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1
File I/O Essentials

Files provide a key feature for modern computers—persistence, which is the ability to
store data safely so that one can power cycle the system and the data remains
available (upon power-up). Without it, databases would not exist (and incidentally,
this book wouldn't have been written on a computer). So, we get it: we require files.

In the Unix (and therefore Linux) design, the OS works with various types of files,
such as the following:

Regular files
Directories
Symbolic (or soft) links
Other, more exotic ones, such as the following:

Named pipes (FIFOs), socket files, device files (block and
character)

In this book, we will focus on some of the interfaces (APIs) provided by C library and
the Linux OS, allowing us to operate upon the first of them—regular files. These are
your normal ASCII text files, binary data files, special format files (a combination of
ASCII and binary data, perhaps), and executable files (more technically, Executable
and Linker Format (ELF) files). Working with the others at the API level is beyond
the scope of this book.
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In this chapter in particular, we will focus on covering what we feel are the essential
aspects of file I/O (reading and writing regular files) that a competent developer
should know; we leave some of the more advanced aspects to a later chapter. Here,
the reader will broadly learn how to think about and correctly perform file I/O under
the following:

The more abstracted stream model—the C library stdio layer APIs
The system-level with system calls

Important concepts regarding I/O buffering, redirection (with freopen(3)
and popen(3)), understanding an open stream versus a file descriptor, mapping
streams to descriptors and vice versa, and so on, will also be covered. We will close
this chapter with an important note on synchronous versus asynchronous writes.

Regular file I/O with the library layer APIs
Let's start by looking at the interfaces provided at the layer above the system call
layer—the C library.

The stream
First of all, we need to understand this: the library layer works with files by
abstracting them into what it refers to as a stream. A stream is, as the English word
implies, a sequence of characters. The stream has no implicit format and is worked
upon via the library layer file I/O API set (which we will see shortly). The library
(glibc) uses a data structure to represent a stream—this is the well-
known FILE structure. We usually use a pointer to it: FILE *stream.

As mentioned in Chapter 1, Linux System Architecture, every process upon being born
auto-inherits (from its parent) three open files (by the way, the abbreviation fd stands
for file descriptor —it's an integer value the kernel maintains on a per process basis
to identify an open file; we will cover a lot more on working with file descriptors later
in this chapter. In particular chapter, there is a section called The file descriptor that will
we cover later):

Standard input (stdin: fd 0): The keyboard device, by default
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Standard output (stdout: fd 1): The monitor (or terminal) device, by
default
Standard error (stderr: fd 2): Again, the monitor (or terminal) device,
by default

These files (cleverly abstracting the keyboard and monitor devices for us) are
indeed streams in the Unix/Linux terminology. More correctly, we access these files
via the three stream objects (of type FILE *) assigned to them—stdin, stdout,
and stderr.

But how exactly can we use them, or for that matter, other files? Read on to find out.

The stdio file I/O API set
To do something with files, anything at all—read from them, write to them – we must
first open the file. We can then perform input and output—we often simply
abbreviate this as (IO) – operations upon it. The input implies reading from the
underlying file object, while the output implies writing to the underlying file object.

The open operation can be performed via the fopen(3) API.

The 3 in parentheses implies that it's a library and not a system call
API.

Then, I/O would be performed upon the file, and when done, the file is closed:
fopen(3) → << perform IO >> → fclose(3)

How exactly is the I/O performed; what are the available APIs? Well, there are plenty.
Some that will be familiar to C programmers will be the fwrite(3)/fread(3) pair,
the fprintf(3)/fscanf(3) pair, and the fgetc(3)/fputc(3) pair, among others.

Opening and closing a stream
Before any I/O can be performed on a file, the file is required to be opened; without
opening it, nothing can happen. Here, we will discuss three APIs within the stdio API
that are meant to open streams. The first one we will focus on is fopen(3).
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The fopen API
The fopen(3) library API is used to open a stream, as shown in the following code
(of course, recall that if the stream in question is one of the standard ones—stdin,
stdout, and stderr—they are already open and ready for use by default):

#include <stdio.h>
FILE *fopen(const char *pathname, const char *mode);

This is pretty straightforward: the first parameter is the pathname to the file to be
opened, and the second parameter is called mode and implies what the file is being
opened for. On success, a stream is set up and associated with the file; the return
value is a pointer to this stream, abstracted as a FILE structure (on failure, NULL is
returned and errno is set accordingly).

The mode parameter is a string; its possible values and meanings are summarized in
the following table:

Mode Meaning File seek position
r Open file for reading Beginning of file
r+ Open file for reading and writing Beginning of file

w If the file exists, truncate (to zero bytes) and open for writing;
if the file does not exist, create it for writing Beginning of file

w+ If the file exists, truncate (to zero bytes) and open for reading and writing; if the file does not
exist, create it (for reading and writing). Beginning of file

a Open the file for appending; if the file does not exist, create it End of file

a+ Open the file for reading and appending; if the file does not exist, create it; seek position will
initially show up as zero (BOF)

Beginning of file for reads;
end of file for writes

More detail on this is available within the man page
on fopen(3): https:/ / linux. die. net/ man/3/ fopen.

The seek position is, of course, an implicit pointer referring to the byte position within
the file where the next piece of I/O will occur; the phrase beginning of file implies that
the seek position is set to byte zero. The phrase end-of-file (EOF) implies that the
seek position is set to the last byte (and a write will, in effect, append data to the
stream). More on manipulating the seek position follows in the upcoming section.

https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
https://linux.die.net/man/3/fopen
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Closing the deal
When I/O is done, it's very important that the stream (and thus the underlying file
object)  is closed; the fclose(3) library API achieves this:

 int fclose(FILE *stream);

It's important to realize that closing a file has the underlying OS guarantee that it will
synchronize the file's data content, which will ensure that all buffers (more on this in
the next section) are flushed.

The astute reader will recognize that, under the hood,
the fopen and fclose library APIs will have the C library (glibc on
Linux) invoke the open(2) and close(2) system
calls, respectively.

The developer can explicitly flush, that is, force a write, of a given
output stream via the fflush(3) API; more on this follows a bit
later.

Other means to open a stream
The fdopen(3) API is a bit indirect; assuming that a file is already opened and one
has the file descriptor to it (a file descriptor is essentially a lower, system level
abstraction to a Unix/Linux file; we will cover it later on in this chapter), one can
convert it to a stream abstraction via the fdopen API:

FILE *fdopen(int fd, const char *mode);

The mode parameter is identical to that of the fopen(3) API; the return value on
success is a valid file pointer—the higher-level abstraction to a stream object. The seek
or file position remains unaltered, but the mode must be compatible with the file
descriptor's mode.

Seeking upon a stream
Every open file is associated with a file or seek position. It's quite an intuitive concept:
typically, when a file is first opened, the file position is at zero—implying Beginning
Of File (BOF). I/Os performed on the file—reads and writes—implicitly move the file
(seek) position.
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Don't confuse this abbreviation Beginning Of File (BOF) with
another common abbreviation used in infosec, Buffer overFlow
(BoF)
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So, for example, a read of 120 bytes will set the seek position at 120; any
subsequent file operation will proceed at this point. Of course, if a file is opened in
append mode, the seek position will be at EOF. Interestingly, there are interfaces that
are provided by the library to explicitly change (or query) the seek position.

The fseek(3) and fgetpos(3) APIs can be used to explicitly set (and query) the
seek position of a stream.

Using the fseek(3) API is straightforward:

#include <stdio.h>
int fseek(FILE *stream, long offset, int whence);

The first parameter is the stream to operate upon, and the second is the offset (in
bytes). The third parameter, whence, can be given the following values:

SEEK_SET: Sets the seek position of the stream stream to BOF + offset
SEEK_CURR: Sets the seek position of the stream stream to the current
position + offset
SEEK_END: Sets the seek position of the stream stream to EOF + offset

The library provides a couple of convenience routines as well:

#include <stdio.h>
long ftell(FILE *stream);
void rewind(FILE *stream);

It's quite clear: ftell(3) returns the current seek position (as a long integer) of the
given stream object, and the rewind(3) API does precisely as it says—it rewinds the
given stream, that is, it sets its seek position to byte zero.

In addition, the library provides the f[g|s]etpos(3) APIs too; they are essentially
equivalent to ftell(3) and fseek(3), and only seem to be relevant on some non-
POSIX systems; they will not be delved into here.

It's important to note that the ANSI C standard requires that the
seek position be explicitly set between I/O operations being
performed upon a stream; think about it, it's a reasonable ask, as the
file's/stream's seek position will change implicitly as I/O is carried
out upon it. Explicit seeks will help guarantee that I/O is correctly
performed.



File I/O Essentials Chapter 1

[ 8 ]

Simple seek – a quick code example
Here, we will write a quick and simple C program, (A_fileio/streamio1.c). The
user must pass two parameters:

A pathname to a regular file
Either b or e:

b: Open the file with mode r
e: Open the file with mode a

We will encode the program to accordingly fopen(3) the given file, and then use
the ftell(3) API to query the current seek position.

A couple of trial runs can be seen in the following code:

$ make streamio1
gcc -O2 -Wall -UDEBUG -c ../common.c -o common.o
gcc -O2 -Wall -UDEBUG -c streamio1.c -o streamio1.o
gcc -o streamio1 streamio1.o common.o
$ ./streamio1
Usage: ./streamio1 pathname {mode=b|e}
$ ./streamio1 streamio1.o b
Current seek position: 0
$ ./streamio1 streamio1.o e
Current seek position: 2936
$ ls -l streamio1.o
-rw-r--r-- 1 seawolf seawolf 2936 Jul 30 12:39 streamio1.o
$

It's quite clear: when run with the second parameter, b, the current seek position
shows as zero; when the second parameter is e, the current seek position shows up as
the number of bytes in the file. In effect, we will be appending data to the stream
upon a write.

What if the file (pathname) passed into the first parameter does not exist?

$ ./streamio1 hey_im_not_there e
Current seek position: 0
$ ls -l hey_im_not_there
-rw-r--r-- 1 seawolf seawolf 0 Jul 30 12:43 hey_im_not_there
$ alias rm; rm hey_im_not_there
alias rm='rm -i'
rm: remove regular empty file 'hey_im_not_there'? y
$
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Clearly, it gets created, as promised, when we use fopen(3) with mode a (which is
what we do when e is passed). When we use fopen with mode r, no new file is
created; the call just fails:

$ ./streamio1 hey_im_not_there b
FATAL:streamio1.c:main:43: fopen on hey_im_not_there failed
  kernel says: No such file or directory
$

Refer to the codes as follows:

[...]
int main(int argc, char **argv)
{
  FILE *fp=NULL;
  if (argc != 3) {
    fprintf(stderr, "Usage: %s pathname {mode=b|e}\n", argv[0]);
    exit(EXIT_FAILURE);
  }

  if (!strncmp(argv[2], "b", 1))
    fp = fopen(argv[1], "r");
  else if (!strncmp(argv[2], "e", 1))
    fp = fopen(argv[1], "a");
[...]
  printf("Current seek position: %ld\n", ftell(fp));
  fclose(fp);
  exit(EXIT_SUCCESS);
}

Atomic appends
Let's say we have a requirement wherein a process must open a file, and pretty much
immediately, start appending data to it (a typical application log file, perhaps). This
sounds easy to do; we might write the (pseudo) code as follows:

// Process 'A'
FILE *fp = fopen("thelog", "r+");
[...]
// About to append data
fseek(fp, SEEK_END, 0L);                      <--- time t1
fprintf(fp, "%s:%u:%s\n", [...]);             <--- time t2
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At first glance, the preceding code snippet might appear to be just fine;
the fseek(3) API – setting the seek position to EOF – is done at time t1, immediately
followed by the write (via fprintf(3)) at time t2. Think carefully, though: always
remember that we are running on the Linux OS – it's a multiprocess, multithreaded,
heavy duty environment! It is entirely possible that between performing fseek (done
at t1) and fprintf (done at t2) on process A, the kernel scheduler schedules another
process, B, (or thread), to run on the CPU. What if this process, B, also appends data
to the same file? Then it's entirely conceivable that by the time process A is back on
the CPU and running fprintf, the file's size has changed underneath it. Now, the
seek position set by SEEK_END is no longer valid, and our process, A, will perform a
write to somewhere within the file, corrupting it.

This is a good example of a classic race condition; as we cannot predict in advance how
the OS will allocate CPU bandwidth and perform scheduling, we have to code
carefully. How, you ask? Check this out in the following:

FILE *fp = fopen("thelog", "a+");
[...]
// About to append data
fprintf(fp, "%s:%u:%s\n", [...]);             <--- time t1

This time, we open the stream (corresponding to our log file) in append mode; thus,
there is no need for an explicit—and possibly racy—fseek followed by an
fprintf; it's just the fprintf which, as we know, will append data to the file. In
effect, we have now done the right thing—we have made the code atomic with
respect to the data append operation (look out for a lot more on this key concept in
the chapters on multithreading).

The preceding race condition will make you think: how can two (or
more) processes be allowed to simultaneously operate upon the
same file object? Should we not synchronize this? Yes, indeed: this is
precisely what file locking is all about. We do not cover file locking in
this book; we refer the reader to the Further reading section for a link
to an excellent tutorial on the subject..

Before we can use the actual APIs for I/O (input/output for reading/writing), at least a
minimal understanding of buffering (and caching) concepts is required; read on.
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I/O buffering
With the library, or more correctly, the stdio layer APIs, being so vast, the following
question must be asked: is there a decent way to categorize them? Yes—as it turns
out, one can quite neatly classify them based on their buffering type.

What does buffering mean in this context, exactly? For runtime performance
optimization, the library layer will often make use of a memory cache—a memory
buffer between the library and, ultimately, the underlying storage (disk or flash)
device.

Caches work based on two essential principles: one, the principle
of locality of reference— data (and instructions) that are adjacent to
each other will more likely be used in the near future, both in space
(spatial locality) and in time (temporal locality). Two, a cache is a
high-speed memory buffer of some sort – a key point is that
accessing the cache memory is much faster than accessing the
underlying memory device that it's caching (for example, caching
disk data in RAM is beneficial because RAM is much
faster compared to disk).

Precisely because the principle of locality of reference turns out to be
true most of the time (think about how a file is often read
sequentially and not randomly; audio/video are excellent
examples), caching recently used memory in a fast-access
buffer yields tremendous performance benefits. 

This caching principle is used again and again in modern
computers—from CPUs caching data/instructions in L1/L2/L3 CPU
caches to RAM, to firmware caching, to software caching (both at
the OS level as well as at the library/application level). 

So, the fact is, when a process calls the, say, fwrite(3) API, to write data to a file
stream (or object), the write does not go immediately and directly to the file on the
physical storage device; no, it is cached in a buffer maintained by the library layer!
This actually results in performance enhancement. Think about it – if a process wrote
a few bytes at a time, it would be very high overhead to immediately flush a few
bytes at a time, every time, down through all the complex layers to the underlying
storage device. (Recall from Chapter 2, Virtual Memory, that the average difference in
access speeds between RAM and a SCSI disk is in the region of a million times!)
Instead, cache it for a while, ideally until the cache memory is full, and then flush the
entire buffer in one shot to the underlying layers.
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Let's say we have an application that reads in some data (from the user via stdin,
another file, or a network socket, a pipe, and so on) into a heap buffer (accessed via
the buf pointer) of size, say, 512 bytes. The application process then intends to write
this buffer to a regular file; the file, or stream, is opened, and we have a FILE *fp
pointer available. So, the application now issues the I/O – the write – via one of the
many available APIs; it can use any one of the stdio output APIs, that
is, fwrite(3), fprintf(3), or fputc(3), or, it can directly talk to the kernel via the
system call write(2). Whichever it chooses, we can visualize that the buffer is
somehow passed to the OS (see the following diagram). The OS is, of course, a
complex technology; here, we won't pretend to delve into the low-level details. Any
file-related system call will end up in a kernel layer called the Virtual Filesystem
Switch (VFS). From here, via a myriad of sophisticated layers within the kernel –
which we will just treat as a big black box for now—the OS will ultimately end up
passing the data buffer, buf, to the block or storage device driver, whose job is to
actually write it to the underlying device (typically, a disk or flash memory medium):

Figure 1: fwrite from an application to disk via the write syscall—a simplistic view
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Well, this really is the simplistic view. A more realistic view, deeper under the hood,
would reveal a lot more (wait for Chapter 18, Advanced File I/O, for that); for one,
the stdio layer APIs will result in the process buffer, buf, being first cached in a
buffer allocated by the C library upon first use – what we have been referring to as
the I/O buffer. So now, it should be more clear: referring to the preceding table (in the
The fopen API section), if the application calls fwrite(3) (let's just assume it does so),
the stdio I/O buffer will be one page in size (4,096 bytes). fwrite(3) would just
cause the process buffer (buf) of 512 bytes to be written into the stdio buffer;
nothing more! The following diagram shows us this:

Figure 2: fwrite from the application, via the stdio buffering mechanism—a more realistic view
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The reader should realize that once the process buffer, buf, is written into the stdio
I/O buffer (in the light grey color, and of size 1 page), fwrite(3) will return success.
As far as it's concerned, the job is done! In reality, the data is still in user space in
the stdio I/O buffer, as we can see; subsequently, it will get flushed to the kernel and
thus the storage device (read the Flushing streams section for more on this).

Another point: the preceding diagrams are really with respect to the write path;
what happens when reading in data (from storage device to the user space buffer)?
Here, stdio I/O buffering is in effect, only this time, the OS uses intelligence to request
the underlying layers for sufficient data to fill the I/O buffer in one shot, if possible.
Say that the application requests 512 bytes from a (regular) file via fread(3); the OS
has the intelligence to issue one read(2) system call for one page of data. Thus, the
I/O buffer is filled and subsequent uses of fread(3) do not require a system call to
service them (the data is already in the user space I/O buffer)! This is often called a
read-ahead strategy; for files that are typically read sequentially (this quite often is the
case), it works wonders performance-wise. In fact, there are APIs available for the
developer precisely to pass such hints to the OS regarding how to work with data,
such as the posix_madvise(3) library and the system call madvise(2).

The stdio APIs
As the title of this section implies, the following I/O APIs are all within the stdio C
library framework. In fact, as C programmers learn on day one, we must #include
<stdio.h> in order to work with them.

The memory size that the C library uses for a memory cache determines the buffering
type; the following table helps us understand the different buffering types that the C
library layer routinely uses:
Buffering type Size of buffer (cache) API set: foo(3)
Fully (or block) buffered I/O 1 page (4,096 bytes) fread/fwrite

Line buffered I/O 128 bytes
 [v][f|s]scanf, 
 [f]gets[1]/[f]puts, [v][f|d|s|sn]printf 

2

 
Raw (or unbuffered) IO 0  read[v]/write[v]

[1] Please do not use the gets(3) API for reasons of security; it's a very well-known
and highly exploited API for malicious attackers (usually via the (stack) BoF vector).
Using fgets(3) is acceptable, though the getline(3) API is considered the
preferred API for getting a line of input from the user.
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[2] What does the [v][f|d|s|sn]printf notation mean? 

The  [v][f|d|s|sn]printf notation is meant to imply that it refers to any of the
following *printf(3) APIs:

fprintf
dprintf
sprintf
snprintf
vfprintf
vdprintf
vsprintf
vsnprintf

Similarly, [v][f|s]scanf implies that it refers to any of the *scanf(3) APIs, that
is, [v]scanf, [v]fscanf, and [v]sscanf. Whew.

Interestingly, GNU extensions include the asprintf(3) and vasprintf(3) APIs; they are
the same as their more familiar [v]sprintf(3) cousins, except that they will always
internally allocate a buffer large enough to contain the output (critical from the lens of
secure coding!). The most important thing to mention is that the caller is responsible
for invoking free(3) when done (recall our discussion on Memory leakage bugs in earlier
chapters).

A detailed explanation of each of these APIs is not something we would prefer to
perform in this book; we refer the reader to browse through the man pages on them
for more information.

Okay, back to the stdio APIs and their buffering. Practically, this is how they're set up
to work on the system by default (so that maximum performance is achieved
whenever applicable):

If the stream refers to a regular file (a file on the filesystem), I/O performed
on the stream will be fully (block) buffered (a stdio I/O buffer of size 1 page
will cache it).
If the stream refers to a terminal device – a common example being stdout
– I/O performed on the stream will be line buffered (a stdio I/O buffer of
size 128 bytes will cache it).
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If the stream is stderr, I/O performed on the stream will always be
unbuffered (it will not be cached at all at the library layer and writes will
proceed immediately via write(2) to the OS layers). This is usually desirable
for error output.

Quick testing of stdio buffering with code
Let's get hands-on once again (after all, that's an important objective of this tome:
don't assume, try it out) and write a small C program to clearly illustrate how, when
using the fread(3)/fwrite(3) stdio library APIs, the library will
automatically buffer the data.

In our program (the source code is here within the book's GitHub repository:
A_fileio/iobuf.c), we will perform I/O (reading and writing) as follows:

First, open/create files as required:1.
We fopen(3) a stream (in read mode: r) to our source: an
interesting character device file – /dev/urandom. Without
getting into the details, just understand this: it's part of a
memory device driver supplied by the Linux OS; reading one
byte from the file retrieves one byte of data – a (pseudo) random
value!

There are other ways to get random data from the kernel; one is to
read from the (pseudo) device  file/dev/random; this a good way
for applications requiring high security (it's very slow but secure).
Another way is to use the (pseudo) device /dev/urandom; in fact,
the kernel documentation for it states that it's a faster, less secure
random number gen. This is fine for us, though, here and now. Also,
both /dev/[u]random are essentially infinite – they have no EOF.

Next, we fopen(3) a stream (in append mode: a) to our destination: just a2.
regular file in the /tmp directory (it will be created if it doesn't exist).
Then, in a loop, for a number of iterations provided by the user as a3.
parameter, we will do the following:

Read several (512) bytes from the source stream (they will be
random values) via the fread(3) stdio library API
Write those values to our destination stream via
the fwrite(3) stdio library API (checking for EOF or error
conditions)
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When done, we clean up (fclose our streams, free buffers, and so on).3.

The code (A_fileio/iobuf.c) performing these steps is as follows:

int main(int argc, char **argv)
{
  char *fname="/tmp/iobuf_tmp";
  FILE *wfp = NULL, *rfp = NULL;
  int numio;

  if (argc != 2) {
    fprintf(stderr, "Usage: %s number-of-times-to-rdwr\n", argv[0]);
    exit(EXIT_FAILURE);
  }

[...]

  unlink(fname);
  wfp = fopen(fname, "a");
  if (!wfp)
    FATAL("fopen on %s failed\n", fname);

  rfp = fopen("/dev/urandom", "r");
  if (!rfp)
    FATAL("fopen on /dev/urandom failed\n");
  testit(wfp, rfp, numio);
  fclose(rfp);
  fclose(wfp);
[...]
}

(By the way, we use unlink(2) to delete the temporary file, if it exists). The actual
I/O is performed in the testit() function, as follows:

static void testit(FILE * wrstrm, FILE * rdstrm, int numio)
{
  int i, syscalls = NREAD*numio/getpagesize();
  size_t fnr=0;

  if (syscalls <= 0)
      syscalls = 1;
  VPRINT("numio=%d     total rdwr=%u     expected # rw syscalls=%d\n",
                  numio, NREAD*numio, NREAD*numio/getpagesize());

  for (i = 0; i < numio; i++) {
    fnr = fread(gbuf, 1, NREAD, rdstrm);
    if (!fnr)
      FATAL("fread on /dev/urandom failed\n");
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    if (!fwrite(gbuf, 1, fnr, wrstrm)) {
      free(gbuf);
      if (feof(wrstrm))
        return;
      if (ferror(wrstrm))
        FATAL("fwrite on our file failed\n");
    }
  }
}

Let's try it out:

$ ./iobuf
Usage: ./iobuf number-of-times-to-rdwr
$ ./iobuf 10000
./iobuf: using default stdio IO RW buffers of size 4096 bytes; #
IOs=10000
 iobuf.c:testit:37: numio=10000 total rdwr=5120000 expected # rw
syscalls=1250
$

Okay, it appears to work; we have it perform I/O (fread/fwrite pairs) 10,000 times,
reading and writing 512 bytes each time. Thus, the output file is as follows:

$ ls -l /tmp/iobuf_tmp
-rw-rw-r--. 1 kai kai 5120000 Aug 1 13:41 /tmp/iobuf_tmp
$

But think a moment—recall what we've just learned and in particular, take a quick
look again at our earlier diagrams. The first diagram illustrates how we intuitively
think it works; we feel that the reads and writes are immediate and that the OS
services the requests straight away. But no, the following diagram shows us a more
realistic picture: I/O buffering ensures that whenever we perform I/O (an fread(3)
or an fwrite(3)), the corresponding low-level system calls
read(2) and write(2) do not always get invoked immediately, but only when
required – when the I/O buffer is full! This is good for performance (frequent system
calls are a major performance dampener). 

All right, but can we prove this? Yes, indeed; we shall use a powerful tracing utility
available on Linux, ltrace(1). 
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You can use ltrace(1) to trace all library layer APIs (as well as all
system calls by using the -S option switch) issued by a process at
runtime.
You can use the strace(1) utility to trace all system calls issued by
a process at runtime. Do check out their man pages; there are lots of
interesting options to be explored.

Okay; here we go:

$ ltrace -S ./iobuf 10000
brk@SYS(nil) = 0x6d7000
access@SYS("/etc/ld.so.preload", 04) = 0
openat@SYS(AT_FDCWD, "/etc/ld.so.preload", 0x80000, 00) = 3
fstat@SYS(3, 0x7ffcb77e7360) = 0
close@SYS(3) = 0

[...]

First (as shown in the preceding code), we will see the C runtime environment setup
(the text, data, shared libraries loading, and so on); we will ignore this. As shown in
the following snippet, note that the code has started
running; unlink(2) and fopen(3) have been issued:

[...]
printf("%s: using default stdio IO RW bu"..., "./iobuf", 4096, 10000
<unfinished ...>
fstat@SYS(1, 0x7ffcb77e6e70) = 0
brk@SYS(nil) = 0x6d7000
brk@SYS(0x6f8000) = 0x6f8000
brk@SYS(nil) = 0x6f8000
write@SYS(1, "./iobuf: using default stdio IO "..., 75) = 75
<... printf resumed> ) = 75
malloc(512) = 0x6d7670
unlink("/tmp/iobuf_tmp" <unfinished ...>
unlink@SYS("/tmp/iobuf_tmp") = 0
<... unlink resumed> ) = 0
fopen("/tmp/iobuf_tmp", "a" <unfinished ...>
openat@SYS(AT_FDCWD, "/dev/urandom", 0, 00) = 4
lseek@SYS(3, 0, 2) = 0
<... fopen resumed> ) = 0x6d7880                 <-- FILE * wfp
fopen("/dev/urandom", "r" <unfinished ...>
openat@SYS(AT_FDCWD, "/dev/urandom", 0, 00) = 4
<... fopen resumed> ) = 0x6d7ab0                 <-- FILE * rfp

[...]
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The APIs in the ltrace output suffixed by @SYS indicates that it's a system call (and not
a library layer API):

[...]
fread(0x6d7670, 1, 512, 0x6d7ab0 <unfinished ...>
fstat@SYS(4, 0x7ffcb77e74b0) = 0
ioctl@SYS(4, 0x5401, 0x7ffcb77e7410, 0) = -22
read@SYS(4,
"\vO\356\277\354\313\001\245\267\312EV\006e\343\025\315\372\235\315\\\
3359\313|\320\237q\365f\212\312"..., 4096) = 4096
<... fread resumed> ) = 512
[...]

The I/O loop (in our testit() routine) is really the key portion. As we can see in the
preceding code, it's very interesting that we can literally see how an fread(3) of 512
bytes translates into a read(2) system call of size 4,096 bytes! We have literally seen
the read-ahead strategy that we mentioned previously at work here!

In the following code, we can see the loop in execution (we are using newline-
separated pairs of fread/fwrite for readability):

[...]
fread(0x6d7670, 1, 512, 0x6d7ab0) = 512
fwrite("\326\203.\201\312\253Qu=\337\020\342\273\375\201\302\220\002\f
\343\300\361l\260\361\350\340\235$\220n4"..., 1, 512, 0x6d7880) = 512

fread(0x6d7670, 1, 512, 0x6d7ab0) = 512
fwrite("\335\002;\372\313\336\3256q\316\201\241\237\3560\256\025\231\3
21S\\5\373\v\326\303\362'\b\031\254\323"..., 1, 512, 0x6d7880) = 512

fread(0x6d7670, 1, 512, 0x6d7ab0) = 512
fwrite("\266\343\200\025K1o\312'\301\234\020\310\336E\236l\025\361\222
\b\363\200\3340\366YMW\311\347\035"..., 1, 512, 0x6d7880) = 512

fread(0x6d7670, 1, 512, 0x6d7ab0) = 512
fwrite("n\213wd\016\2335f\223\304\240\231-
\374\354U\256\031\3725\376\323\240\240\244e\362\032H\347\314\373"...,
1, 512, 0x6d7880) = 512
[...]
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However, by far the most interesting analysis is this: let's grep (and count with wc -
l) the ltrace output for occurrences of the key I/O APIs – for us, it's the fread(3),
read(2), the fwrite(3), and the write(2). In fact, we have rigged up a simple shell script
(A_fileio/trc_iobuf.sh) to help automate the process. We will run it as follows:

$ ./trc_iobuf.sh
------------------------------
ltrace -S ./iobuf 10000 2>ltrc_vanilla.txt
------------------------------
./iobuf: using default stdio IO RW buffers of size 4096 bytes; #
IOs=10000
 iobuf.c:testit:37: numio=10000      total rdwr=5120000     expected #
rw syscalls=1250
------------ ltrace stats -----------------
# calls to fread    :   10000
# calls to read     :    1251
# calls to fwrite   :   10000
# calls to write    :    1252

[...]

For now, we've truncated the script's output to just the first part (more to follow). The
really interesting thing is that in the last four lines of output, we can clearly see that
(for this sample, run with 10,000 I/O loop iterations) the number of fread(3) APIs
issues is 10,000, but the number of corresponding read(2) system calls is a fraction of
that: 1,251. Similarly, the number of fwrite(3) API issues is 10,000, but the number of
corresponding write(2) system calls is 1,252.

So, with the default stdio I/O buffering mode set to fully buffered I/O, the I/O buffer is
one page in size: in this sample run, we have read and written 512 bytes (of random
data) into a loop 10,000 times. So, that's 512*10,000 = 5,120,000 bytes read and
written in total (a quick ls -l /tmp/iobuf_tmp will verify this). However,
we know that the library layer will optimize and use a page-sized I/O buffer,
buffering the I/O for performance, so the expected number of read/write system calls
will be (512*10,000)/4,096 = 1250. The output reveals that it's almost identical
(some read/write would have occurred for other things as well). So, there we have
it: stdio I/O buffering in action.
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Flushing streams
As mentioned earlier, a programmer can always explicitly flush, that is, force a write
of an output stream, via the fflush(3) API: int fflush(FILE
*stream);Flushing output streams (ones opened for writing) is intuitive given the
way I/O buffering works, but what about input (opened for reading) streams? Well, it
is possible: the man page on fflush(3) states that if one is working upon the input
stream of a regular file (not a pipe or terminal device), the fflush will discard all
fetched and buffered data (that was residing in the buffer or cache) that the process
has not yet read (or consumed). Thus, fflush(stdin) has no real meaning, as stdin is
(usually) a terminal device.

Calling fflush(NULL) has the interesting effect of flushing all currently open output
streams. Check – always check – for the failure case; fflush(3) returns zero on success
and EOF on failure (and errno is accordingly set).

Debugging via instrumentation

In this section, we do use the fork(2) system call, something that we
shall cover in great detail in Chapter 10, Process Creation. If
unfamiliar with the fork, you could skip this section for now and
come back to it later.

In the early part of the Chapter 10, Process Creation, (where the usage of the
powerful fork(2) system call will be explained in great detail), we will see the
following trivial piece of code, with one minor difference: we replace the string to be
printed, Hello, fork.\n, with Hello, world:

int main(int argc, char **argv)
{
    fork();
    printf("Hello, world. ");
}

(For this simple use case, we don't show error checking code; production-quality
apps must do so.) The output is quite obvious: after the fork, there are two processes
now alive and executing the next line of code – the printf(3); the original parent and
the just-born child process. Thus, the printf output appears twice on the console (on
the terminal device, stdout). Now, we will build and run it:

$ make fork_printf_1
gcc -O2 -Wall -UDEBUG -c ../common.c -o common.o
gcc -O2 -Wall -UDEBUG -c fork_printf_1.c -o fork_printf_1.o
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gcc -o fork_printf_1 fork_printf_1.o common.o
$ ./fork_printf_1
Hello, world. Hello, world. $
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We have modified the preceding code to this:

int main(int argc, char **argv)
{
    printf("Hello, world. ");
    fork();
}

A quick quiz: what's the output? Is it:

<no output>
Hello, world
Hello, world. Hello, world.
Really, I have no idea  

Please, dear reader, do try it out before reading on; it's quite interesting!

Okay, we've asked. Now, let's run it and see:

$ ./fork_printf_2
Hello, world. Hello, world. $

It's the third option how come!?
The answer is interesting: from the preceding table regarding I/O buffering types, we
can see that the printf(3) API is line buffered, and that the size of the buffer is 128
bytes (by default). This implies that when a process calls printf(3), the output
does not go directly to the terminal device (stdout) via the OS, but, rather, is
buffered in a stdio buffer of 128 bytes in size (this is completely analogous to how,
in Figure 2, the fwrite data is buffered in the page-size stdio buffer). So, the
string Hello, world. resides in the library allocated buffer. Next, we call fork(2),
which of course creates a new child process – essentially a copy of the parent. The
new child's virtual address space (VAS) includes the stdio library buffer with the
same string embedded inside it. After that, both processes terminate when they hit
the close brace } of main. But, remember—before a process terminates, the kernel
ensures that all open files are flushed and then closed. Thus, both the parent's and
child's stdio buffers are flushed and then the open files are closed. The flush causes
the string Hello, world. to be written twice to the terminal device (stdout). Also
recall that on fork, our Fork Rule # 6: Open files are (loosely) shared across the
fork" includes stdout. The parent and child thus share stdin, stdout, and stderr.
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So, [f|v|s|sn]printf is line-buffered, but guess what: we could always explicitly flush
the buffer (as we saw previously, with fflush(stdout)). Yes, that would work, but
there's an easier way: the library also flushes a stream's buffer when the newline
character is encountered in the stream! So, just terminate your printf's with a \n and
it will be flushed. Rewriting the preceding printf to the following:

printf("Hello, world.\n");
fork();

will cause the message to appear only once. Do confirm this for yourself; empirically
testing the results (don't just believe everything "the book" says) is a key best
practice! (Importantly, Chapter 19, Troubleshooting and Best Practices, covers such
points.)

A practical case where this knowledge is useful is, well, in any printf(3). Often,
though, as I have first-hand seen, a fledgling developer struggles with code they're
debugging by introducing printf's – the common and
useful instrumentation technique. But, if the printf is not newline terminated and
there is a fork at a later point in the code path, it's quite possible that they will see the
output twice, confusing them as to what is even going on now!

Changing the I/O buffering mode and size
The C library provides several APIs, allowing a developer to change the I/O buffering
mode and size. These are setbuf(3), setbuffer(3), setlinebuf(3),
and setvbuf(3). Internally, the first three all wrap around to the key one,
the setvbuf(3) API. Its signature is as follows:

include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

The third parameter, mode, specifies the I/O buffering mode, and should be one of the
following:

_IOFBF: Fully buffered I/O
_IOLBF: Line buffered I/O
_IONBF: Unbuffered I/O

The second parameter, buf, is a pointer to a buffer of size bytes. If used, it will be
used as the I/O buffer for the stream. Alternatively, one can leave buf as NULL; in
this case, the library will allocate a buffer upon first use itself.
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Note: One must call setvbuf(3) on a stream only after opening it
and before any operation is performed on it.

Calling setvbuf(3) on a standard stream (stdin, stdout, or
stderr) may not yield the desired outcome as these are usually,
and by default, pointers to an implementation-dependent terminal
window; setvbuf only changes the glibc stdio buffer type and
size, nothing else.

In the opinion of many, given the level of optimization performed by the Linux kernel
(both at the block I/O layers and driver), as well as at the firmware layer (modern
disks have built-in caches), the setvbuf APIs are not particularly fantastic; we
suggest that you do not spend too much time attempting to micro-optimize via this
route. Nevertheless, it might turn out useful to optimize a particular application's file
I/O performance.

Modifying the I/O buffer mode and size – code example
Here, we will present a quick code example on using the setvbuf(3) API to modify
the size of the standard I/O buffer. Recall that the default size of the fully buffered
mode I/O buffer is a page (4,096 bytes; again, we remind you: do not assume
anything – use the getpagesize(2) API to query the page size).

We will make a copy of our earlier code (the A_fileio/iobuf.c program) to
A_fileio/io_setbuf.c. The majority of the code remains the same; the change,
though, is that we use our very own I/O buffers. How, exactly? It's straightforward:

We allocate two buffers (via the usual malloc(3)) for our own
read and write I/O buffers; the size of the buffers is specified via the first
parameter to this program.
We issue the setvbuf(3) API twice:

Once, to set up an I/O buffer for the read stream
Again, to set up an I/O buffer for the write stream

We call our I/O loop code routine—testit()—as usual.
When all I/O is done, we print kernel-maintained statistics about the
process I/O (by dumping the pseudofile /proc/<PID>/io).
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We can always generate the delta between the two programs using
the diff(1) utility. As you can see in the following code, we are showing a relevant
snippet of the resultant patch:

$ diff -u iobuf.c io_setbuf.c

[...]

+ // Allocate our own 'write' stdio IO buffer
+ iow_buf = malloc(bufsz);
+ if (!iow_buf)
+     FATAL("malloc %zu failed!\n", bufsz);
+
+ // Allocate our own 'read' stdio IO buffer
+ ior_buf = malloc(bufsz);
+ if (!ior_buf)
+     FATAL("malloc %zu failed!\n", bufsz);

   gbuf = malloc(NREAD);
   if (!gbuf)
@@ -84,9 +112,18 @@
   if (!rfp)
         FATAL("fopen on /dev/urandom failed\n");
+ /* Change stdio buf: to fully buffered IO, and, importantly, with
+ * our specified buffer size 'bufsz'.
+ */
+ if (setvbuf(rfp, ior_buf, _IOFBF, bufsz))
+     FATAL("setvbuf on read buffer failed\n");
+ if (setvbuf(wfp, iow_buf, _IOFBF, bufsz))
+     FATAL("setvbuf on write buffer failed");
[...]

The payoff can be seen in the following code snippet—we run
our trc_iobuf.sh wrapper script (which, recall, internally calls ltrace and then
greps and counts the relevant APIs). We then run three test cases.

With the default stdio I/O buffer mode set to fully buffered and 4,096 bytes in size (in
fact, we saw this case earlier).

With our own spec—a large I/O buffer: stdio I/O buffer mode set to fully1.
buffered and 512,000 bytes in size
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With our own spec—a tiny I/O buffer: stdio I/O buffer mode set to fully2.
buffered and 128 bytes in size
The output (focus on the "# calls to ..." lines as follows) shows up as3.
expected:

Case 1: Default stdio I/O buffer mode set to fully buffered and 4,096 bytes in size:

$ ./trc_iobuf.sh
------------------------------
ltrace -S ./iobuf 10000 2>ltrc_vanilla.txt
------------------------------
./iobuf: using default stdio IO RW buffers of size 4096 bytes; #
IOs=10000
 iobuf.c:testit:37: numio=10000     total rdwr=5120000       expected
# rw syscalls=1250
------------ ltrace stats -----------------
# calls to fread  :  10000
# calls to read   :   1251
# calls to fwrite :  10000
# calls to write  :   1252

Case 2: Our own spec—a large I/O buffer: stdio I/O buffer mode set to fully buffered
and 512,000 bytes in size:

------------------------------
ltrace -S ./io_setbuf 512000 10000 2>ltrc_setvbuf_large.txt
------------------------------
./io_setbuf: setting our IO RW buffers to size 512000 bytes; #
IOs=10000
 io_setbuf.c:testit:41: numio=10000    total rdwr=5120000     expected
# rw syscalls=10
rchar: 5121948
wchar: 5120158
syscr: 16
syscw: 12
read_bytes: 0
write_bytes: 0
cancelled_write_bytes: 0
------------ ltrace stats -----------------
# calls to fread  :  10000
# calls to read   :     11
# calls to fwrite :  10000
# calls to write  :     12
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Look at that! In spite of 10,000 each for the fread(3) and fwrite(3) calls, only 11
read(2) and 12 write(2) system calls had to be issued under the hood, as the I/O
buffers were very large. Performance goes up.

We can also make performance go down.

Case 3: Our own spec—a tiny I/O buffer: stdio I/O buffer mode set to fully buffered
and 128 bytes in size:

------------------------------
ltrace -S ./io_setbuf 128 10000 2>ltrc_setvbuf_small.txt
------------------------------
./io_setbuf: setting our IO RW buffers to size 128 bytes; # IOs=10000
 io_setbuf.c:testit:41: numio=10000     total rdwr=5120000
expected # rw syscalls=10000
rchar: 5121948
wchar: 5120158
syscr: 10006
syscw: 20001
read_bytes: 0
write_bytes: 0
cancelled_write_bytes: 0
------------ ltrace stats -----------------
# calls to fread  :  10000
# calls to read   :  10001
# calls to fwrite :  10000
# calls to write  :  20001
$

This time, with the really tiny (128 byte) I/O buffer in place, performance actually
degrades with over 10,000 calls to read(2) and over 20,000 calls to write(2). As usual,
the reader is encouraged to clone this book's GitHub repository and try out these
programs for themselves.

The stdbuf(1) utility is worth a quick mention: it's a quick fix to
some buffering issues faced by annoying default behavior on the
default streams. Take a look at its man page for an example.
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Steam redirection with the freopen API
A common application requirement is logging. We wish to keep an audit of 
application activity—the typical way to do so is to append all application messages
into a persistent file—a log file. 

For the reader's information, there are several projects that
implement logging; syslog (3) is a well-known traditional system
logging facility on Unix/Linux. Modern logging is performed on
Linux with systemd-journald(8) (with journalctl(1) being a useful
frontend utility to read the journal). Discussing these in depth goes
beyond the scope of this book; readers are advised to look up the
man pages if interested. In this chapter, for demonstration purposes,
we will show how to perform very simplistic logging—without any
framework—just directly with the library stdio APIs and a few
helpers.

So, how do we get our application process to send all the messages it usually writes to
the standard streams—stdout and stderr—to a log file (here, we do not demo the
same with stdin)? The freopen(3) API works well for this very purpose:

FILE *freopen(const char *pathname, const char *mode, FILE *stream);

The pathname argument is the file we would like to replace the open stream with;
the mode is as described in the The fopen API section of this chapter. The original open
stream (if it exists) is closed. More detail can be found in the man page on freopen(3),
though looking at the following code should suffice for understanding.

Let's use freopen(3) to our advantage: we will write a small C program that attempts
to redirect stdout and stderr to a log file we specify as the parameter to it. The code is
as follows (A_fileio/redirct.c):

int main(int argc, char **argv)
{
  FILE *fplog=NULL, *pfp=NULL, *fp=NULL;
#define DTMAX 256
  char dt[DTMAX];
  char *junk="abcxyz";

  if (argc != 2) {
          fprintf(stderr, "Usage: %s logfile\n", argv[0]);
          exit(EXIT_FAILURE);
  }

  /* Effectively redirect the stdout stream to our log file stream */
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  fplog = freopen(argv[1], "a", stdout);
  if (!fplog)
        FATAL("freopen stdout on %s failed\n", argv[1]);

  /* Effectively redirect the stderr stream to our log file stream */
  fplog = freopen(argv[1], "a", stderr);
  if (!fplog)
        FATAL("freopen stderr on %s failed\n", argv[1]);
[...]

In the  preceding code, note how we have quite easily and
effectively redirected stdout and stderr to the file argv[1]. In the following, we
continue with a slight but required deviation - the popen(3) API.

The powerful popen API
Okay, now we want to log a message. Just performing a simple printf(3) will do
the trick – it will get appended to the log file! However, we would also like to prefix a
human-readable date-timestamp to all our log messages; we want a colon
: delimited log format like this: program-name:date-timestamp:app-
message...

There are several ways to obtain the timestamp; an interesting and powerful way is to
actually use a pipe mechanism—the popen(3) library API. While we do not attempt to
delve into the gory details here, the essential working is as follows:

#include <stdio.h>
FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

popen(3) is very powerful; it allows you to perform two things. Either you can run
any command that writes to stdout and gain access to its output, or run any
command that reads from stdin and gain access to its input.

How, exactly? The first parameter to popen(3) is any command you wish to run; the
second parameter type can be r or w:

r: Run the command command; the return value FILE * is a stream that,
when read, will supply the stdout output of the command process.
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w: Run the command command; the return value FILE * is a stream that,
when written to, will write to the stdin of the command process.

For example, to get the output of date into the application, we can use the following:
FILE * fp = popen("date", "r");

Now, reading from the stream, fp will get you the standard output (stdout) of
the date process! We exploit exactly this in our program. When done, one
must pclose(3) the stream opened via popen. (Many graphical applications
use popen(3) to fetch the output of a process (say, ps -ef) and display the same in a
scrollable/selectable window.)

(A link to both the popen man page as well as an article on systemd basics is
provided in the Further reading section on the GitHub repository.)

To continue with our simple redirct.c app code, use the following:

[...]
/* Get human-readable timestamp via the popen(3) */
  if (!(pfp = popen("date", "r")))
        FATAL("popen (date) failed\n");
  if (!fgets(dt, DTMAX, pfp)) {
        WARN("fgets (date) failed\n");
        strncpy(dt, "---", 4);
  }
  dt[strlen(dt)-1]='\0';     // rm terminating newline
  pclose(pfp);
[...]

A small detail to note: the fgets(3) API, as we understand, reads a single line
from the stream provided as its third parameter. It has a peculiarity that we must
handle—it appends the newline character into the output stream as well, and so we
must get rid of it (see the preceding code):

[...]
  /* 1. Write to stdout */
  printf("%s:%s:current seek position: %ld\n", argv[0], dt,
ftell(fplog));

  /* 2. Deliberately cause an error, thus writing to stderr */
  if (!(fp = fopen(junk, "r"))) {
        fprintf(stderr, "%s:%s:fopen on %s failed\n", argv[0], dt,
junk);
        perror(" fopen");
        fclose(fplog);



File I/O Essentials Chapter 1

[ 33 ]

        exit(EXIT_SUCCESS);
  }

  fclose(fp);
  fclose(fplog);
  exit(EXIT_SUCCESS);
}

Let's try it out; we will assume that, to begin with, the log file does not exist:

$ ./redirct log
$ ls -l log; cat log
-rw-rw-r--. 1 kai kai 160 Aug 7 08:59 log
./redirct:Tue Aug 7 08:59:31 IST 2018:fopen on abcxyz failed
 fopen: No such file or directory
./redirct:Tue Aug 7 08:59:31 IST 2018:current seek position: 0
$ ./redirct log
$ ls -l log; cat log
-rw-rw-r--. 1 kai kai 322 Aug 7 09:00 log
./redirct:Tue Aug 7 08:59:31 IST 2018:fopen on abcxyz failed
 fopen: No such file or directory
./redirct:Tue Aug 7 08:59:31 IST 2018:current seek position: 0
./redirct:Tue Aug 7 09:00:02 IST 2018:fopen on abcxyz failed
 fopen: No such file or directory
./redirct:Tue Aug 7 09:00:02 IST 2018:current seek position: 160
$

We run the preceding code twice; as you can see, the output from the second run has
been appended (recall that we used a as the mode argument to freopen) to the first
run's output.

Also, did you notice that although our app first wrote to stdout and subsequently
to stderr, the output seems to be reversed! Why? That—and modifying the
preceding program to have the printf(3) output appear first in the expected
order—is left as an exercise to you, dear reader!
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Security note: popen(3) is powerful, but can be easily abused.
Imagine an app that asks the user for a command and executes it via
popen(3) (with the r parameter) so that it can now display the
output to the user graphically (or otherwise). This sounds good, but
it is very dangerous –  what if the end user supplies a not-so-
innocent command (rm -rf *)? Whoops. The moral, of course,
is: do not trust user input; validate it.
(More in a similar vein will be covered in Chapter
19, Troubleshooting and Best Practices.)
Also note that, popen(3), while powerful, is considered a high-
overhead API – it internally creates a pipe object, forks, and
execs (well, on modern Linux, it uses clone(2)).

Regular file I/O with the read and write
system calls
Until now in this chapter, we have dealt exclusively with file I/O using the higher
abstraction layer APIs from the C library (the stdio set). Now, we will go below the
hood and learn how to use the APIs invoked by the abstraction layer: the system
calls that perform file-based operations, including read/write (I/O). Now, we leave
behind the stream abstraction, and work at the lower system layer.

Open at the system call layer
As usual, in order to work upon a file, one must first open it; the system call API to 
open a file is called—surprise, surprise!—open(2). Its signature is as follows:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

The preceding two signatures imply that one can call open(2) with either two or
three parameters; in other words, the third parameter is optional. Let's check them
out in order: the first parameter is obvious – the pathname to the file we would like to
open (and subsequently perform I/O upon).
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The pathname could refer to something other than a regular file
(device files and named pipes (FIFOs) being fairly common
examples). This serves to remind us of what we learned in Chapter
1, Linux System Architecture—"On Unix, if it's not a process, it's a
file"!

Flags to the open system call
The second parameter is flags; it's an integer bitmask that communicates quite a lot of
detail to the underlying kernel regarding the open semantics and subsequent
operation upon the file. Broadly speaking, there are three types of flags: access mode
flags, file creation flags, and file status flags. File creation flags affect the open
semantics, whereas file status flags affect the operations performed subsequently
upon the opened file.

Each type has several possible values; the programmer is allowed to specify zero or
more flags by bitwise-ORing them together. An exhaustive list of all possible flags (of
the three types mentioned previously) is not required here (if you need to know, or
are just curious, we refer you to the in-depth man page on open(2): https:/ /linux.
die.net/man/2/ open); instead, we will summarize the commonly used flags in the
following table:

Flag Type Flag Meaning

Access mode O_RDONLY Open the file in read-only mode.

O_WRONLY Open the file in write-only mode.

O_RDWR Open the file in read-write mode.

File creation O_CLOEXEC
Ensure that, upon a possible future execve (or variant), this file is
closed. This is important security-wise and in many multithreaded
apps (to prevent races).

https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open


File I/O Essentials Chapter 1

[ 36 ]

(Note that all
flag values
not shown
here can be
found
in man 2
open)

O_CREAT

If pathname does not exist, create it (as a regular file); the file's
owner and group ID is predicated on the effective user (EUID) and
effective group (EGID) ID of the creating process (or
thread). (Also, if the set group id bit on the parent directory is set,
then the group id of the newly created file would be set to that of
the parent directory.)
You must specify the mode as well (see the section entitled The file
mode for details).

O_DIRECTORY

Unless pathname refers to a directory, open(2) will fail (with errno
<- ENOTDIR; though the man page specifies a bug here—if
O_CREAT is specified as well and pathname does not
exist, open will create a regular file).

O_EXCL
Useful to perform an exclusive open; if pathname does not exist
and O_CREAT is specified, create the file; if the file already exists,
fail open(2) with errno set to EEXIST.

O_TMPFILE

Creates an unnamed (thus effectively
invisible!) temporary file in the directory specified
by pathname. If pathname includes a filename, the file is
visible and its content remains; if not, the file content is
automatically lost when the file is (fully) closed. This is a
useful semantic for temporary files. (Available from
Linux 3.11 onward, and requires kernel-level filesystem
support.) You must specify the mode as well (see the
section entitled The file mode for details).

O_TRUNC For an existing and writable regular file, specifying this flag will
have it truncated to zero bytes; careful.
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File status O_APPEND

Open the file in append mode; this implies that on every write to it,
the seek operation to the (current) EOF and the
subsequent write will be performed atomically (a caveat: this leads
to a race on NFS filesystems which do not support appending to a
file).

(Note that all
flag values
not shown
here can be
found
in man 2
open)

O_DIRECT

Bypass the kernel page cache and perform I/O directly to lower
kernel layers. It's a (possibly) performance-enhancing feature, but
applications have to use it with caution (more on this in a later
chapter).

O_NONBLOCK
or O_NDELAY

When specified, both the open as well as subsequent operations
upon the file (such as reading or writing) will not cause the calling
process (or thread) to wait: it will be non-blocking. (However, this
behavior is actually not guaranteed – the underlying
implementation does cause at least some brief waiting.) This is
useful for an underlying driver to recognize the semantics required
by user space when the device supports non-blocking IO semantics

O_SYNC
This ensures that writes to the underlying storage device will be
done prior to returning; in other words, it's equivalent to the
pseudocode: [write(); fsync(fd);].
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The file mode
The third parameter to open(2), the mode, is required only when a file is being
created, that is, when the flags (second parameter) include either the O_CREAT or the
O_TMPFILE flags. If neither of these flags is being employed, just don't specify
the mode; if you do, it's silently ignored.

The mode specifies the permission bitmask of the file being created (the naming
convention is that mode implies permissions; think of the utility/syscall to change
permissions— chmod  that's change mode).

What if the O_CREAT flag is specified, but no mode is? Well, let's follow
the empirical principle and try it out (A_fileio/mode_def.c):

[...]
int main(int argc, char **argv)
{
  int fd;
  if (argc != 2) {
    fprintf(stderr, "Usage: %s new-file-pathname\n", argv[0]);
    exit(EXIT_FAILURE);
  }

#if 1
  fd = open(argv[1], O_CREAT|O_RDONLY);
#endif
  if (fd < 0)
    FATAL("open on %s failed\n", argv[1]);

  printf("Current seek position: %ld\n", lseek(fd, 0, SEEK_CUR));
  close(fd);
  exit(EXIT_SUCCESS);
}

A quick sidenote.

Sometimes, in the heat of coding, tiny (silly) mistakes can lead the (newbie) developer
down the proverbial garden path, that is, astray. For example, with the previous code,
we attempt to build it; this is the compiler's output (the following screenshot was
taken on an Ubuntu 18.04 LTS desktop Linux system):
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Quite confusing, right? Look carefully, though—there are several clues: the warning
line warning: implicit declaration of function ‘open’; did you mean ‘popen’? [-
Wimplicit-function-declaration] is really all we need here. The implicit declaration of
function is the giveaway – the compiler requires the prototype of every C function to
be present in the source code; it cannot find it for the open(2) function. Why not?
Because it's in one of the header files for open(2), which we have failed to #include!
(In fact, it's really the same situation with the next warning regarding O_RDONLY.) So,
just look up the man page for open(2); it will clearly indicate all required headers:
include them and the warnings will disappear.

Okay, so now we will fix the headers issue:

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "../common.h"
[...]

(The headers highlighted in bold in the preceding code were the missing ones.)
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On our Fedora 28 box, this code compiles just fine. On our Ubuntu 18.04 test system,
however, we get an interesting output:

$ make mode_def
gcc -O2 -Wall -UDEBUG -c mode_def.c -o mode_def.o
In file included from /usr/include/fcntl.h:290:0,
 from mode_def.c:22:
In function ‘open’,
 inlined from ‘main’ at mode_def.c:34:5:
/usr/include/x86_64-linux-gnu/bits/fcntl2.h:50:4: error: call to
‘__open_missing_mode’ declared with attribute error: open with O_CREAT
or O_TMPFILE in second argument needs 3 arguments
 __open_missing_mode ();
 ^~~~~~~~~~~~~~~~~~~~~~
Makefile:113: recipe for target 'mode_def.o' failed
make: *** [mode_def.o] Error 1
$

Cool, the Ubuntu compiler has found a bug! (Modern compilers are getting better and
better at this.) As we are using the O_CREAT flag, we require the mode argument to be
passed. Running without any fix (on our Fedora box) yields weird and random values
for the file mode (the permission bitmask):

$ ./mode_def
Usage: ./mode_def new-file-pathname
$ ./mode_def a1; ls -l a1
Current seek position: 0
-rw---S--T. 1 kai kai 0 Aug 2 17:55 a1
$ ./mode_def a2; ls -l a2
Current seek position: 0
-rwS-w---T. 1 kai kai 0 Aug 2 17:55 a2
$

Here's the fix; include the third argument to open(2), that is, the mode. Also,
resetting the default file permission bitmask value to zero – via the umask(2) system
call – is recommended (the umask(2) system call (along with the pause(2)), is
another peculiar case where it always returns success):

[...]
#if 0                               // the buggy way
    fd = open(argv[1], O_CREAT|O_RDONLY);
#else                               // the right way
    umask(0);   // reset the permission bitmask
    fd = open(argv[1], O_CREAT,
S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH);
#endif
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We will now perform a trial run:

$ ./mode_def a1; ls -l a1
Current seek position: 0
-rw-rw-r--. 1 kai kai 0 Aug 2 18:02 a1
$ ./mode_def a2; ls -l a2
Current seek position: 0
-rw-rw-r--. 1 kai kai 0 Aug 2 18:02 a2
$ ./mode_def a2
Current seek position: 0
$

All is well!

Yes, but what does
the mode argument, S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH, mean? That's
the symbolic notation to specify the file mode. It's easy; take the first
symbol, S_IRUSR: it sets the Read bit for the user access category (we know that in
the Unix permission model there are three access categories—three parts to the
mode—user, group, others). In general, S_I[R|W|X][USR|GRP|OTH] is the syntactic
form. As a convenience, we have S_IRWXU implying RWX set for the user (this mode
in octal representation will be 0700). Generically, it's S_IRWX[U|G|O].

The file descriptor
The return value from  open(2) is a non-negative integer on success, and, as usual for
system calls on Linux, -1 on failure (along with errno being set appropriately to
indicate the cause of failure).

The integer returned upon success (value >= 0) is called the file descriptor. We think
of it as a handle to the open file. The file descriptor values are per-process and not
system-wide values (every process will have its own set of file descriptors). For
example, process A might have five files open, with file descriptors numbered from 0
to 4. Process B might have seven open files with file descriptors from 0 to 6, and so on.

In reality, the file descriptor is nothing but an index into a kernel data structure that,
in the classic Unix terminology, is called the open file descriptor table
(OFDT)—essentially, it's an array of pointers to open files for a given process
(maintained by the OS as part of the process metadata).
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In fact, the file descriptors are nothing really new to us; we are familiar with
the standard streams— stdin, stdout, and stderr (right from Chapter 1, Linux System
Architecture). We understand that these streams represent the default input, output,
and error files—by default, they point to the devices – keyboard, monitor, and
respectively. So, guess what? A stream is a higher-level (library layer) abstraction of
the open file, as maintained by the OS; its equivalent at the system call layer is the file
descriptor. Hence, for every process alive, three open files are minimally inherited
from its parent, which are as follows:

stdin; represented by file descriptor 0; use the macro STDIN_FILENO
stdout; represented by file descriptor 1; use the macro STDOUT_FILENO
stdin; represented by file descriptor 2; use the macro STDERR_FILENO

Every open sets up a unique OFDT entry within the OS and returns the index to it to
the user space process—the file descriptor. We know that a process will have three
files open the moment it comes alive; the file descriptors will be 0, 1, and 2. So, the
next open will yield the lowest available file descriptor slot in the process OFDT; 3, in
this case. Verify this in the mode_def program.

Every file-related system call besides open(2) will require (typically, as the first
parameter) the file descriptor to be passed to it.

Mapping streams to descriptors and vice versa
Since streams are the higher-level abstractions of files, it makes sense that at the lower
system level, the FILE * pointer, will translate to a file descriptor. This is exactly the
case; in fact, given a file stream pointer, one can obtain its corresponding file
descriptor! This is easily achieved via the fileno(3) API:

int fileno(FILE *stream);

The reverse semantic—given a file descriptor, associate a corresponding stream
pointer with it – can be obtained via the fdopen(3) API: FILE *fdopen(int fd,
const char *mode);

(Please refer the fdopen(3) on man page for more details)

dprintf(3) is another interesting example; it's identical to printf(3), except that it
writes into a given file descriptor (well, so does printf(3) – it's just that it always
writes to the file descriptor representing stdout—STDOUT_FILENO value 1):

int dprintf(int fd, const char *format, ...);
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A word of caution: the preceding APIs give you a feeling that
intermixing stream and low-level (system call) I/O is easy to do; it is,
but, problems are often encountered. The recommendation is to
always avoid mixing stream (library layer) and descriptor-level
(system call) I/Os.

It's important to realize – once again – that file descriptors are returned and used by
several other APIs—the signalfd, select, [e]poll, mmap, pipe, socket-based
APIs—devices (often via the ioctl system call), and several other POSIX IPC
technologies (message queues, shared memory, and semaphores). This, of course, is
because (as we learned in Chapter 1, Linux System Architecture) in the Unix paradigm,
files are the universal model by which (much of) the world is represented.

I/O – the read/write system calls
The actual transfer of data—from and to a file (or any object abstracted as a file)—is
achieved via I/O – the read(2) and write(2) system calls. To perform the I/O, we
require the file to be open; in other words, we require a file descriptor—ultimately a
handle to the underlying open file object. We obtain the file descriptor to the file by
performing open(2) on it (or indirectly, perhaps via the fileno(3) API).

The read(2) and write(2) system call signatures are as follows:

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

The read(2) and write(2) system calls are quite similar; the first parameter to both – fd
– is the file descriptor, identifying, in effect, which file the OS (the underlying
filesystem or device driver) will operate upon.

The second parameter is a pointer to the memory buffer: in the case of read(2), it's a
pointer to the destination buffer, buf—the place in user space memory where data
from the file will be placed. In the case of write(2), it's a pointer to the user space
memory source buffer—the buffer whose data content will be written to the file. (In
early versions, the pointers were of type char *; now, its type is a generic void
* pointer, allowing any data type (including binary data) to be read or written.)
Notice how, in write(2), the buffer buf is marked as const—it is the programmer's job
to treat this buffer as read-only and just transfer its content to the file without
modifying it in any manner.
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The third parameter to both APIs is the number of bytes to be read or written (note its
data type, size_t; obviously, this is a typedef within the C library, which boils down
to an unsigned long integer value). 

Read and write – the return value
First, note the return data type—it's once again a typedef – it's a ssize_t; checking it
will reveal that this is nothing but a signed long integer value.

The return value of both the read(2) and write(2) system calls is very important:

On failure, -1 is returned and errno is set appropriately; we once again
emphasize—it's a key lesson—always check for the failure case!
On success, the return value is the number of bytes of data actually read or
written.
There exists a special case for read(2): zero being returned implies that we
have hit EOF; the programmer is expected to check for this. (It's also
possible that the programmer deliberately asks read(2) to read 0 bytes for
us; this is a valid operation, used for detecting errors; the man page on
read(2) describes all possible errors that might occur.)

The first and third cases are straightforward; it's actually the second case that has us
quite often create defects (bugs); we shall explain this in detail shortly in the Correctly
using the read/write APIs section.

Code example – a simple copy program
To give the reader a feel for these important I/O APIs, we will construct and try out a
very simplistic program whose job is to copy one file to another – in other words, a 
very simplistic copy (cp) program of our very own. Let's call it simpcp1—simple copy
ver 1.

Here's how it should work:

simpcp1 <source-file> <destination-file> [1 for verbose-mode]
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To keep the code easily readable and to just focus on getting across some key points
within the domain of regular file I/O, we will deliberately make a number of
simplifying assumptions:

Both the source and destination files are regular files (not directories,
device files, pipes, sockets, symbolic links, and so on)
No fancy options—no copy to directory, recursive copying, following
symbolic links, and so on
If a destination file exists, just overwrite it
No signal handling
No performance optimizations (well, a little bit)

In A_fileio/simpcp1.c: main(), we set up argument processing, the file opens (or
creation), invoke the actual worker routine (docopy()), close the files, and exit:

int main(int argc, char **argv)
{
  int fdr, fdw, ret=0;
  if (argc < 3) {
    fprintf(stderr, "Usage: %s source-file destination-file"
                    " [1 for verbose-mode]\n",
                argv[0]);
    exit(EXIT_FAILURE);
  }
  if (argc == 4 && (!strcmp(argv[3], "1")))
    gVerbose = 1;

  /* Open source as read-only */
  fdr = open(argv[1], O_RDONLY);
  if (fdr < 0)
    FATAL("open on source file \"%s\" failed, aborting.\n", argv[1]);

  /* Create / overwrite destination as write-only for append;
mode=0644 */
  fdw = open(argv[2], O_CREAT|O_WRONLY,
      S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH);
  if (fdw < 0)
    FATAL("open on destination file \"%s\" failed, aborting.\n",
argv[2]);

  if ((ret = docopy(argv[1], fdr, fdw)) < 0) {
    close(fdr);
    close(fdw);
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    FATAL("docopy() failed: (stat=%d)\n", ret);
  }
  if (gVerbose == 1)
    printf("\n");
  close(fdr);
  close(fdw);
  [...]

The preceding comments make this code self-explanatory. docopy() is where the real
action happens; this will be shown in the code that follows. Our strategy is that we
will read from the source file into a local (heap) buffer and write that buffer's content
into the destination file, in an infinite loop: the stopping condition is when
the read returns 0, implying EOF.

That's fine, but how large should we make the local heap buffer? Ah, that's a good
question, as performance will be impacted: use too small a buffer (say, a few bytes in
size), and you will have to loop too many times, where issuing too many system calls
will slow things down. (A quick example: say the source file is 128,000 bytes in size
and we use a heap buffer of size 128 bytes; it will work, but we will have to perform
read/write in a loop 128,000/128 = 1,000 times!) On the other hand, trying to allocate
too large a buffer (say, a gigabyte in size) is unrealistic on tiny 32-bit embedded Linux
boxes, but might actually be just fine on a server class system. So, how do you decide
what to do? A tip: the inode of every (regular) file contains a hint—a member
called st_blksize, which is specified as the block size for filesystem I/O. This is
usually considered to be a good enough optimization – we will use this value. In fact,
it's typically a page (4,096 bytes). Much more on IO performance optimization will
follow in a later chapter.

To query the inode details of the source file, we issue the useful stat(2) system call
(also, recall that our VPRINT macro will only actually output a message when the
gVerbose global has the value 1; we control this via the third parameter – the default
being 0):

static int docopy(char *src, int fd_src, int fd_dest)
{
  char *buf=NULL;
  struct stat sb;
  size_t n=0;
  ssize_t nr=0, nw=0;
  int loop=1;

  memset(&sb, 0, sizeof(struct stat));
  if (stat(src, &sb) < 0) {
    WARN("stat on %s failed\n", src);
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    return -1;
  }
  VPRINT("%s: size=%ld Block size for filesystem I/O = %ld bytes\n",
      src, sb.st_size, sb.st_blksize);
  n = sb.st_blksize; /* 'Optimal' block size for filesystem I/O */

  buf = malloc(sb.st_blksize);
  if (!buf) {
    WARN("malloc (%ld) failed!\n", sb.st_blksize);
    return -2;
  }
  VPRINT("Expected # loop iterations: %ld [+1 for rem %ld bytes]\n\n",
      sb.st_size/n, sb.st_size%n);

Thus, we know how many times we will have to loop around—see the last line of the
preceding code. Now, we come to the key part of this function—the loop that
performs the actual I/O:

  while (1) {
    nr = read(fd_src, buf, n);
    VPRINT("%06d: read %9ld ", loop, nr);
    if (nr < 0) {
      WARN("read on src failed\n");
      free(buf);
      return -3;
    } else if (nr == 0)
      break;

    nw = write(fd_dest, buf, nr);
    VPRINT("wrote %9ld\n", nw);
    if (nw < 0) {
      WARN("write on dest failed\n");
      free(buf);
      return -4;
    }
    loop ++;
  }
  free(buf);
  return 0;
}

To run it, we write a simple wrapper script, A_fileio/test_simpcp.sh. Here it is:

#!/bin/bash
name=$(basename $0)
SRC=srcfile
DEST=destfile
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[ $# -ne 2 ] && {
  echo "Usage: ${name} PUT(program-under-test) src-filesize-KB
 Eg. ${name} ./simpcp2 21"
  exit 1
}

PUT=$1
[ ! -f ${PUT} ] && {
  echo "${name}: program-under-test \"${PUT}\" not built or missing?"
  exit 1
}
SRC_SIZE_BLK_KB=$2        # srcfile size will be this many kilobytes
rm -f ${SRC} ${DEST}

# Create the source file
dd if=/dev/urandom of=${SRC} bs=1k count=${SRC_SIZE_BLK_KB}
2>/dev/null

echo "${PUT} ${SRC} ${DEST} 1"
${PUT} ${SRC} ${DEST} 1

echo
ls -l ${SRC} ${DEST}
echo "Diff-ing them now ..."
diff ${SRC} ${DEST}
echo "Done."
exit 0

Let's run it (in verbose mode by passing the third parameter to simpcp1 as 1), asking
for a source file (and thus destination file) of 23 KB in size:

$ ./test_simpcp.sh
Usage: test_simpcp.sh PUT(program-under-test) src-filesize-KB
 Eg. test_simpcp.sh ./simpcp2 21
$ ./test_simpcp.sh ./simpcp1 23
./simpcp1 srcfile destfile 1
 simpcp1.c:docopy:51: srcfile: size=23552 Block size for filesystem
I/O = 4096 bytes
 simpcp1.c:docopy:61: Expected # loop iterations: 5 [+1 for rem 3072
bytes]

simpcp1.c:docopy:65: 000001: read 4096 simpcp1.c:docopy:74: wrote 4096
simpcp1.c:docopy:65: 000002: read 4096 simpcp1.c:docopy:74: wrote 4096
simpcp1.c:docopy:65: 000003: read 4096 simpcp1.c:docopy:74: wrote 4096
simpcp1.c:docopy:65: 000004: read 4096 simpcp1.c:docopy:74: wrote 4096
simpcp1.c:docopy:65: 000005: read 4096 simpcp1.c:docopy:74: wrote 4096
simpcp1.c:docopy:65: 000006: read 3072 simpcp1.c:docopy:74: wrote 3072
simpcp1.c:docopy:65: 000007: read 0
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-rw-r--r--. 1 kai kai 23552 Aug 6 19:01 destfile
-rw-rw-r--. 1 kai kai 23552 Aug 6 19:01 srcfile
Diff-ing them now ...
Done.
$

(To prove that it worked, the preceding script even does a quick diff of the source and
destination files; no output from diff implies that the files are identical.) We encourage
the reader to build and try it out, tweaking the script parameters (size, verbosity, and
so on).

Did you notice? The mode of the destination file is different from that of the source
file (it's hard-coded to 0664 octal); we will improve this—and another key
concern—in a second version! Read on.

Correctly using the read/write APIs
As we have already learned, the read and write system calls are, under the hood, the 
underlying routines that perform actual I/O on a file (of course, again, realize that a
file on Unix/Linux can mean many things!). For the reader's convenience, we will
once again show the signature of these key I/O routines:

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

So, it seems quite intuitive that if we issue a read of count, let's say, 16,000 bytes on an
open file, it will occur, and by the time the system call returns the destination
buffer, buf will now contain the requested 16,000 bytes from the underlying file. But
no! This may not necessarily be the case. You see, as is often the case, we make too
many assumptions – here, we have quite happily assumed that if we request some n
bytes from a file (via the OS), exactly n bytes will be read and returned to us by the
calling process. This may not be the case; why? Think about it:

One, what if the file size is less than the requested amount (or the program
has already read a good part of the file and only a small portion remains to
be read in)? Then only the data for that (remaining) size will be read and
returned in the user space buffer.
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Two, and even more important to understand, the POSIX standard
does not guarantee that IO (reads and writes) via system calls are
necessarily atomic. In other words, it's entirely possible that when we
request, say, 16,000 bytes to be read from a file, read(2) goes through
but returns the value 12,288, indicating that only 12,288 bytes of the 16,000
requested have actually been read. This situation can also occur when
reading from a pipe (IPC object) when less than the amount requested for
resides in the pipe, or when the read (or write) system calls are interrupted
by a signal (Signaling is covered in depth in later Chapter 11, Signaling -
Part I, and Chapter 12, Signaling - Part II, in this book).

The key point here in terms of code is this: do not assume that the amount requested
to be read or written is actually the amount read or written; rather, write the code in a
loop that checks the actual I/O performed and continues in the loop until all
requested data has actually been read or written.

One implementation of the code to do this is shown in the following code—our
routines fd_read and fd_write perform the I/O operations just described:

int fd_read(int fd, void *dbuf, size_t n)
{
  ssize_t rd=0;
  size_t tr=0;

  do {
    rd = read(fd, dbuf, n);
    if (rd < 0)
      return -1;
    if (rd == 0)
      break;
    tr += rd;
#ifdef DEBUG
    printf(" requested=%9lu, actualrd=%9zu, totalrd=%9zu\n", n, rd,
tr);
#endif
  } while (tr < n);
  return tr;
}

int fd_write(int fd, void *sbuf, size_t n)
{
  ssize_t wr=0;
  size_t tw=0;

  do {
    wr = write(fd, sbuf, n);
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    if (wr < 0)
      return -1;
    tw += wr;
#ifdef DEBUG
    printf(" requested=%9zu, actualwr=%9zu, totalwr=%9lu\n", n, wr,
tw);
#endif
  } while (tw < n);
  return tw;
}

Great, but we must test it. Here, we will make a copy of our previous program,
A_fileio/simpcp1.c, and call it A_fileio/simpcp2.c: the key difference is that
in our next version, in the infinite loop of our docopy() function, we invoke the
superior I/O processing routines described previously
(fd_read() and fd_write()):

[...]
  while (1) {
    nr = fd_read(fd_src, buf, n);
    VPRINT("%06d: read %9ld ", loop, nr);
    if (nr < 0) {
      WARN("read on src failed\n");
      free(buf);
      return -3;
    } else if (nr == 0)
      break;

    nw = fd_write(fd_dest, buf, nr);
    VPRINT("wrote %9ld\n", nw);
    if (nw < 0) {
      WARN("write on dest failed\n");
      free(buf);
      return -4;
    }
    loop ++;
  }
[...]

There's another small detail to take care of: let's ensure that the mode of the
destination file matches that of the source file:

[...]
/* Make the destination file mode match the source file's */
  if (stat(argv[1], &sb) < 0)
      FATAL("stat on %s failed\n", argv[1]);
  VPRINT("%s mode=%o (octal)\n", argv[1], sb.st_mode & ACCESSPERMS);
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  /* Create / overwrite destination as write-only for append;
   * mode=<srcfile's> */
  fdw = open(argv[2], O_CREAT|O_WRONLY, sb.st_mode & ACCESSPERMS);
[...]

A quick test run via the convenience script gives us the following:

$ ./test_simpcp.sh ./simpcp2_dbg 5
./simpcp2_dbg srcfile destfile 1
simpcp2.c:main:151: srcfile mode=664 (octal)
simpcp2.c:docopy:93: srcfile: size=5120 Block size for filesystem I/O
= 4096 bytes
simpcp2.c:docopy:103: Expected # loop iterations: 1 [+1 for rem 1024
bytes]

 requested= 4096, actualrd= 4096, totalrd= 4096
simpcp2.c:docopy:107: 000001: read 4096 requested= 4096, actualwr=
4096, totalwr= 4096
simpcp2.c:docopy:116: wrote 4096
 requested= 4096, actualrd= 1024, totalrd= 1024
simpcp2.c:docopy:107: 000002: read 1024 requested= 1024, actualwr=
1024, totalwr= 1024
simpcp2.c:docopy:116: wrote 1024
simpcp2.c:docopy:107: 000003: read 0

-rw-rw-r--. 1 kai kai 5120 Aug 7 06:22 destfile
-rw-rw-r--. 1 kai kai 5120 Aug 7 06:22 srcfile
Diff-ing them now ...
Done.
$

There, it's done.

Non-blocking writes and synchronization
At first glance, it seems obvious and intuitive that, once the write(2) call returns
success, the actual write to the underlying storage device has thus been successfully
carried out. However, the fact is that this is by default—not the case! In other words,
writing to a file is actually an asynchronous or non-blocking activity; the reality is that
data written via an application to the OS via system calls (at least temporarily) resides
inside another cache within the OS called the page cache (see the following diagram
for more details). Of course, the underlying kernel and drivers will ensure that the
cached data ultimately gets to persistent storage, but it's important to understand that
this is not immediate; it's not synchronous:
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Figure 3: More detail—app to stdio I/O buffer to kernel page cache

Recall from our discussion on I/O buffering earlier that the third type – Raw (or
unbuffered) I/O – had a cache size of zero bytes. Now, we understand that this is
merely from the abstracted user space viewpoint; from the OS viewpoint, there is a
cache – the page cache. The reality is that every single piece of file I/O passes through
the page cache. (Okay, there are exceptions and explicit ways to sidestep this cache,
but let's postpone this discussion until Chapter 18, Advanced File I/O.)
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Synchronous writes
What if the developer would like to ensure that a write is synchronous? Recall the
O_SYNC flag for open(2) – that's one way. But hang on, don't rush into it; you must
realize that asynchronous writes are the default for a very good reason: performance.

Nevertheless, to guarantee that a write is actually (more or less immediately) flushed
to the underlying persistent storage device, we have some useful utilities and system
calls available to us—sync(1), sync(2), and syncfs(2).

The sync(1) utility (no parameters) flushes all cached data to the underlying persistent
storage device(s); it's actually just a wrapper over the sync(2) system call: #include
<unistd.h>

void sync(void);

Thinking on this, the astute reader will realize that, it will work, but what about
performance? Yes, indeed, performance takes a blow when cached data is
continually synced. Why? Recall that the whole point of a cache is that the speed of
the cache memory is much faster than the speed of the underlying memory it is
ultimately destined to go to; think about the case where the caches are in the CPU and
the destination is RAM, and similarly, our case here: the cache is RAM and the
destination is a persistent storage device! So, using a cache greatly helps
performance. 

However, what if the developer must ensure that a certain file's contents are
synchronized with the underlying storage device? Luckily, there is a fairly efficient
way to do so – the fsync system call:

#include <unistd.h>
int fsync(int fd);

The key point is that we pass, as a parameter, the file descriptor to the particular file
whose content we want synchronized (flushed); the OS will thus flush only that file's
data to storage, not the entire system's cached data. This will provide better
performance.

The syncfs(2) system call performs a similar function:

int syncfs(int fd);
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One might well ask: what if I am using library APIs to perform I/O (say, fwrite(3))?
In that case, I will have a stream (FILE *fp) and not a file descriptor; how can I
use fsync(2)? Easy: recall the fileno(3) API – given a stream pointer, it returns
the corresponding file descriptor:

int fileno(FILE *stream);

Thus, one could code in this fashion (pseudocode):

FILE *fp;
fp = fopen(...);
...
fwrite(..., fp);
fflush(fp);
fsync(fileno(fp));

A call to fflush(fp) in between fwrite(3) and fsync(2) can be
very handy, otherwise you may synchronize the kernel data on the
underlying file descriptor but still lose the user space data held by
glibc.

Reminder: check for the failure case: fileno(3) returns -1 on
failure.

Summary
In this chapter, we covered several important concepts regarding file I/O (on regular
files). We approached this topic at two abstraction layers—one, the C library and
the stdio streams model, and two, at the deeper system call layer. 

In both, the reader has seen not just the APIs and mechanics of performing IO, but
also learned key concepts such as I/O buffering (and flushing), stream redirection,
correct usage of the powerful read and write system calls, and so on. Understanding
the various layers that are gone through – right from the application buffer to the
intermediate C library stdio I/O buffers to the OS-level page cache-has been
emphasized. 

Mixing I/O at these two levels is discouraged; it has been a known cause of issues.
Trying out and working on code is, as usual, highly encouraged.
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We leave more advanced materials, especially I/O performance enhancement, to
Chapter 18, Advanced File I/O. Getting a firm grasp on the details of this chapter is
recommended before moving on to subsequent ones.
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