Adversarial training techniques
Adversarial training involves exposing the model to adversarial examples during the training process to improve its robustness. Here’s a simplified example of how you might implement adversarial training for an LLM:
import torch def adversarial_train_step(model, inputs, labels, epsilon=0.1): embeds = model.get_input_embeddings()(inputs["input_ids"]) embeds.requires_grad = True outputs = model(inputs, inputs_embeds=embeds) loss = torch.nn.functional.cross_entropy(outputs.logits, labels) loss.backward() perturb = epsilon * embeds.grad.detach().sign() adv_embeds = embeds + perturb adv_outputs = model(inputs_embeds=adv_embeds) adv_loss = torch.nn.functional.cross_entropy( adv_outputs...