4
Most read
5
Most read
6
Most read
24/2/2013
CE 370 : Prof. Abdelhamid Charif 1
CE370
REINFORCED CONCRETE-I
Prof. Abdelhamid CHARIF
Flexural Behavior and
Analysis of RC Beams
Behavior stages in a RC beam
• A small transverse load placed on a simply supported RC beam is
gradually increased until beam failure.
• This loading causes positive bending moment (tension, and steel
in bottom) and shear force
• Perfect bond is assumed between steel bars and concrete
• The beam will go through three distinct stages before collapse
occurs. These are:
• The uncracked concrete stage
• The concrete cracked – elastic strength stage
• The ultimate – strength stage.
2
24/2/2013
CE 370 : Prof. Abdelhamid Charif 2
3
Simply supported beam under uniform load
4
Basic Assumptions in Flexure theory of RC Members
1. Plane sections before bending remain plane after bending.
This assumption has been experimentally verified for all normal
beams except deep beams (length to thickness ratio less than 3).
2. The strain in reinforcement equals to the strain in concrete at the
same level (perfect bond, no slip).
1 & 2 imply that strain in reinforcement and concrete is
directly proportional to the distance from N.A.
3. Tensile strength of concrete is neglected in flexural strength
calculations (after cracking).
4. Stresses in concrete and reinforcement are calculated from
strains using material stress-strain curves.
Other assumptions will be made at ultimate state
24/2/2013
CE 370 : Prof. Abdelhamid Charif 3
5
Recall Concrete Stress-Strain Curve
Compression: For a stress less or equal to 50% of fc’ ,
the curve is almost linear.
Tension: Strength very small and curve assumed linear.
6
Recall Steel Stress-Strain Curve
(Large plastic deformations after yielding)






ysy
ysss
s
f
E
f


when
when
gradesallfor
200000MPaEs 
24/2/2013
CE 370 : Prof. Abdelhamid Charif 4
Uncracked Concrete Stage
• At small loads when the tensile stresses are less than the
modulus of rupture, the entire cross section of the beam resists
bending.
• Standard bending theory can be used.
• Compression develops on top side and tension on bottom (for
positive moments.
7
• Neutral axis passes through
centroid
• Moment of inertia of gross
section is used
8
Uncracked Concrete Stage
Strains and stresses
24/2/2013
CE 370 : Prof. Abdelhamid Charif 5
Concrete-Cracked – Elastic Stage
• As load is increased, the modulus of rupture of the concrete is
exceeded, and cracks begin to develop in bottom of the beam.
• Cracking Moment: The moment at which tensile stress in the
bottom of the beam equals the modulus of rupture (i.e. when
cracks begin to form) is referred to as the cracking moment, Mcr
• As load is further increased, cracks quickly spread closer to the
neutral axis, which then begins to move upward.
• Note: The cracks occur at all places along the beam where the
actual moment is greater than the cracking moment.
9
Concrete-Cracked – Elastic Stage (contd.)
• As concrete in the cracked zone cannot resist tensile stresses –
the steel must do it. Perfect bond is still maintained.
• This stage will continue as long as the compression stress in the
top fibers is less than about one-half of the concrete compressive
strength fc’ and as long as steel stress is less than its yield stress
• In this stage the compressive stresses vary linearly with the
distance from the neutral axis (straight line).
10
ratioModular
with
:pointsameat thestrainsEqual



n
E
E
nnff
E
E
ff
E
f
E
f
c
s
cs
c
s
cs
s
s
c
c
sc 
24/2/2013
CE 370 : Prof. Abdelhamid Charif 6
• Service or Working Loads: Loads that actually occur when a
structure is in normal service use.
• Under working loads, moments develop which are considerably
larger than the cracking moments. Obviously the tensile side of
the beam will be cracked.
• Under working loads, concrete compression stress is less than
50% of its strength and linear stress-strain variation is assumed.
• Service loads and serviceability limit state correspond thus to
the cracked elastic stage
• To compute concrete and steel stresses in this range, the
transformed-area method is used.
11
Cracked – Elastic Stage and Service Loads
Beam Failure- Ultimate Strength Stage
• As load is increased further, compressive stresses are greater than
0.5fc’, cracks and neutral axis move further upward .
• Concrete compressive stresses begin to change appreciably from
linear to curved, and reinforcing bars yield.
12
24/2/2013
CE 370 : Prof. Abdelhamid Charif 7
Moment Curvature Diagram
• From the measured compressive strain in concrete and tensile
strain in steel, the relationship between the bending moment
and the curvature can be tracked up to failure.
13
dy
y
sc 







ntaanglessmallVery
NAfromdistancesomeatfiberbeamainstrain
curvatureorsectionbeamtheofchangeAngle


y
s
c
d

• Bending moments cause
curvatures (rotations).
• Curvature more objective
than deflection as
bending deformation.
14
Typical Moment Curvature Diagram
for a Reinforced Concrete Beam
There are three
different stages
in the curve :
OC – CY - YF
24/2/2013
CE 370 : Prof. Abdelhamid Charif 8
15
Moment Curvature Diagram
1. First stage is for moments less than the cracking moment Mcr .
The entire beam cross section is available to resist bending. The
relationship is quasi-linear.
2. When the moment is increased beyond Mcr, the slope of the
curve decreases as the cracked beam is not as stiff as in the
initial stage. The diagram will still follow a straight line from Mcr
to the point where steel is stressed to its yield point.
15
3. After steel yields, the beam has
very little additional moment
capacity, and only a small
additional load is required to
substantially increase rotations
and deflections. The slope of the
diagram is now almost flat.
Bending stress in an Uncracked Beam
• Steel area is small (usually 2% or less), and its effect on beam
properties is negligible as long as the beam is uncracked
• The bending stress in such a beam can be obtained based on
the gross properties of the beam’s cross section.
• The neutral axis coincides with the centroid
• The stress in the concrete at a distance y from the neutral axis
of the cross section can be determined from the following
flexure formula:
16
section.crossgrosstheofinertiaofMoment
sectiontheofmomentBending



g
cr
g
I
MM
I
My
f
24/2/2013
CE 370 : Prof. Abdelhamid Charif 9
Cracking Moment
17
section.crosstheofinertiaofmomentGross
momentBending



g
g
I
M
I
My
f
t
gr
cr
g
tcr
r
cr
t
y
If
M
I
yM
f
fff
yy



:Thus
9.5.2.3)sectionSBC/(ACI0.7ruptureofModulus
fibertensionextremetoaxiscentroidalfromdistance
Substitute
'
Example 1: Uncracked section
• Assuming concrete is uncracked, compute bending stresses in
extreme fibers of the section below for a bending moment of
34 kN.m. fc’ = 30 MPa.
• To check that the section is uncracked, first determine the
cracking moment of the section.
18
375
450
300
283
All dimensions in mm
24/2/2013
CE 370 : Prof. Abdelhamid Charif 10
19
Solution of Example 1
uncrackedissectionthekN.m,34.0At
kN.m8.38
N.mm108.38
225
1028.283.3
:)(MomentCracking
mm1028.2450300
12
1
12
1
MPa83.3307.07.0
:ruptureofModulus
6
9
4933
'







M
M
y
If
M
M
bhI
ff
cr
t
gr
cr
cr
g
cr
19
375
450
300
283
Solution of Example 1 (continued)
20
uncracked.wellissectionThe
MPa83.3307.07.0ruptureofModulus
MPa35.3
1028.2
225)1034(
225
2
:fibersextremetwoAt the
mm1028.2450300
12
1
12
1
:StressesBending
'
9
6
4933









r
cr
g
g
g
ff
ff
I
My
f
mm
h
y
bhI
I
My
f
An uncracked beam is assumed to be homogeneous with neutral
axis passing through the centroid of the beam section.
Bending stress is given by the standard flexural equation.
375
450
300
283
24/2/2013
CE 370 : Prof. Abdelhamid Charif 11
Calculation of elastics stresses
in cracked sections
• When bending moment is sufficiently large to cause tensile stress
in the extreme fibers , greater than the modulus of rupture, it is
assumed that all of the concrete on the tensile side of the beam is
cracked and must be neglected in the flexure calculations.
• Cracking of the beam does not necessarily mean that the beam is
going to fail. The reinforcing bars on the tension side begin to pick
up the tension caused by the applied moment.
• Assumption of perfect bond is made between reinforcing bars
and concrete. Thus the strain in the concrete and in the steel will
be the same at equal distances from the neutral axis.
• Although the strains in the two materials at a particular point are
the same, their stresses can not be the same as they have
different values of elastic modulus.
21
Modular Ratio (n)
22
steelofthattimesbewillconcreterequiredofArea
required?bewilltwotheofareaswhatconcreteorsteelbyresistedbetoisforceIf
with
nnAA
n
A
A
A
F
n
A
F
nff
F
E
E
nnfff
E
E
f
E
f
E
f
sc
s
c
cs
cs
c
s
csc
c
s
s
s
s
c
c
sc


 
Definition: The ratio of the steel modulus to the concrete modulus
is called the modular ratio.
If the modular ratio for a beam is 10, stress in steel will be 10 times
the stress in concrete at the same distance from the neutral axis.
Otherwise: when n = 10, 500 mm2 of steel will carry the same total
force as 5000 mm2 of concrete.
At the same point, steel and concrete strains are equal and the
stresses are proportional to their modulus of elasticity.
24/2/2013
CE 370 : Prof. Abdelhamid Charif 12
Transformed Area Method
• When the steel area As is replaced with an equivalent area of
fictitious concrete (nAs), which supposedly can resist tension,
the area is referred to as the transformed area.
• As the transformed area is of concrete only, it can be analyzed
by the usual methods for elastic homogeneous beams.
23
Tensile concrete is
ignored
Tensile steel area As
replaced by equivalent
concrete area nAs
N.A.
cf
sA
n
fs
snA
Steps in transformed area method
1. Locate the neutral axis:
– Assume it is located a distance x from the compression
surface of the beam.
– Equate the first moment of the compression area of the beam
cross section about the neutral axis to the first moment of
the tensile area about the neutral axis.
– Solve the resulting quadratic equation.
2. Calculate the moment of inertia of the transformed section
wit respect to the neutral axis.
3. Compute the stresses in the concrete and the steel with the
flexure formula ( f = My/I ).
24
24/2/2013
CE 370 : Prof. Abdelhamid Charif 13
Example 2: Transformed Area Method
• (a) Calculate the bending stresses in the beam shown below
using the transformed area method
• fc’ = 20 MPa, n = 9 and M = 95 kN.m
• (b) Determine the allowable resisting moment of the beam, if
the allowable stresses are : fac = 10 MPa and fas = 140 MPa
25
425
500
300
283
All dimensions in mm
26
Solution:
425
500
300
)1846(
283


sA
All dimensions in mm
300
425
x
)425( x
2
mm16614snA
49
2323
2
22
22
mm10571.1
168.5)(425(16614)168.5300
3
1
)(425)(168.5300
3
1
:axis)neutral(aboutInertiaofMoment
mm5.168issolutionPositive
84.44778.200559470734)76.110(
04707376.1100706095016614150
166147060950150)425(16614150)425(
2
)(300
:)isfibertopfromdepthaxis(neutralaxisneutralaboutmomentsfirstTaking











I
xnAI
x
xxxx
xxxxxnA
x
x
x
s
s
24/2/2013
CE 370 : Prof. Abdelhamid Charif 14
27
MPa6.139
10571.1
5.256)1095(
9
:mm)256.5168.5-425(levelSteel
MPa2.10
10571.1
5.168)1095(
:mm)168.5(ncompressioExtreme
:StressesBending
9
6
9
6
















I
My
nf
I
My
n
f
fy
I
My
fy
I
My
f
s
s
c
c
kN.m2.95N.mm102.95
5.2569
10571.1140)/(
mm256.5168.5-425:levelsteelAt the
:steelintensionallowabletoingcorrespondmomentAllowable
kN.m2.93N.mm102.93
5.168
10571.110
:concreteinncompressioallowabletoingcorrespondmomentAllowable
:momentresistingAllowable(b)
6
9
6
9









ny
If
y
Inf
M
y
y
If
M
y
If
M
I
yM
f
asas
as
ac
ac
allowable
allowable
allowable
allowable
Solution – Cont.
28
Concrete and steel will reach their permissible stresses at these
moments respectively.
Discussion:
Concrete and steel will not reach their maximum allowable stresses
at exactly the same bending moments.
The resisting moment of the section is 93.2 kNm (the smallest)
because if that value is exceeded, concrete becomes overstressed
even though the steel stress is less than its allowable stress.
kN.m2.95
kN.m2.93
:momentsresistingAllowable


as
ac
M
M
Solution – Cont.
24/2/2013
CE 370 : Prof. Abdelhamid Charif 15
2929
d
h
b
sA
b
h
x
)( xd 
snA
I
xdM
nfxdy
I
Mx
fxy
xnA
bx
Ix
xnAdnA
bx
xdnA
bx
xdnA
x
x
x
s
c
s
ssss
)(
:)(stresstensionSteel
:)(stressncompressioconcreteTop
)(d)(
3
:NA)(aboutinertiaofMomentforSolve
0
2
)(
2
)(
2
)(b
:)isfibertopfromdepthaxis(neutralaxisneutralaboutmomentsFirst
2
3
22










Steps for a General Rectangular Section
Ultimate State and Nominal Flexural Moment
• After concrete compression stresses exceed about 50%
of fc’, they no longer vary linearly. The variation is
rather nonlinear as shown in Figure (b)
30
d
yf
b
sA
c
(a) Beam
(b) Actual compression
stress variation
Neutral axis depth
is now noted c
24/2/2013
CE 370 : Prof. Abdelhamid Charif 16
31
The ultimate flexural moment capacity is called “Nominal”
moment and is noted Mn. It is derived using this assumption:
The curved compression diagram can be replaced by a
rectangular one with a constant stress of 0.85 fc’ (Whitney).
The Whitney rectangular stress block of depth “a” is assumed to
have the same area and same centre of gravity as the curved
diagram (generating the same force and the same moment).
d
yf
b
sA
c ca 1
abfC c
'
85.0
'
85.0 cf
(a) Beam
(b) Actual block of
compression stress
(c) Whitney block of
compression stress
ys fAT 
Ultimate State and Nominal Flexural Moment
32
Apart from the previous standard assumptions (sections remain
plane after bending, perfect bond between concrete and steel bars,
concrete tensile strength ignored), two other assumptions are added
in the ultimate stage:
• Concrete is assumed to fail (crush) when its compressive strain
at the extreme fiber reaches its ultimate value εcu = 0.003
• The nonlinear compressive stress block for concrete is replaced
by an equivalent rectangular one with constant stress of 0.85 fc’
and a depth a = 1 c
Additional assumptions at ultimate state
 





MPafforf
MPaffor
cc
c
3065.0,008.009.1Max
3085.0
1
1 shall not be smaller than 0.65
24/2/2013
CE 370 : Prof. Abdelhamid Charif 17
33
Factor 1 to account for skewed shape
of compression stress block
Question: Why does 1 vary (reduced for fc’ > 30 MPa) ?
 





MPafforf
MPaffor
cc
c
3065.0,008.009.1Max
3085.0
1
34
Variation of coefficient 1
Observe skewed shape of compression
stress-strain curves for higher strength
The shapes of the stress-
strain curves for high
strength concrete are
skewed. This shifts the
centroid of the area
(below the curve) closer
to the origin, and thus
reduces the length of the
equivalent rectangle.
Thus 1 must be smaller
for high strength
concrete.
24/2/2013
CE 370 : Prof. Abdelhamid Charif 18
35
There are three types of flexural failure of a structural
member:
1. Steel reaches its yield strength before concrete reaches
its ultimate strain of 0.003 (Under-reinforced section)
2. Steel reaches yield limit at the same time as concrete
reaches its ultimate strain (Balanced section).
3. Concrete fails before the yield of steel, in the case of
presence of a high percentage of steel in the section
(Over-reinforced section).
Types of ultimate flexural failure
36
Steel reaches its yield strength before concrete reaches its ultimate
strain. Large deformations occur before concrete crushing. Failure
is ductile. After yielding, the steel tensile force remains constant.
To maintain an equal equilibrating concrete compression force, the
neutral axis is shifted up. Cracks will also progress upwards.
Under-reinforced section
24/2/2013
CE 370 : Prof. Abdelhamid Charif 19
37
Steel reaches its yield limit at the same time as concrete
reaches the ultimate strain. Failure is sudden and brittle
Balanced section
38
Concrete crushes before the yield of steel, due to the
presence of a high percentage of steel in the section.
Failure is very sudden and brittle
Over-reinforced section
24/2/2013
CE 370 : Prof. Abdelhamid Charif 20
39
Moment-Curvature for various steel areas
(Increasing steel area reduces ductility)
Types of flexural failure
• Brittle failures are very dangerous and must be
avoided.
• All codes of practice (ACI, SBC, …) require beams to
be designed as under-reinforced to ensure ductile
behavior.
• In fact SBC and ACI codes require more ductility than
just under reinforced.
40

More Related Content

PDF
Formulas for RCC.pdf
PDF
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
PDF
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
PDF
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
PPTX
Axially loaded columns
PDF
Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...
PDF
Yield line theory
PDF
Lec.4 working stress 2
Formulas for RCC.pdf
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Axially loaded columns
Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...
Yield line theory
Lec.4 working stress 2

What's hot (20)

PDF
Calulation of deflection and crack width according to is 456 2000
PPT
Design of slender columns as per IS 456-2000
PPTX
PDF
Analysis and Design of Reinforced Concrete Beams
PPTX
crack control and crack width estimation
PPTX
Bending stresses in beams
PPTX
CE72.52 - Lecture1 - Introduction
PPTX
CE 72.52 - Lecture 7 - Strut and Tie Models
PPTX
Building project rc column
PPT
Deep beams
PDF
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
PDF
Book for Beginners, RCC Design by ETABS
PPTX
Design of R.C.C Beam
PPT
Shear wall and its design guidelines
PDF
Tower design-Chapter 2-pile caps design
PPTX
CE 72.52 - Lecture 5 - Column Design
PPTX
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
PDF
Bolted connections
PPT
Strut and Tie Model for Pile Cap
PPTX
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
Calulation of deflection and crack width according to is 456 2000
Design of slender columns as per IS 456-2000
Analysis and Design of Reinforced Concrete Beams
crack control and crack width estimation
Bending stresses in beams
CE72.52 - Lecture1 - Introduction
CE 72.52 - Lecture 7 - Strut and Tie Models
Building project rc column
Deep beams
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Book for Beginners, RCC Design by ETABS
Design of R.C.C Beam
Shear wall and its design guidelines
Tower design-Chapter 2-pile caps design
CE 72.52 - Lecture 5 - Column Design
Part-I: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pro...
Bolted connections
Strut and Tie Model for Pile Cap
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
Ad

Similar to Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif) (20)

PDF
4-flexuralbehaviorofrcbeams-170818223637.pdf
PDF
2-Flexural Analysis and Design of Beams.pdf
PPTX
Flexural analysis and design of beams (PART 1).pptx
PPTX
Conceps of RCC-PCC.pptx
PDF
Reinforce Concrete Design I - By Dr. Iftekhar Anam
PPT
Lec 5-flexural analysis and design of beamns
PPTX
Module 1 Behaviour of RC beams in Shear and Torsion
PDF
Numerical investigations on recycled aggregate rc beams
PPTX
1-Singly Reinforced Sections - Beams - AUDIO.pptx
PPT
Lec 4-flexural analysis and design of beamns
PPT
PPT
Lec 4-flexural analysis and design of beamns
DOC
Chapter 1
PPT
PPT
Lec 5-flexural analysis and design of beamns
PDF
RCD-Lecture 6-4.pdf
PDF
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
PDF
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
PDF
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
4-flexuralbehaviorofrcbeams-170818223637.pdf
2-Flexural Analysis and Design of Beams.pdf
Flexural analysis and design of beams (PART 1).pptx
Conceps of RCC-PCC.pptx
Reinforce Concrete Design I - By Dr. Iftekhar Anam
Lec 5-flexural analysis and design of beamns
Module 1 Behaviour of RC beams in Shear and Torsion
Numerical investigations on recycled aggregate rc beams
1-Singly Reinforced Sections - Beams - AUDIO.pptx
Lec 4-flexural analysis and design of beamns
Lec 4-flexural analysis and design of beamns
Chapter 1
Lec 5-flexural analysis and design of beamns
RCD-Lecture 6-4.pdf
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
Ad

More from Hossam Shafiq II (20)

PDF
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
PDF
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
PDF
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
PDF
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
PDF
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
PDF
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
PDF
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
PDF
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
PDF
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
PDF
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
PDF
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
PDF
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
PDF
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
PDF
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
PDF
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
PDF
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
PDF
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
PDF
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
PDF
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
PDF
Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec01 Introduction to RC, Codes and Limit States (Reinforced Concrete Design ...

Recently uploaded (20)

PPTX
AI-Reporting for Emerging Technologies(BS Computer Engineering)
PDF
Principles of operation, construction, theory, advantages and disadvantages, ...
PPTX
Design ,Art Across Digital Realities and eXtended Reality
PDF
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
PDF
Research on ultrasonic sensor for TTU.pdf
PDF
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
PPTX
ARCHITECTURE AND PROGRAMMING OF EMBEDDED SYSTEMS
PPTX
BBOC407 BIOLOGY FOR ENGINEERS (CS) - MODULE 1 PART 1.pptx
PPTX
Module1.pptxrjkeieuekwkwoowkemehehehrjrjrj
PPTX
Software-Development-Life-Cycle-SDLC.pptx
PDF
Beginners-Guide-to-Artificial-Intelligence.pdf
PDF
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
PDF
Lesson 3 .pdf
DOCX
An investigation of the use of recycled crumb rubber as a partial replacement...
PDF
Cryptography and Network Security-Module-I.pdf
PDF
Artificial Intelligence_ Basics .Artificial Intelligence_ Basics .
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
Quality engineering part 1 for engineering undergraduates
PDF
Using Technology to Foster Innovative Teaching Practices (www.kiu.ac.ug)
PPTX
MAD Unit - 3 User Interface and Data Management (Diploma IT)
AI-Reporting for Emerging Technologies(BS Computer Engineering)
Principles of operation, construction, theory, advantages and disadvantages, ...
Design ,Art Across Digital Realities and eXtended Reality
AIGA 012_04 Cleaning of equipment for oxygen service_reformat Jan 12.pdf
Research on ultrasonic sensor for TTU.pdf
MACCAFERRY GUIA GAVIONES TERRAPLENES EN ESPAÑOL
ARCHITECTURE AND PROGRAMMING OF EMBEDDED SYSTEMS
BBOC407 BIOLOGY FOR ENGINEERS (CS) - MODULE 1 PART 1.pptx
Module1.pptxrjkeieuekwkwoowkemehehehrjrjrj
Software-Development-Life-Cycle-SDLC.pptx
Beginners-Guide-to-Artificial-Intelligence.pdf
VTU IOT LAB MANUAL (BCS701) Computer science and Engineering
Lesson 3 .pdf
An investigation of the use of recycled crumb rubber as a partial replacement...
Cryptography and Network Security-Module-I.pdf
Artificial Intelligence_ Basics .Artificial Intelligence_ Basics .
MLpara ingenieira CIVIL, meca Y AMBIENTAL
Quality engineering part 1 for engineering undergraduates
Using Technology to Foster Innovative Teaching Practices (www.kiu.ac.ug)
MAD Unit - 3 User Interface and Data Management (Diploma IT)

Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

  • 1. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 1 CE370 REINFORCED CONCRETE-I Prof. Abdelhamid CHARIF Flexural Behavior and Analysis of RC Beams Behavior stages in a RC beam • A small transverse load placed on a simply supported RC beam is gradually increased until beam failure. • This loading causes positive bending moment (tension, and steel in bottom) and shear force • Perfect bond is assumed between steel bars and concrete • The beam will go through three distinct stages before collapse occurs. These are: • The uncracked concrete stage • The concrete cracked – elastic strength stage • The ultimate – strength stage. 2
  • 2. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 2 3 Simply supported beam under uniform load 4 Basic Assumptions in Flexure theory of RC Members 1. Plane sections before bending remain plane after bending. This assumption has been experimentally verified for all normal beams except deep beams (length to thickness ratio less than 3). 2. The strain in reinforcement equals to the strain in concrete at the same level (perfect bond, no slip). 1 & 2 imply that strain in reinforcement and concrete is directly proportional to the distance from N.A. 3. Tensile strength of concrete is neglected in flexural strength calculations (after cracking). 4. Stresses in concrete and reinforcement are calculated from strains using material stress-strain curves. Other assumptions will be made at ultimate state
  • 3. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 3 5 Recall Concrete Stress-Strain Curve Compression: For a stress less or equal to 50% of fc’ , the curve is almost linear. Tension: Strength very small and curve assumed linear. 6 Recall Steel Stress-Strain Curve (Large plastic deformations after yielding)       ysy ysss s f E f   when when gradesallfor 200000MPaEs 
  • 4. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 4 Uncracked Concrete Stage • At small loads when the tensile stresses are less than the modulus of rupture, the entire cross section of the beam resists bending. • Standard bending theory can be used. • Compression develops on top side and tension on bottom (for positive moments. 7 • Neutral axis passes through centroid • Moment of inertia of gross section is used 8 Uncracked Concrete Stage Strains and stresses
  • 5. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 5 Concrete-Cracked – Elastic Stage • As load is increased, the modulus of rupture of the concrete is exceeded, and cracks begin to develop in bottom of the beam. • Cracking Moment: The moment at which tensile stress in the bottom of the beam equals the modulus of rupture (i.e. when cracks begin to form) is referred to as the cracking moment, Mcr • As load is further increased, cracks quickly spread closer to the neutral axis, which then begins to move upward. • Note: The cracks occur at all places along the beam where the actual moment is greater than the cracking moment. 9 Concrete-Cracked – Elastic Stage (contd.) • As concrete in the cracked zone cannot resist tensile stresses – the steel must do it. Perfect bond is still maintained. • This stage will continue as long as the compression stress in the top fibers is less than about one-half of the concrete compressive strength fc’ and as long as steel stress is less than its yield stress • In this stage the compressive stresses vary linearly with the distance from the neutral axis (straight line). 10 ratioModular with :pointsameat thestrainsEqual    n E E nnff E E ff E f E f c s cs c s cs s s c c sc 
  • 6. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 6 • Service or Working Loads: Loads that actually occur when a structure is in normal service use. • Under working loads, moments develop which are considerably larger than the cracking moments. Obviously the tensile side of the beam will be cracked. • Under working loads, concrete compression stress is less than 50% of its strength and linear stress-strain variation is assumed. • Service loads and serviceability limit state correspond thus to the cracked elastic stage • To compute concrete and steel stresses in this range, the transformed-area method is used. 11 Cracked – Elastic Stage and Service Loads Beam Failure- Ultimate Strength Stage • As load is increased further, compressive stresses are greater than 0.5fc’, cracks and neutral axis move further upward . • Concrete compressive stresses begin to change appreciably from linear to curved, and reinforcing bars yield. 12
  • 7. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 7 Moment Curvature Diagram • From the measured compressive strain in concrete and tensile strain in steel, the relationship between the bending moment and the curvature can be tracked up to failure. 13 dy y sc         ntaanglessmallVery NAfromdistancesomeatfiberbeamainstrain curvatureorsectionbeamtheofchangeAngle   y s c d  • Bending moments cause curvatures (rotations). • Curvature more objective than deflection as bending deformation. 14 Typical Moment Curvature Diagram for a Reinforced Concrete Beam There are three different stages in the curve : OC – CY - YF
  • 8. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 8 15 Moment Curvature Diagram 1. First stage is for moments less than the cracking moment Mcr . The entire beam cross section is available to resist bending. The relationship is quasi-linear. 2. When the moment is increased beyond Mcr, the slope of the curve decreases as the cracked beam is not as stiff as in the initial stage. The diagram will still follow a straight line from Mcr to the point where steel is stressed to its yield point. 15 3. After steel yields, the beam has very little additional moment capacity, and only a small additional load is required to substantially increase rotations and deflections. The slope of the diagram is now almost flat. Bending stress in an Uncracked Beam • Steel area is small (usually 2% or less), and its effect on beam properties is negligible as long as the beam is uncracked • The bending stress in such a beam can be obtained based on the gross properties of the beam’s cross section. • The neutral axis coincides with the centroid • The stress in the concrete at a distance y from the neutral axis of the cross section can be determined from the following flexure formula: 16 section.crossgrosstheofinertiaofMoment sectiontheofmomentBending    g cr g I MM I My f
  • 9. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 9 Cracking Moment 17 section.crosstheofinertiaofmomentGross momentBending    g g I M I My f t gr cr g tcr r cr t y If M I yM f fff yy    :Thus 9.5.2.3)sectionSBC/(ACI0.7ruptureofModulus fibertensionextremetoaxiscentroidalfromdistance Substitute ' Example 1: Uncracked section • Assuming concrete is uncracked, compute bending stresses in extreme fibers of the section below for a bending moment of 34 kN.m. fc’ = 30 MPa. • To check that the section is uncracked, first determine the cracking moment of the section. 18 375 450 300 283 All dimensions in mm
  • 10. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 10 19 Solution of Example 1 uncrackedissectionthekN.m,34.0At kN.m8.38 N.mm108.38 225 1028.283.3 :)(MomentCracking mm1028.2450300 12 1 12 1 MPa83.3307.07.0 :ruptureofModulus 6 9 4933 '        M M y If M M bhI ff cr t gr cr cr g cr 19 375 450 300 283 Solution of Example 1 (continued) 20 uncracked.wellissectionThe MPa83.3307.07.0ruptureofModulus MPa35.3 1028.2 225)1034( 225 2 :fibersextremetwoAt the mm1028.2450300 12 1 12 1 :StressesBending ' 9 6 4933          r cr g g g ff ff I My f mm h y bhI I My f An uncracked beam is assumed to be homogeneous with neutral axis passing through the centroid of the beam section. Bending stress is given by the standard flexural equation. 375 450 300 283
  • 11. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 11 Calculation of elastics stresses in cracked sections • When bending moment is sufficiently large to cause tensile stress in the extreme fibers , greater than the modulus of rupture, it is assumed that all of the concrete on the tensile side of the beam is cracked and must be neglected in the flexure calculations. • Cracking of the beam does not necessarily mean that the beam is going to fail. The reinforcing bars on the tension side begin to pick up the tension caused by the applied moment. • Assumption of perfect bond is made between reinforcing bars and concrete. Thus the strain in the concrete and in the steel will be the same at equal distances from the neutral axis. • Although the strains in the two materials at a particular point are the same, their stresses can not be the same as they have different values of elastic modulus. 21 Modular Ratio (n) 22 steelofthattimesbewillconcreterequiredofArea required?bewilltwotheofareaswhatconcreteorsteelbyresistedbetoisforceIf with nnAA n A A A F n A F nff F E E nnfff E E f E f E f sc s c cs cs c s csc c s s s s c c sc     Definition: The ratio of the steel modulus to the concrete modulus is called the modular ratio. If the modular ratio for a beam is 10, stress in steel will be 10 times the stress in concrete at the same distance from the neutral axis. Otherwise: when n = 10, 500 mm2 of steel will carry the same total force as 5000 mm2 of concrete. At the same point, steel and concrete strains are equal and the stresses are proportional to their modulus of elasticity.
  • 12. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 12 Transformed Area Method • When the steel area As is replaced with an equivalent area of fictitious concrete (nAs), which supposedly can resist tension, the area is referred to as the transformed area. • As the transformed area is of concrete only, it can be analyzed by the usual methods for elastic homogeneous beams. 23 Tensile concrete is ignored Tensile steel area As replaced by equivalent concrete area nAs N.A. cf sA n fs snA Steps in transformed area method 1. Locate the neutral axis: – Assume it is located a distance x from the compression surface of the beam. – Equate the first moment of the compression area of the beam cross section about the neutral axis to the first moment of the tensile area about the neutral axis. – Solve the resulting quadratic equation. 2. Calculate the moment of inertia of the transformed section wit respect to the neutral axis. 3. Compute the stresses in the concrete and the steel with the flexure formula ( f = My/I ). 24
  • 13. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 13 Example 2: Transformed Area Method • (a) Calculate the bending stresses in the beam shown below using the transformed area method • fc’ = 20 MPa, n = 9 and M = 95 kN.m • (b) Determine the allowable resisting moment of the beam, if the allowable stresses are : fac = 10 MPa and fas = 140 MPa 25 425 500 300 283 All dimensions in mm 26 Solution: 425 500 300 )1846( 283   sA All dimensions in mm 300 425 x )425( x 2 mm16614snA 49 2323 2 22 22 mm10571.1 168.5)(425(16614)168.5300 3 1 )(425)(168.5300 3 1 :axis)neutral(aboutInertiaofMoment mm5.168issolutionPositive 84.44778.200559470734)76.110( 04707376.1100706095016614150 166147060950150)425(16614150)425( 2 )(300 :)isfibertopfromdepthaxis(neutralaxisneutralaboutmomentsfirstTaking            I xnAI x xxxx xxxxxnA x x x s s
  • 14. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 14 27 MPa6.139 10571.1 5.256)1095( 9 :mm)256.5168.5-425(levelSteel MPa2.10 10571.1 5.168)1095( :mm)168.5(ncompressioExtreme :StressesBending 9 6 9 6                 I My nf I My n f fy I My fy I My f s s c c kN.m2.95N.mm102.95 5.2569 10571.1140)/( mm256.5168.5-425:levelsteelAt the :steelintensionallowabletoingcorrespondmomentAllowable kN.m2.93N.mm102.93 5.168 10571.110 :concreteinncompressioallowabletoingcorrespondmomentAllowable :momentresistingAllowable(b) 6 9 6 9          ny If y Inf M y y If M y If M I yM f asas as ac ac allowable allowable allowable allowable Solution – Cont. 28 Concrete and steel will reach their permissible stresses at these moments respectively. Discussion: Concrete and steel will not reach their maximum allowable stresses at exactly the same bending moments. The resisting moment of the section is 93.2 kNm (the smallest) because if that value is exceeded, concrete becomes overstressed even though the steel stress is less than its allowable stress. kN.m2.95 kN.m2.93 :momentsresistingAllowable   as ac M M Solution – Cont.
  • 15. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 15 2929 d h b sA b h x )( xd  snA I xdM nfxdy I Mx fxy xnA bx Ix xnAdnA bx xdnA bx xdnA x x x s c s ssss )( :)(stresstensionSteel :)(stressncompressioconcreteTop )(d)( 3 :NA)(aboutinertiaofMomentforSolve 0 2 )( 2 )( 2 )(b :)isfibertopfromdepthaxis(neutralaxisneutralaboutmomentsFirst 2 3 22           Steps for a General Rectangular Section Ultimate State and Nominal Flexural Moment • After concrete compression stresses exceed about 50% of fc’, they no longer vary linearly. The variation is rather nonlinear as shown in Figure (b) 30 d yf b sA c (a) Beam (b) Actual compression stress variation Neutral axis depth is now noted c
  • 16. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 16 31 The ultimate flexural moment capacity is called “Nominal” moment and is noted Mn. It is derived using this assumption: The curved compression diagram can be replaced by a rectangular one with a constant stress of 0.85 fc’ (Whitney). The Whitney rectangular stress block of depth “a” is assumed to have the same area and same centre of gravity as the curved diagram (generating the same force and the same moment). d yf b sA c ca 1 abfC c ' 85.0 ' 85.0 cf (a) Beam (b) Actual block of compression stress (c) Whitney block of compression stress ys fAT  Ultimate State and Nominal Flexural Moment 32 Apart from the previous standard assumptions (sections remain plane after bending, perfect bond between concrete and steel bars, concrete tensile strength ignored), two other assumptions are added in the ultimate stage: • Concrete is assumed to fail (crush) when its compressive strain at the extreme fiber reaches its ultimate value εcu = 0.003 • The nonlinear compressive stress block for concrete is replaced by an equivalent rectangular one with constant stress of 0.85 fc’ and a depth a = 1 c Additional assumptions at ultimate state        MPafforf MPaffor cc c 3065.0,008.009.1Max 3085.0 1 1 shall not be smaller than 0.65
  • 17. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 17 33 Factor 1 to account for skewed shape of compression stress block Question: Why does 1 vary (reduced for fc’ > 30 MPa) ?        MPafforf MPaffor cc c 3065.0,008.009.1Max 3085.0 1 34 Variation of coefficient 1 Observe skewed shape of compression stress-strain curves for higher strength The shapes of the stress- strain curves for high strength concrete are skewed. This shifts the centroid of the area (below the curve) closer to the origin, and thus reduces the length of the equivalent rectangle. Thus 1 must be smaller for high strength concrete.
  • 18. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 18 35 There are three types of flexural failure of a structural member: 1. Steel reaches its yield strength before concrete reaches its ultimate strain of 0.003 (Under-reinforced section) 2. Steel reaches yield limit at the same time as concrete reaches its ultimate strain (Balanced section). 3. Concrete fails before the yield of steel, in the case of presence of a high percentage of steel in the section (Over-reinforced section). Types of ultimate flexural failure 36 Steel reaches its yield strength before concrete reaches its ultimate strain. Large deformations occur before concrete crushing. Failure is ductile. After yielding, the steel tensile force remains constant. To maintain an equal equilibrating concrete compression force, the neutral axis is shifted up. Cracks will also progress upwards. Under-reinforced section
  • 19. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 19 37 Steel reaches its yield limit at the same time as concrete reaches the ultimate strain. Failure is sudden and brittle Balanced section 38 Concrete crushes before the yield of steel, due to the presence of a high percentage of steel in the section. Failure is very sudden and brittle Over-reinforced section
  • 20. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 20 39 Moment-Curvature for various steel areas (Increasing steel area reduces ductility) Types of flexural failure • Brittle failures are very dangerous and must be avoided. • All codes of practice (ACI, SBC, …) require beams to be designed as under-reinforced to ensure ductile behavior. • In fact SBC and ACI codes require more ductility than just under reinforced. 40