
Edit the HealthBarPlayModeTests.cs script class, replacing the content13.
with the following:

 using UnityEngine;
 using UnityEngine.UI;
 using UnityEngine.TestTools;
 using NUnit.Framework;
 using System.Collections;
 using UnityEngine.SceneManagement;

 [TestFixture]
 public class HealthBarPlayModeTests
 {
 private Scene tempTestScene;

 // name of scene being tested by this class
 private string sceneToTest = "HealthBar";

 [SetUp]
 public void Setup()
 {
 // setup - load the scene
 tempTestScene = SceneManager.GetActiveScene();

Bonus Chapter 19: Automated Testing Chapter 1

[29]

 }
 }

Add the following test in HealthBarPlayModeTests.cs:14.

 [UnityTest]
 public IEnumerator
TestHealthBarImageMatchesPlayerHealth()
 {
 // load scene to be tested
 yield return SceneManager.LoadSceneAsync(sceneToTest,
LoadSceneMode.Additive);
SceneManager.SetActiveScene(SceneManager.GetSceneByName(sceneT
oTest));

 // wait for one frame
 yield return null;

 // Arrange
 Image healthBarFiller = GameObject.Find("image-
health-bar-filler").GetComponent<Image>();
 PlayerManager playerManager =
GameObject.FindWithTag("PlayerManager").GetComponent<PlayerMan
ager>();
 float expectedResult = 0.9f;

 // Act
 playerManager.ReduceHealth();

 // Assert
 Assert.AreEqual(expectedResult,
healthBarFiller.fillAmount);

 // teardown - reload original temp test scene
 SceneManager.SetActiveScene(tempTestScene);
 yield return
SceneManager.UnloadSceneAsync(sceneToTest);
 }

Click Run All.15.
As the tests run, you will see first in the Hierarchy, Game and Scene panels16.
that a temporary scene is created, then the HealthBarScene running, with
the visual health bar.
You should see the results of your PlayMode Test being executed – if the17.
test is concluded successfully, there should be a green tick (check mark).
Ensure that the Assets folder is selected in the Project panel. Create a new18.

Bonus Chapter 19: Automated Testing Chapter 1

[30]

folder named Editor (this should now appear in the Assets folder).
Ensure that the Editor folder is selected in the Project panel. In the Test19.
Runner panel, click the "Create Test Script in the current folder" button.
Rename this script class EditModeUnitTests.
Edit the EditModeUnitTests.cs script class, replacing the content with20.
the following:

 using System;
 using UnityEngine.TestTools;
 using NUnit.Framework;
 using UnityEngine;

 public class EditModeUnitTests
 {

 // inner unit test classes go here

 }

Add the following class and basic tests inside the EditModeUnitTests21.
class in EditModeUnitTests.cs:

 public class TestCorrectValues
 {
 [Test]
 public void DefaultHealthOne()
 {
 // Arrange
 Player player = new Player();
 float expectedResult = 1;

 // Act
 float result = player.GetHealth();

 // Assert
 Assert.AreEqual(expectedResult, result);
 }

 [Test]
 public void HealthCorrectAfterReducedByPointOne()
 {
 // Arrange
 Player player = new Player();
 float expectedResult = 0.9f;

 // Act

Bonus Chapter 19: Automated Testing Chapter 1

[31]

 player.ReduceHealth(0.1f);
 float result = player.GetHealth();

 // Assert
 Assert.AreEqual(expectedResult, result);
 }

 [Test]
 public void HealthCorrectAfterReducedByHalf()
 {
 // Arrange
 Player player = new Player();
 float expectedResult = 0.5f;

 // Act
 player.ReduceHealth(0.5f);
 float result = player.GetHealth();

 // Assert
 Assert.AreEqual(expectedResult, result);
 }
 }

Add the following class and limit test inside the EditModeUnitTests class22.
in EditModeUnitTests.cs:

 public class TestLimitNotExceeded
 {
 [Test]
 public void HealthNotExceedMaximumOfOne()
 {
 // Arrange
 Player player = new Player();
 float expectedResult = 1;

 // Act
 player.AddHealth(1);
 player.AddHealth(1);
 player.AddHealth(0.5f);
 player.AddHealth(0.1f);
 float result = player.GetHealth();

 // Assert
 Assert.AreEqual(expectedResult, result);
 }
 }

Add the following class and event tests inside the EditModeUnitTests23.

Bonus Chapter 19: Automated Testing Chapter 1

[32]

class in EditModeUnitTests.cs:

 public class TestEvents
 {
 [Test]
 public void CheckEventFiredWhenAddHealth()
 {
 // Arrange
 Player player = new Player();
 bool eventFired = false;

 Player.OnHealthChange += delegate
 {
 eventFired = true;
 };

 // Act
 player.AddHealth(0.1f);

 // Assert
 Assert.IsTrue(eventFired);
 }

 [Test]
 public void CheckEventFiredWhenReduceHealth()
 {
 // Arrange
 Player player = new Player();
 bool eventFired = false;

 Player.OnHealthChange += delegate
 {
 eventFired = true;
 };

 // Act
 player.ReduceHealth(0.1f);

 // Assert
 Assert.IsTrue(eventFired);
 }
 }

Add the following class and exception tests inside the24.
EditModeUnitTests class in EditModeUnitTests.cs:

 public class TestExceptions
 {

Bonus Chapter 19: Automated Testing Chapter 1

[33]

 [Test]
 public void
Throws_Exception_When_Add_Health_Passed_Less_Than_Zero()
 {
 // Arrange
 Player player = new Player();

 // Act

 // Assert
 Assert.Throws<ArgumentOutOfRangeException>(
 delegate
 {
 player.AddHealth(-1);
 }
);
 }

 [Test]
 public void
Throws_Exception_When_Reduce_Health_Passed_Less_Than_Zero()
 {
 // Arrange
 Player player = new Player();

 // Act

 // Assert
 Assert.Throws<ArgumentOutOfRangeException>(
 () => player.ReduceHealth(-1)
);
 }
 }

Add the following class and logging tests inside the EditModeUnitTests25.
class in EditModeUnitTests.cs:

 public class TestLogging
 {
 [Test]
 public void
Throws_Exception_When_Add_Health_Passed_Less_Than_Zero()
 {
 Debug.unityLogger.logEnabled = true;

 // Arrange
 Player player = new Player();
 HealthChangeLogger healthChangeLogger = new

Bonus Chapter 19: Automated Testing Chapter 1

[34]

HealthChangeLogger();
 string expectedResult = "health = 0.9";

 // Act
 player.ReduceHealth(0.1f);

 // Assert
 LogAssert.Expect(LogType.Log, expectedResult);
 }
 }

You can see that the inner classes allow grouping of the unit tests
visually in the Test Runner panel

How it works...
Let's take a look at how it works in detail.

PlayMode testing
The PlayMode test TestHealthBarImageMatchesPlayerHealth() loads the
HealthBar scene, gets a reference to the instance-object of PlayerManager, which is a
component of the GameObject tagged PlayerManager, and invokes the
ReduceHealth() method. This method reduces the player's health by 0.1, so from its

Bonus Chapter 19: Automated Testing Chapter 1

[35]

starting value of 1.0, it becomes 0.9.

The PlayerManager GameObject also has as a component an instance object of the
C# HealthBarDisplay script class. This object registers to listen to published events
from the player class. It also has a public UI Image variable that has been linked to
the UI Image of the health bar filler image in the scene.

When the player's health is reduced to 0.9, it publishes the OnChangeHealth(0.9)
event. This event is received by the HealthBarDisplay object instance, which then
sets the fillAmount property of the linked health bar filler image in the scene.

The TestHealthBarImageMatchesPlayerHealth() PlayMode test gets a reference
to the object instance named image-health-bar-filler, storing this reference in
the healthBarFiller variable. The test assertion made is that the expectedResult
value of 0.9 matches that actual fillAmount property of the UI Image in the scene:

Assert.AreEqual(expectedResult, healthBarFiller.fillAmount);

Unit tests
There are several unit tests, grouped by placing them inside their own classes, inside
the EditModeUnitTests script class.

TestCorrectValues class:
DefaultHealthOne(): this tests that the default (initial
value) of the player's health is 1
HealthCorrectAfterReducedByPointOne(): this tests
that when the player's health is reduced by 0.1, it becomes 0.9
HealthCorrectAfterReducedByHalf(): this tests that
when the player's health is reduced by 0.5 it becomes 0.5

class TestLimitNotExceeded:
HealthNotExceedMaximumOfOne(): this tests that the
value of the player's health does not exceed 1, even after
attempts to add 1, 0.5, and 0.1 to its initial value of 1

class TestEvents:
CheckEventFiredWhenAddHealth(): this tests that an
OnChangeHealth() event is published when the player's
health is increased
CheckEventFiredWhenReduceHealth(): this tests that an
OnChangeHealth() event is published when the player's

Bonus Chapter 19: Automated Testing Chapter 1

[36]

health is decreased
class TestLogging:

CorrectDebugLogMessageAfterHealthReduced(): this
tests that a Debug.Log message is correctly logged after the
player's heath is reduced by 0.1 to 0.9

class TestExceptions:
Throws_Exception_When_Add_Health_Passed_Less_Th

an_Zero(): this tests that an
ArgumentOutOfRangeException is thrown when a negative
value is passed to the AddHealth(...) player method
Throws_Exception_When_Reduce_Health_Passed_Less

_Than_Zero(): this tests that an
ArgumentOutOfRangeException is thrown when a negative
value is passed to the ReduceHealth(...) player method

These two tests illustrate one convention of naming tests that adds
an underscore _ character between each word in the method name
in order to improve readability.

See also
Learn more about the LogAssert Unity Script reference in the Unity documentation:

https://docs.unity3d.com/ScriptReference/TestTools.LogAssert.html

The method for unit testing C# events is adapted from a post on
philosophicalgeek.com:

http://www.philosophicalgeek.com/2007/12/27/easily-unit-testing-e
vent-handlers/

The delegate-event publishing of health change events in this health bar feature is an
example of the Publisher-Subscriber design pattern. Learn more about design
patterns and their implementations for Unity games in Chapter 17, Extra Features
and Design Patterns.

https://docs.unity3d.com/ScriptReference/TestTools.LogAssert.html
http://www.philosophicalgeek.com/2007/12/27/easily-unit-testing-event-handlers/
http://www.philosophicalgeek.com/2007/12/27/easily-unit-testing-event-handlers/

	Bonus Chapter 19: Automated Testing
	Introduction
	The big picture
	Unit tests
	Integration tests (PlayMode tests in Unity)

	Generating a default test script class
	How to do it...
	How it works...
	There's more...
	Create a default test script from the Project panel's Create menu
	Edit mode minimum skeleton unit test script

	A simple unit test
	How to do it...
	How it works...
	There's more...
	Shorter tests with values in the assertion
	Expected value followed by the actual value

	Parameterizing tests with a data provider method
	How to do it...
	How it works...

	Unit testing a simple health script class
	How to do it...
	How it works...
	Script-class Health.cs
	Script-class TestHealth.cs

	Creating and executing a unit test in Play mode
	How to do it...
	How it works...

	PlayMode testing a door animation
	Getting ready
	How to do it...
	How it works...

	PlayMode and Unit Testing a player health bar with events, logging, and exceptions
	Getting ready
	How to do it...
	How it works...
	PlayMode testing
	Unit tests

	See also

