- MLlib has rapidly developed over the past 5 years, growing from a few algorithms to over 50 algorithms and featurizers for classification, regression, clustering, recommendation, and more.
- This growth has shifted from just adding algorithms to improving algorithms, infrastructure, and integrating ML workflows with Spark's broader capabilities like SQL, DataFrames, and streaming.
- Going forward, areas of focus include continued scalability improvements, enhancing core algorithms, extensible APIs, and making MLlib a more comprehensive standard library.
Related topics: