6LoWPAN
Martin Abraham
6LoWPAN
  IPv6 over Low Power Wireless Area Networks
  Level 2/3 Protocol (OSI)
  Enables usage of IPv6 by wireless embedded devices
  Described in IETF RFC 4919, 4944
Device characteristics
  Dedicated to specific task/ not general purpose like PC
Limited hardware resources:
  Low processing power
(microcontroller/ dsp)
  Little memory  Low power
Limited networks capabilities:
  Short range  Low bitrate  Message-Size
Usage scenarios
  Building automation
  Industrial automation
  Logistics
  Enviromental Monitoring
  Personal/ Health Monitoring
  Etc.
Personal Monitoring
Industrial Automation
Home Automation
Protocol history
  1980s: Cabled networking
- not everthing can be cabled - expensive
  Mid 1990s: ~ 20 proprietary solutions (Z-Wave)
- scalibility - no interoperability (vendor lock)
- bound to specific data-link layer
  2003+: ZigBee (IEEE 802.15.4 based)
+ first wireless standard
- scalability (small scale isolated ad hoc networking)
- bound to specific data-link layer - not long-lived (quick changes)
Why IPv6?
  Long-lived technology (20 years+)
  Ability to connect heterogeneous networks
  Existing worldwide free-to-use infrastructure
  Global scalability
  2^128 Bit (16 Byte) Addressing = Enough for Internet of Things
  Great number of tools (diagnostic, management etc.)
IPv6 Problems
  Bandwidth and Energy efficiency
Standard protocol: IEEE 802.15.4 L1/L2
(low bandwidth: 250 kbps, low power: 1mW)
  Fragmentation:
IPv6 minimum frame size (MTU) = 1280 bytes
IEEE 802.15.4 frame size (MTU) = 127 byte (higher bit error rate,
failure proneness)
  Header compression:
IPv6 headers (40 bytes) reduce payload
53 byte payload in 127 byte 802.15.4 frame
IPv6 Problems
  Mobility:
Node Mobility and Network Mobility
  Review of Transport Layer Protocols:
TCP inefficient for wireless embedded devices (wireless packet lost)
  Handle offline devices:
IP assumes devices are always on, but embedded devices may not
(power and duty cycles)
  Multicast support:
IEEE 802.15.4 & other radios do not support Multicast (expensive)
6LoWPAN
Fragmentation
  Datagram = Basic transfer unit (header, payload)
  3 fragmentation header
Fragmentation
  Datagram-size: 11bit = 2047 > 1280byte (mininmal IP MTU)
Transmitted in every fragment.
Destination can reserve memory on first arrival for the whole message
  Datagram-tag: 16 bit
Sufficient for limited link speed (min. 4 min for repeat)
  Datagram-offset: 8 bit
Offset addressed in 8byte units  2047bytes addressable by 8 bit
  Longer messages?
Fragmentation handled by standard ip fragmentation (L3)  awsome!
Header compression
Compress IPv6 headers
  HC1: IP header
  HC2: UDP header
  Reduce header size by omission
Omit headers that...
  can be reconstructed from L2 layer headers (redundant)
  contain information not needed or used in the context (unnessecary)
IPv6 header (6LoWPAN header)
HC1 – Compress IPv6 address
  IPv6 address: 64bit prefix | 64bit interface id
Remove IPv6 address-prefix:
  All nodes in a PAN share single prefix
  PAN ID maps to IPv6 prefix
Remove IPv6 Interface ID (IID) for local communication:
  IID generated from EUID64 (L2)
6LoWPAN Architecture
Mobility
  Micro-Mobility:
stay in same ip-domain
e.g. switch edge router inside extended 6LoWPAN network
  Node-Mobility:
Node moves physically between different 6LoWPAN networks
e.g. attached to a parcel
  Network-Mobility:
Full 6LoWPAN networks switches backhaul link
handled by edge router
Communication/ Bootstrapping
Handle offline devices:
  Node-initiated communication (to deal with sleep cycles etc.)
Bootstrapping/ Multicast/ device constraints:
  Roles: Router, Nodes, NEW: Edge Router (take load of devices)
  Node Registration/ Node Confirmation replaces Multicast
  Duplicate Address Detection done by Edge Router
Conclusion
6LoWPAN...
  is an open standard
  provides an adapter between IEEE 802.15.4 (L1/2) and IPv6 (L3)
  enables interoperability between wireless embedded devices (and
common Internet devices) using standard protocols
  fosters standardization of communication in scope of wireless embedded
devices
  provides an important foundation for the Internet of Things (IoT)

6lowpan introduction

  • 1.
  • 2.
    6LoWPAN   IPv6 overLow Power Wireless Area Networks   Level 2/3 Protocol (OSI)   Enables usage of IPv6 by wireless embedded devices   Described in IETF RFC 4919, 4944
  • 3.
    Device characteristics   Dedicatedto specific task/ not general purpose like PC Limited hardware resources:   Low processing power (microcontroller/ dsp)   Little memory  Low power Limited networks capabilities:   Short range  Low bitrate  Message-Size
  • 4.
    Usage scenarios   Buildingautomation   Industrial automation   Logistics   Enviromental Monitoring   Personal/ Health Monitoring   Etc.
  • 5.
  • 6.
  • 7.
  • 8.
    Protocol history   1980s:Cabled networking - not everthing can be cabled - expensive   Mid 1990s: ~ 20 proprietary solutions (Z-Wave) - scalibility - no interoperability (vendor lock) - bound to specific data-link layer   2003+: ZigBee (IEEE 802.15.4 based) + first wireless standard - scalability (small scale isolated ad hoc networking) - bound to specific data-link layer - not long-lived (quick changes)
  • 9.
    Why IPv6?   Long-livedtechnology (20 years+)   Ability to connect heterogeneous networks   Existing worldwide free-to-use infrastructure   Global scalability   2^128 Bit (16 Byte) Addressing = Enough for Internet of Things   Great number of tools (diagnostic, management etc.)
  • 10.
    IPv6 Problems   Bandwidthand Energy efficiency Standard protocol: IEEE 802.15.4 L1/L2 (low bandwidth: 250 kbps, low power: 1mW)   Fragmentation: IPv6 minimum frame size (MTU) = 1280 bytes IEEE 802.15.4 frame size (MTU) = 127 byte (higher bit error rate, failure proneness)   Header compression: IPv6 headers (40 bytes) reduce payload 53 byte payload in 127 byte 802.15.4 frame
  • 11.
    IPv6 Problems   Mobility: NodeMobility and Network Mobility   Review of Transport Layer Protocols: TCP inefficient for wireless embedded devices (wireless packet lost)   Handle offline devices: IP assumes devices are always on, but embedded devices may not (power and duty cycles)   Multicast support: IEEE 802.15.4 & other radios do not support Multicast (expensive)
  • 12.
  • 13.
    Fragmentation   Datagram =Basic transfer unit (header, payload)   3 fragmentation header
  • 14.
    Fragmentation   Datagram-size: 11bit= 2047 > 1280byte (mininmal IP MTU) Transmitted in every fragment. Destination can reserve memory on first arrival for the whole message   Datagram-tag: 16 bit Sufficient for limited link speed (min. 4 min for repeat)   Datagram-offset: 8 bit Offset addressed in 8byte units  2047bytes addressable by 8 bit   Longer messages? Fragmentation handled by standard ip fragmentation (L3)  awsome!
  • 16.
  • 17.
    Compress IPv6 headers  HC1: IP header   HC2: UDP header   Reduce header size by omission Omit headers that...   can be reconstructed from L2 layer headers (redundant)   contain information not needed or used in the context (unnessecary)
  • 18.
  • 19.
    HC1 – CompressIPv6 address   IPv6 address: 64bit prefix | 64bit interface id Remove IPv6 address-prefix:   All nodes in a PAN share single prefix   PAN ID maps to IPv6 prefix Remove IPv6 Interface ID (IID) for local communication:   IID generated from EUID64 (L2)
  • 20.
  • 21.
    Mobility   Micro-Mobility: stay insame ip-domain e.g. switch edge router inside extended 6LoWPAN network   Node-Mobility: Node moves physically between different 6LoWPAN networks e.g. attached to a parcel   Network-Mobility: Full 6LoWPAN networks switches backhaul link handled by edge router
  • 22.
    Communication/ Bootstrapping Handle offlinedevices:   Node-initiated communication (to deal with sleep cycles etc.) Bootstrapping/ Multicast/ device constraints:   Roles: Router, Nodes, NEW: Edge Router (take load of devices)   Node Registration/ Node Confirmation replaces Multicast   Duplicate Address Detection done by Edge Router
  • 23.
    Conclusion 6LoWPAN...   is anopen standard   provides an adapter between IEEE 802.15.4 (L1/2) and IPv6 (L3)   enables interoperability between wireless embedded devices (and common Internet devices) using standard protocols   fosters standardization of communication in scope of wireless embedded devices   provides an important foundation for the Internet of Things (IoT)