
Knowledge Data Management utilization with LangChain and Python

Page 1 of 10 fast.fujitsu.com

Knowledge

Data Management

Utilization with
LangChain and Python

Knowledge Data Management utilization with LangChain and Python

Page 2 of 10 fast.fujitsu.com

Introduction
In the Retrieval-Augmented Generation (RAG) approach, the database

that stores external knowledge plays a crucial role.

can be utilized as a knowledge base for RAG

because it offers vector search through the pgvector extension and graph

database feature via Apache AGE. In AI application development, Python

frameworks are used, one of which is LangChain.

This document explains the following:

 How to handle vector data from Python applications using LangChain

 How to handle graph data from Python applications using LangChain

 How to protect objects created by LangChain

 How to handle vector data automatically generated by

Knowledge Data Management utilization with LangChain and Python

Page 3 of 10 fast.fujitsu.com

Table of contents
1 Setup .. 4

1.1. Database setup ... 4
1.2. Application setup ... 4
1.3. Setting up the embedding model .. 4

2 How to handle vector data..5

2.1. How to connect to Fujitsu Enterprise Postgres using PGVector 5
2.2. How to protect vector data created by LangChain 5

3 How to handle graph data ... 6

3.1. How to connect to Fujitsu Enterprise Postgres using AgeGraph 6
3.2. How to protect graph data created by LangChain 6
3.3. How to connect to Fujitsu Enterprise Postgres using psycopg3

and SQLAlchemy .. 8

4 Combination method with automatic vectorization 9

System requirements .. 9

Knowledge Data Management utilization with LangChain and Python

Page 4 of 10 fast.fujitsu.com

1. Setup

1.1. Database setup

You must set up PGVector to handle vector data, Apache AGE to handle graph data.

For setup instructions, refer to the Installation and Setup Guide for Server .

For setup instructions when using in combination with semantic text search and automatic

vectorization, refer to the Knowledge Data Management User’s Guide .

1.2. Application setup

To connect to Fujitsu Enterprise Postgres from a Python application, use psycopg3.

For setup instructions of psycopg3, refer to the Application Development Guide .

For details on installation of the necessary packages for connecting to PGVector and Apache AGE

with LangChain, refer to the LangChain documentation .

Refer to the following links for PGVector and Apache AGE, respectively.

 LangChain PGVector: https://python.langchain.com/docs/integrations/vectorstores/pgvector/

 LangChain Apache AGE: https://python.langchain.com/docs/integrations/graphs/apache_age/

1.3. Setting up the embedding model

Set up the embedding model necessary to convert text data into vector data. In this document, we will explain
using the embedding model provided by Ollama.

Embedding providers are providers that offer embedding models. For setup instructions, follow
the manual provided by your chosen embedding provider.

https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Installation%20Setup%20Guide%20for%20Server_Linux/index.html
https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Knowledge%20Data%20Management%20User%20Guide_Windows_Linux/index.html
https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Application%20Development%20Guide_Windows_Linux/index.html
https://python.langchain.com/docs/introduction/
https://python.langchain.com/docs/integrations/vectorstores/pgvector/
https://python.langchain.com/docs/integrations/graphs/apache_age/

Knowledge Data Management utilization with LangChain and Python

Page 5 of 10 fast.fujitsu.com

2. How to handle vector data

2.1. How to connect to Fujitsu Enterprise Postgres using PGVector

PGVector is an interface provided by LangChain to handle the pgvector extension of PostgreSQL. Basically, it is the

same as how to connect to OSS PostgreSQL from LangChain. When using the Fujitsu Enterprise Postgres client,
port 27500 will be used by default, unlike OSS PostgreSQL.

from langchain_ollama import OllamaEmbeddings
from langchain_core.documents import Document
from langchain_postgres import PGVector
from langchain_postgres.vectorstores import PGVector

Initialize the Ollama embedding model
embeddings = OllamaEmbeddings(model="llama3")

Fujitsu Enterprise Postgres (FEP) connection information (change as necessary)
connection = "postgresql+psycopg://username:password@localhost:27500/rag_database"
collection_name = "my_docs"

Create vector store using PGVector
vector_store = PGVector(
 embeddings=embeddings,
 collection_name=collection_name,
 connection=connection,
 use_jsonb=True,

)

When connecting to Fujitsu Enterprise Postgres using PGVector in LangChain

For setup instructions of psycopg3, refer to the Application Development Guide .

For details on how to store vectors and perform vector similarity searches on vector stores

created using PGVector, refer to the LangChain documentation .

2.2. How to protect vector data created by LangChain

By creating a database in an encrypted tablespace and connecting to that database with LangChain, you can easily

encrypt objects created by LangChain.

For details on how to encrypt, refer to the Operation Guide > Protecting Stored Data Using

Transparent Data Encryption .

When setting access permissions using the Confidentiality Management, limit access permissions to the database

connected to LangChain to the application developer and the person with application execution permissions.

If you want to set encryption or permissions individually, you can do so by setting them individually in the database
object created by PGVector. When you use PGVector, it creates two tables in the public schema of the database

connected to LangChain: langchain_pg_collection (list of vector stores in the database) and

langchain_pg_embedding (stores all data in all vector stores). These tables can be encrypted using Fujitsu

Enterprise Postgres Transparent Data Encryption. They can also be targeted by security features such as audit logs
and Confidentiality Management.

https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Application%20Development%20Guide_Windows_Linux/index.html
https://python.langchain.com/docs/introduction/
https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Operation%20Guide_Linux/j2985-00-05-00-00.html
https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Operation%20Guide_Linux/j2985-00-05-00-00.html

Knowledge Data Management utilization with LangChain and Python

Page 6 of 10 fast.fujitsu.com

3. How to handle graph data

3.1. How to connect to Fujitsu Enterprise Postgres using AgeGraph

AgeGraph is an interface provided by LangChain to handle the pgvector extension of PostgreSQL. Basically, it is

the same as how to connect to OSS PostgreSQL from LangChain. When using the Fujitsu Enterprise Postgres
client, port 27500 will be used by default, unlike OSS PostgreSQL.

LangChain's AgeGraph uses the psycopg2 adapter to connect to Fujitsu Enterprise Postgres. psycopg2 is required

to store and search graph data using AgeGraph. Instead of psycopg2, the Fujitsu Enterprise Postgres client ships
with psycopg3 which can't be used when connecting with AgeGraph. To use AgeGraph, you must install psycopg2.

from langchain_community.graphs.age_graph import AGEGraph
from langchain_neo4j import GraphCypherQAChain
from langchain_openai import ChatOpenAI

Fujitsu Enterprise Postgres connection information (change as necessary)
conf = {
 "database": "rag_database",
 "user": "username",
 "password": "password",
 "host": "localhost",
 "port": 27500,

}

Create objects in Fujitsu Enterprise Postgres using AgeGraph
graph = AGEGraph(graph_name="age_test", conf=conf)

Connecting to Fujitsu Enterprise Postgres using AgeGraph in LangChain

The psycopg2 adapter refers to libpq. Therefore, when executing a program that uses AgeGraph to connect to

Fujitsu Enterprise Postgres, you must set the environment variable LD_LIBRARY_PATH so that it can refer to libpq

included with the Fujitsu Enterprise Postgres client.

For details on using libpq, refer to the Application Development Guide > C Library (libpq) .

For details on how to store and search graph data, refer to the LangChain documentation .

3.2. How to protect graph data created by LangChain

Create a database in an encrypted tablespace and connect it with LangChain to encrypt objects created by

LangChain.

For details on how to encrypt, refer to the Operation Guide > Protecting Stored Data Using

Transparent Data Encryption .

When setting access permissions using Confidentiality Management, limit access to the database connected by

LangChain to application developers and application execution authorities.

If you perform encryption and permission settings individually, apply settings individually to the database objects
created by AgeGraph. When using AgeGraph, a schema with the same name as the specified graph_name is

created on Fujitsu Enterprise Postgres. For example, you can verify objects created on the schema with the same
name as the specified graph_name by executing SQL like the following.

https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Application%20Development%20Guide_Windows_Linux/j2991-00-05-00-00.html
https://python.langchain.com/docs/introduction/
https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Operation%20Guide_Linux/j2985-00-05-00-00.html
https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Operation%20Guide_Linux/j2985-00-05-00-00.html

Knowledge Data Management utilization with LangChain and Python

Page 7 of 10 fast.fujitsu.com

SELECT
c.relname AS object_name,
CASE c.relkind
 WHEN 'r' THEN 'table'
 WHEN 'v' THEN 'view'
 WHEN 'm' THEN 'materialized view'
 WHEN 'S' THEN 'sequence'
 WHEN 'f' THEN 'foreign table'
 ELSE c.relkind

 END AS object_type
FROM pg_class c
JOIN pg_namespace n ON c.relnamespace = n.oid
WHERE n.nspname = 'age_test';

Searching for objects created by AgeGraph

These objects can be encrypted using the Fujitsu Enterprise Postgres Transparent Data Encryption. They can also
be subject to security features such as audit logs and Confidentiality Management.

Knowledge Data Management utilization with LangChain and Python

Page 8 of 10 fast.fujitsu.com

3.3. How to connect to Fujitsu Enterprise Postgres using psycopg3 and SQLAlchemy

By using psycopg3 and SQLAlchemy, you can store and search graph data without using AgeGraph in LangChain.

from sqlalchemy import create_engine, text

Fujitsu Enterprise Postgres connection information (change as necessary)
db_url = "postgresql+psycopg://username@localhost:27500/rag_database"

Create SQLAlchemy engine
engine = create_engine(db_url)

with engine.begin() as conn:
 # Set the search path to use functions within Age.
 conn.execute(text('SET search_path = ag_catalog, "$user", public;'))

 # Create a graph “social”
 conn.execute(text("SELECT create_graph('social');"))

 # Create a node: add Alice with the Person label.
 conn.execute(text("""

 SELECT * FROM cypher('social', $$
 CREATE (n:Person {name:'Alice'})
 RETURN n

 $$) AS (v agtype);
 """))

 # Create a node: add Bob with the Person label.
 conn.execute(text("""

 SELECT * FROM cypher('social', $$
 CREATE (n:Person {name:'Bob'})
 RETURN n

 $$) AS (v agtype);
 """))

 # Create an edge: add a KNOWS relationship from Alice to Bob
 conn.execute(text("""

 SELECT * FROM cypher('social', $$
 MATCH (a:Person {name:'Alice'}), (b:Person {name:'Bob'})
 CREATE (a)-[r:KNOWS]->(b)
 RETURN r

 $$) AS (v agtype);
 """))

 # Query Execution: Retrieve nodes with KNOWS relationship
 result = conn.execute(text("""

 SELECT * FROM cypher('social', $$
 MATCH (a:Person)-[r:KNOWS]->(b:Person)
 RETURN a, r, b

 $$) AS (a agtype, r agtype, b agtype);
 """))

 # Output results
 for row in result:

 print(row)

Connecting to Fujitsu Enterprise Postgres using psycopg3 and SQLAlchemy

Knowledge Data Management utilization with LangChain and Python

Page 9 of 10 fast.fujitsu.com

4. Combination method with automatic vectorization

By using automatic vectorization provided by Fujitsu Enterprise Postgres, you can reduce the cost of managing
vector data, as vector data is added, updated, and deleted in line with the addition, updating, and deletion of text
data.

With automatic vectorization, when text data is added, a worker process automatically generates vector data in the
background according to the predefined vectorization definition (vectorizer) and stores it in a table that contains
vector data corresponding to the table that contains text data (embedding table). When you define vectorization
for text data, a view that combines the vector data column with the table that contains the text data (embedding
view) is also created. To perform semantic text search using the vector data created by automatic vectorization, use

the Fujitsu Enterprise Postgres text semantic search, not the one provided by PGVector in LangChain.

The text semantic search allows you to perform semantic searches on embedding views. This is provided as a
function called pgx_similarity_search. In this case, you can use either psycopg3 or SQLAlchemy to connect to

Fujitsu Enterprise Postgres from a Python application that uses LangChain.

For details on the pgx_similarity_search function, refer to the Knowledge Data Management User
Guide > Semantic text search and automatic vectorization. .

from sqlalchemy import create_engine, text

Fujitsu Enterprise Postgres connection information (change as necessary)
db_url = "postgresql+psycopg://postgres@localhost:27500/rag_database"

Create SQLAlchemy engine
engine = create_engine(db_url)

Connect and execute SQL
with engine.connect() as connection:
 # Example of executing the text meaning search function (obtaining 5 chunks similar to the

text specified as an argument from the embedded view "sample_embeddings")
 result = connection.execute(text("SELECT * FROM

pgx_vectorizer.pgx_similarity_search('sample_embeddings'::regclass, 'text for search', 5)"))

 # Display the results one line at a time
 for row in result:

 print(row)

Using psycopg3 and SQLAlchemy to perform Fujitsu Enterprise Postgres text semantic searches

System requirements

The features in this document are available from Fujitsu Enterprise Postgres 17 SP1. To use

them with Fujitsu Enterprise Postgres 17, apply the emergency fix below according to OS:

 Red Hat® Enterprise Linux® 8: T017857LP-01 or later
 Red Hat® Enterprise Linux® 9: T017858LP-01 or later
 SUSE Linux Enterprise Server 15: T017859LP-01 or later

The procedures in this document have been verified in the following environment:

 CPU architecture: x86_64
OS: RHEL8.6

 Fujitsu Enterprise Postgres: 17 SP1 First Edition
 Python: v3.11.11
 LangChain: v0.3.20

https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Knowledge%20Data%20Management%20User%20Guide_Windows_Linux/j3007-00-03-00-00.html
https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Knowledge%20Data%20Management%20User%20Guide_Windows_Linux/j3007-00-03-00-00.html
https://fujitsu-postgres-docs-search.web.app/documentation/FEP_17SP1_AE/html/x86/Knowledge%20Data%20Management%20User%20Guide_Windows_Linux/j3007-00-03-00-00.html

Knowledge Data Management utilization with LangChain and Python

Page 10 of 10 fast.fujitsu.com

Copyright 2025 Fujitsu Limited. Fujitsu, the Fujitsu logo and Fujitsu brand names are trademarks or registered trademarks of Fujitsu
Limited in Japan and other countries. Other company, product and service names may be trademarks or registered trademarks of
their respective owners. All rights reserved. No part of this document may be reproduced, stored or transmitted in any form
without prior written permission of Fujitsu Australia Software Technology. Fujitsu Australia Software Technology endeavors to
ensure the information in this document is correct and fairly stated, but does not accept liability for any errors or omissions

Contact
Fujitsu Limited
Email: enterprisepostgresql@fujitsu.com
Website: fast.fujitsu.com

2025-03-24 WW EN Copyright 2025 Fujitsu Limited. Fujitsu, the Fujitsu logo and Fujitsu brand names are trademarks or registered trademarks of Fujitsu
Limited in Japan and other countries. Other company, product and service names may be trademarks or registered trademarks of
their respective owners. All rights reserved. No part of this document may be reproduced, stored or transmitted in any form
without prior written permission of Fujitsu Australia Software Technology. Fujitsu Australia Software Technology endeavors to
ensure the information in this document is correct and fairly stated, but does not accept liability for any errors or omissions

Contact
Fujitsu Limited
Email: enterprisepostgresql@fujitsu.com
Website: fast.fujitsu.com

2025-03-24 WW EN

Fujitsu Enterprise Postgres is the enhanced version of

PostgreSQL, for enterprises seeking a more robust, secure,

and fully supported edition for business-critical applications

https://fast.fujitsu.com/
https://fast.fujitsu.com/
https://fast.fujitsu.com/enhanced-security-for-enterprises
https://fast.fujitsu.com/enhanced-security-for-enterprises

	1. Setup
	1.1. Database setup
	1.2. Application setup
	1.3. Setting up the embedding model

	2. How to handle vector data
	2.1. How to connect to Fujitsu Enterprise Postgres using PGVector
	2.2. How to protect vector data created by LangChain

	3. How to handle graph data
	3.1. How to connect to Fujitsu Enterprise Postgres using AgeGraph
	3.2. How to protect graph data created by LangChain
	3.3. How to connect to Fujitsu Enterprise Postgres using psycopg3 and SQLAlchemy

	4. Combination method with automatic vectorization

