INTRODUCTORY MATHEMATICALINTRODUCTORY MATHEMATICAL
ANALYSISANALYSISFor Business, Economics, and the Life and Social Sciences
©2007 Pearson Education Asia
Chapter 12Chapter 12
Additional Differentiation TopicsAdditional Differentiation Topics
©2007 Pearson Education Asia
INTRODUCTORY MATHEMATICAL
ANALYSIS
0. Review of Algebra
1. Applications and More Algebra
2. Functions and Graphs
3. Lines, Parabolas, and Systems
4. Exponential and Logarithmic Functions
5. Mathematics of Finance
6. Matrix Algebra
7. Linear Programming
8. Introduction to Probability and Statistics
©2007 Pearson Education Asia
9. Additional Topics in Probability
10. Limits and Continuity
11. Differentiation
12. Additional Differentiation Topics
13. Curve Sketching
14. Integration
15. Methods and Applications of Integration
16. Continuous Random Variables
17. Multivariable Calculus
INTRODUCTORY MATHEMATICAL
ANALYSIS
©2007 Pearson Education Asia
• To develop a differentiation formula for y = ln u.
• To develop a differentiation formula for y = eu
.
• To give a mathematical analysis of the economic
concept of elasticity.
• To discuss the notion of a function defined implicitly.
• To show how to differentiate a function of the form uv
.
• To approximate real roots of an equation by using
calculus.
• To find higher-order derivatives both directly and
implicitly.
Chapter 12: Additional Differentiation Topics
Chapter ObjectivesChapter Objectives
©2007 Pearson Education Asia
Derivatives of Logarithmic Functions
Derivatives of Exponential Functions
Elasticity of Demand
Implicit Differentiation
Logarithmic Differentiation
Newton’s Method
Higher-Order Derivatives
12.1)
12.2)
12.3)
Chapter 12: Additional Differentiation Topics
Chapter OutlineChapter Outline
12.4)
12.5)
12.6)
12.7)
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.1 Derivatives of Logarithmic Functions12.1 Derivatives of Logarithmic Functions
• The derivatives of log functions are:
( ) 













+=
→
hx
h x
h
x
x
dx
d
/
0
1limln
1
lna.
( ) 0where
1
lnb. ≠= x
x
x
dx
d
( ) 0for
1
lnc. ≠⋅= u
dx
du
u
u
dx
d
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.1 Derivatives of Logarithmic Functions
Example 1 – Differentiating Functions Involving ln x
b. Differentiate .
Solution:
2
ln
x
x
y =
( ) ( ) ( )
( )
( )
0for
ln21
2)(ln
1
lnln
'
3
4
2
22
22
>
−
=
−





=
−
=
x
x
x
x
xx
x
x
x
x
dx
d
xx
dx
d
x
y
a. Differentiate f(x) = 5 ln x.
Solution: ( ) ( ) 0for
5
ln5' >== x
x
x
dx
d
xf
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.1 Derivatives of Logarithmic Functions
Example 3 – Rewriting Logarithmic Functions before Differentiating
a. Find dy/dx if .
Solution:
b. Find f’(p) if .
Solution:
( )3
52ln += xy
( ) 2/5for
52
6
2
52
1
3 −>
+
=





+
= x
xxdx
dy
( ) ( ) ( ) ( )
3
4
2
3
1
2
1
3
1
41
2
1
31
1
1
2'
+
+
+
+
+
=






+
+





+
+





+
=
ppp
ppp
pf
( ) ( ) ( ) ( )( )432
321ln +++= ppppf
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.1 Derivatives of Logarithmic Functions
Example 5 – Differentiating a Logarithmic Function to the Base 2
Differentiate y = log2x.
Solution:
Procedure to Differentiate logbu
• Convert logbu to and then differentiate.
b
u
ln
ln
( )
( )x
x
dx
d
x
dx
dy
2ln
1
2ln
ln
log2 =





=
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.2 Derivatives of Exponential Functions12.2 Derivatives of Exponential Functions
• The derivatives of exponential functions are:
( ) dx
du
ee
dx
d uu
=a.
( ) xx
ee
dx
d
=b.
( ) ( )
dx
du
bbb
dx
d uu
lnc. =
( )( ) ( )( ) ( )( ) 0'for
'
1
d. 1
1
1
≠= −
−
−
xff
xff
xf
dx
d
dy
dx
dx
dy 1
e. =
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.2 Derivatives of Exponential Functions
Example 1 – Differentiating Functions Involving ex
a.Find .
Solution:
b. If y = , find .
Solution:
c. Find y’ when .
Solution:
x
e
x
( ) x
xx
e
x
e
dx
d
xx
dx
d
e
dx
dy −
=+= −− 1
3ln2
++= x
eey
xx
eey =++= 00'
( )x
e
dx
d
3
( ) ( ) xxx
ee
dx
d
e
dx
d
333 ==
dx
dy
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.2 Derivatives of Exponential Functions
Example 3 – The Normal-Distribution Density Function
Determine the rate of change of y with respect to x
when x = μ + σ.
( ) ( ) ( )( )2
2
1 /
2
1 σµ
σ
−−
==
x
e
x
xfy
Solution: The rate of change is
( ) ( )( )
( )
e
e
dx
dy x
x
πσ
σσ
µσµ
πσ
σµ
σµ
2
1
1
2
2
1
2
1
2
/
2
2
1
−
=

















 −+
−=
−−
+=
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.2 Derivatives of Exponential Functions
Example 5 – Differentiating Different Forms
Example 7 – Differentiating Power Functions Again
Find .
Solution:
( )xe
xe
dx
d
22
++
( ) ( )
[ ]( )
x
ex
x
eexxe
dx
d
x
e
xexe
2
2ln2
2
1
2ln2
1
2ln12
+=






+=++
−
−
Prove d/dx(xa
) = axa−1
.
Solution: ( ) ( ) 11ln −−
=== aaxaa
axaxxe
dx
d
x
dx
d
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.3 Elasticity of Demand12.3 Elasticity of Demand
Example 1 – Finding Point Elasticity of Demand
• Point elasticity of demand η is
where p is price and q is quantity.
( )
dq
dp
q
p
q ==ηη
Determine the point elasticity of the demand equation
Solution: We have
0and0where >>= qk
q
k
p
1
2
2
−=== −
q
k
q
k
dq
dp
q
p
η
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.4 Implicit Differentiation12.4 Implicit Differentiation
Implicit Differentiation Procedure
1. Differentiate both sides.
2. Collect all dy/dx terms on one side and other
terms on the other side.
3. Factor dy/dx terms.
4. Solve for dy/dx.
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.4 Implicit Differentiation
Example 1 – Implicit Differentiation
Find dy/dx by implicit differentiation if .
Solution:
73
=−+ xyy
( ) ( )
2
2
3
31
1
013
7
ydx
dy
dx
dy
y
dx
dy
dx
d
xyy
dx
d
+
=
=−+
=−+
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.4 Implicit Differentiation
Example 3 – Implicit Differentiation
Find the slope of the curve at (1,2).
Solution:
( )223
xyx −=
( ) ( )[ ]
( )
( )
( ) 2
7
2
443
223
2,1
2
32
22
223
=
−
−+
=






−−=
−=
dx
dy
xy
xxyx
dx
dy
x
dx
dy
xy
dx
dy
x
xy
dx
d
x
dx
d
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.5 Logarithmic Differentiation12.5 Logarithmic Differentiation
Logarithmic Differentiation Procedure
1. Take the natural logarithm of both sides which
gives .
2. Simplify In (f(x))by using properties of logarithms.
3. Differentiate both sides with respect to x.
4. Solve for dy/dx.
5. Express the answer in terms of x only.
( )( )xfy lnln =
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.5 Logarithmic Differentiation
Example 1 – Logarithmic Differentiation
Find y’ if .
Solution:
( )
4 22
3
1
52
+
−
=
xx
x
y
( )
( )
( ) ( )x
x
xx
xxxy
xx
x
y
2
1
1
4
1
ln252ln3
1ln52lnln
1
52
lnln
2
4 223
4 22
3






+
−−−=
+−−−=
+
−
=
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.5 Logarithmic Differentiation
Example 1 – Logarithmic Differentiation






+
−−
−+
−
=
+
−−
−
=
+
−−
−
=
)1(
2
52
6
1
)52(
'
)1(2
2
52
6
)2)(
1
1
(
4
1
)
1
(2)2)(
52
1
(3
'
24 22
3
2
2
xx
x
xxxx
x
y
x
x
xx
x
xxxy
y
Solution (continued):
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.5 Logarithmic Differentiation
Example 3 – Relative Rate of Change of a Product
Show that the relative rate of change of a product is
the sum of the relative rates of change of its factors.
Use this result to express the percentage rate of
change in revenue in terms of the percentage rate of
change in price.
Solution: Rate of change of a function r is
( ) %100
'
1%100
'
%100
'
%100
'
%100
'
'''
p
p
r
r
q
q
p
p
r
r
q
q
p
p
r
r
η+=
+=
+=
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.6 Newton’s Method12.6 Newton’s Method
Example 1 – Approximating a Root by Newton’s Method
Newton’s method:
( )
( )
,...3,2,1
'
1 =−=+ n
xf
xf
xx
n
n
nn
Approximate the root of x4
− 4x + 1 = 0 that lies
between 0 and 1. Continue the approximation
procedure until two successive approximations differ
by less than 0.0001.
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.6 Newton’s Method
Example 1 – Approximating a Root by Newton’s Method
Solution: Letting , we have
Since f (0) is closer to 0, we choose 0 to be our first x1.
Thus,
( )
( ) 44
13
' 3
4
1
−
−
=−=+
n
n
n
n
nn
x
x
xf
xf
xx
25099.0,3When
25099.0,2When
25.0,1When
0,0When
4
3
2
1
≈=
≈=
==
==
xn
xn
xn
xn
( ) 144
+−= xxxf
( )
( ) 21411
11000
−=+−=
=+−=
f
f
( )
( ) 44'
14
3
4
−=
+−=
nn
nnn
xxf
xxxf
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.7 Higher-Order Derivatives12.7 Higher-Order Derivatives
For higher-order derivatives:
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.7 Higher-Order Derivatives
Example 1 – Finding Higher-Order Derivatives
a. If , find all higher-order
derivatives.
Solution:
b. If f(x) = 7, find f(x).
Solution:
( ) 26126 23
−+−= xxxxf
( )
( )
( )
( )
( ) 0
36'''
2436''
62418'
4
2
=
=
−=
+−=
xf
xf
xxf
xxxf
( )
( ) 0''
0'
=
=
xf
xf
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.7 Higher-Order Derivatives
Example 3 – Evaluating a Second-Order Derivative
Example 5 – Higher-Order Implicit Differentiation
Solution:
( ) .4whenfind,
4
16
If 2
2
=
+
= x
dx
yd
x
xf
( )
( ) 3
2
2
2
432
416
−
−
+=
+−=
x
dx
yd
x
dx
dy
16
1
4
2
2
=
=x
dx
yd
Solution:
y
x
dx
dy
dx
dy
yx
4
082
−
=
=+
.44ifFind 22
2
2
=+ yx
dx
yd
©2007 Pearson Education Asia
Chapter 12: Additional Differentiation Topics
12.7 Higher-Order Derivatives
Example 5 – Higher-Order Implicit Differentiation
Solution (continued):
32
2
3
22
2
2
4
1
16
4
getto
4
ateDifferenti
ydx
yd
y
xy
dx
yd
y
x
dx
dy
−=
+
−=
−
=

More Related Content

PPT
Chapter 14 - Integration
PPT
Chapter 13 - Curve Sketching
PPT
Chapter 10 - Limit and Continuity
PPT
Chapter 4 - Exponential and Logarithmic Functions
PPT
Introductory maths analysis chapter 11 official
PPT
Introductory maths analysis chapter 12 official
PPT
Chapter 1 - Applications and More Algebra
PPT
Introductory maths analysis chapter 13 official
Chapter 14 - Integration
Chapter 13 - Curve Sketching
Chapter 10 - Limit and Continuity
Chapter 4 - Exponential and Logarithmic Functions
Introductory maths analysis chapter 11 official
Introductory maths analysis chapter 12 official
Chapter 1 - Applications and More Algebra
Introductory maths analysis chapter 13 official

What's hot (20)

PPT
Chapter 15 - Methods and Applications of Integration
PPT
Introductory maths analysis chapter 01 official
PPT
Introductory maths analysis chapter 10 official
PPT
Introductory maths analysis chapter 00 official
PPT
Introductory maths analysis chapter 05 official
PPTX
Second Order Derivative | Mathematics
PPTX
Pair of linear equations in two variables for classX
PPT
Higher Maths 1.2.2 - Graphs and Transformations
PPT
Rate of change and tangent lines
PPTX
Exponential and logrithmic functions
PPT
Introductory maths analysis chapter 02 official
PPT
Section 5.4 logarithmic functions
PPT
Chapter 2 - Functions and Graphs
PPTX
3.6 applications in optimization
PPT
Limits and derivatives
PPTX
INTERPOLATION
PDF
10.5 Circles in the Coordinate Plane
PPT
Introductory maths analysis chapter 03 official
PPT
Lesson 14 a - parametric equations
Chapter 15 - Methods and Applications of Integration
Introductory maths analysis chapter 01 official
Introductory maths analysis chapter 10 official
Introductory maths analysis chapter 00 official
Introductory maths analysis chapter 05 official
Second Order Derivative | Mathematics
Pair of linear equations in two variables for classX
Higher Maths 1.2.2 - Graphs and Transformations
Rate of change and tangent lines
Exponential and logrithmic functions
Introductory maths analysis chapter 02 official
Section 5.4 logarithmic functions
Chapter 2 - Functions and Graphs
3.6 applications in optimization
Limits and derivatives
INTERPOLATION
10.5 Circles in the Coordinate Plane
Introductory maths analysis chapter 03 official
Lesson 14 a - parametric equations
Ad

Viewers also liked (20)

PPTX
Asoprs facebook visibility & branding presentation 2013
PDF
Rehabilitation QBE Issues Forum
PPTX
Talk for AACS 2014
PDF
Protiva ExecProtect Armored Office
 
PDF
Entrepreneurial report 2
PDF
Technical claims-brief-january-2010
PDF
Public RM Journal
PDF
National conference 2011 john quinlan - rsa (26.05.11)
PDF
Issues Forum Jan 2009 Major Accidents Toolkit
PDF
What brexit means for business
PPTX
Leveraging COSO-A Score-Carding Approach
PPT
Chapter 11 - Differentiation
XLS
Financial services intermediaries quality assurance and tcf questionnaire[fsa]
PPT
Chapter 9 - Additional Topics in Probability
PPT
Coso Monitoring Training Final
PPTX
Aviva Brand Migration case study
PDF
31350052 introductory-mathematical-analysis-textbook-solution-manual
PPTX
PDF
Insurance Telematics Canada 2014
PDF
RSA Energy & Resource
Asoprs facebook visibility & branding presentation 2013
Rehabilitation QBE Issues Forum
Talk for AACS 2014
Protiva ExecProtect Armored Office
 
Entrepreneurial report 2
Technical claims-brief-january-2010
Public RM Journal
National conference 2011 john quinlan - rsa (26.05.11)
Issues Forum Jan 2009 Major Accidents Toolkit
What brexit means for business
Leveraging COSO-A Score-Carding Approach
Chapter 11 - Differentiation
Financial services intermediaries quality assurance and tcf questionnaire[fsa]
Chapter 9 - Additional Topics in Probability
Coso Monitoring Training Final
Aviva Brand Migration case study
31350052 introductory-mathematical-analysis-textbook-solution-manual
Insurance Telematics Canada 2014
RSA Energy & Resource
Ad

Similar to Chapter 12 - Additional Differentiation Topics (20)

PPT
Chapter11 differentiation-151003160732-lva1-app6891
PPT
Chapter0 reviewofalgebra-151003150137-lva1-app6891
PPT
Chapter12 (More Differentiation).ppt
PPT
Chapter14 integration-151007043436-lva1-app6892
PPT
Introductory maths analysis chapter 14 official
PPT
Introductory maths analysis chapter 17 official
PPT
Chapter17 multivariablecalculus-151007044001-lva1-app6891
PPT
Chapter 17 - Multivariable Calculus
PPT
Introductory maths analysis chapter 15 official
PPT
Chapter15 methodsandapplicationsofintegration-151007044206-lva1-app6891
PPT
Introductory maths analysis chapter 07 official
PPT
Chapter 7 - Linear Programming
PPT
Chapter7 linearprogramming-151003150746-lva1-app6891
PPT
Introductory maths analysis chapter 16 official
PPT
Chapter 16 - Continuous Random Variables
PPT
Chapter16 continuousrandomvariables-151007043951-lva1-app6892
PPT
Chapter4 exponentialandlogarithmicfunctions-151003150209-lva1-app6891
PPT
Introductory maths analysis chapter 04 official
PPT
Limits and continuity
PPT
Chapter10 limitandcontinuity-151003153921-lva1-app6891
Chapter11 differentiation-151003160732-lva1-app6891
Chapter0 reviewofalgebra-151003150137-lva1-app6891
Chapter12 (More Differentiation).ppt
Chapter14 integration-151007043436-lva1-app6892
Introductory maths analysis chapter 14 official
Introductory maths analysis chapter 17 official
Chapter17 multivariablecalculus-151007044001-lva1-app6891
Chapter 17 - Multivariable Calculus
Introductory maths analysis chapter 15 official
Chapter15 methodsandapplicationsofintegration-151007044206-lva1-app6891
Introductory maths analysis chapter 07 official
Chapter 7 - Linear Programming
Chapter7 linearprogramming-151003150746-lva1-app6891
Introductory maths analysis chapter 16 official
Chapter 16 - Continuous Random Variables
Chapter16 continuousrandomvariables-151007043951-lva1-app6892
Chapter4 exponentialandlogarithmicfunctions-151003150209-lva1-app6891
Introductory maths analysis chapter 04 official
Limits and continuity
Chapter10 limitandcontinuity-151003153921-lva1-app6891

Recently uploaded (20)

PDF
Integrating Porter-Lawler Theory of Motivation and Hofstede's Dimensions of N...
PDF
NVIDIA-2025-Annual-Report for anyone want to read.pdf
PDF
MLM plans ppt - MLM Compensation Plans
PPTX
GROUP3-BSEN-3A-CBMEC2.pptxforbusinessidea
PDF
Unit-1 Introduction to Electronic-Commerce.pptx
PDF
ir presentation inrorma r ppr ptenre ubieo sebe
PDF
NewBase 02 September 2025 Energy News issue - 1822 by Khaled Al Awadi_compre...
PDF
Who says elephants can't dance? - Business Analysis 30 Aug 2025
PDF
The Relationship between Leadership Behaviourand Firm Performance in the Read...
PPTX
Wednesday Presen- ESG 060323 - Part-2 copy.pptx
PDF
International Journal of Business Information Systems Strategies (IJBISS)
PDF
NIELSEN Annual-Marketing-Report 2025: Unlocking the power of data-driven mark...
PDF
The 5 Most Remarkable CMOs to Watch in 2025.pdf
PPTX
ppt on organic farming adoption and certification.pptx
PPTX
Future Leaders Program - Slide Library.pptx
PDF
Website Analysis_https___growth-onomics.com_ .docx.pdf
PDF
Shriram Finance, one of India's leading financial services companies, which o...
PDF
Canadian Institute of Actuaries Standards of Practice.pdf
PDF
Intellisoft - Company Presentation (V1).pdf
Integrating Porter-Lawler Theory of Motivation and Hofstede's Dimensions of N...
NVIDIA-2025-Annual-Report for anyone want to read.pdf
MLM plans ppt - MLM Compensation Plans
GROUP3-BSEN-3A-CBMEC2.pptxforbusinessidea
Unit-1 Introduction to Electronic-Commerce.pptx
ir presentation inrorma r ppr ptenre ubieo sebe
NewBase 02 September 2025 Energy News issue - 1822 by Khaled Al Awadi_compre...
Who says elephants can't dance? - Business Analysis 30 Aug 2025
The Relationship between Leadership Behaviourand Firm Performance in the Read...
Wednesday Presen- ESG 060323 - Part-2 copy.pptx
International Journal of Business Information Systems Strategies (IJBISS)
NIELSEN Annual-Marketing-Report 2025: Unlocking the power of data-driven mark...
The 5 Most Remarkable CMOs to Watch in 2025.pdf
ppt on organic farming adoption and certification.pptx
Future Leaders Program - Slide Library.pptx
Website Analysis_https___growth-onomics.com_ .docx.pdf
Shriram Finance, one of India's leading financial services companies, which o...
Canadian Institute of Actuaries Standards of Practice.pdf
Intellisoft - Company Presentation (V1).pdf

Chapter 12 - Additional Differentiation Topics

  • 1. INTRODUCTORY MATHEMATICALINTRODUCTORY MATHEMATICAL ANALYSISANALYSISFor Business, Economics, and the Life and Social Sciences ©2007 Pearson Education Asia Chapter 12Chapter 12 Additional Differentiation TopicsAdditional Differentiation Topics
  • 2. ©2007 Pearson Education Asia INTRODUCTORY MATHEMATICAL ANALYSIS 0. Review of Algebra 1. Applications and More Algebra 2. Functions and Graphs 3. Lines, Parabolas, and Systems 4. Exponential and Logarithmic Functions 5. Mathematics of Finance 6. Matrix Algebra 7. Linear Programming 8. Introduction to Probability and Statistics
  • 3. ©2007 Pearson Education Asia 9. Additional Topics in Probability 10. Limits and Continuity 11. Differentiation 12. Additional Differentiation Topics 13. Curve Sketching 14. Integration 15. Methods and Applications of Integration 16. Continuous Random Variables 17. Multivariable Calculus INTRODUCTORY MATHEMATICAL ANALYSIS
  • 4. ©2007 Pearson Education Asia • To develop a differentiation formula for y = ln u. • To develop a differentiation formula for y = eu . • To give a mathematical analysis of the economic concept of elasticity. • To discuss the notion of a function defined implicitly. • To show how to differentiate a function of the form uv . • To approximate real roots of an equation by using calculus. • To find higher-order derivatives both directly and implicitly. Chapter 12: Additional Differentiation Topics Chapter ObjectivesChapter Objectives
  • 5. ©2007 Pearson Education Asia Derivatives of Logarithmic Functions Derivatives of Exponential Functions Elasticity of Demand Implicit Differentiation Logarithmic Differentiation Newton’s Method Higher-Order Derivatives 12.1) 12.2) 12.3) Chapter 12: Additional Differentiation Topics Chapter OutlineChapter Outline 12.4) 12.5) 12.6) 12.7)
  • 6. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.1 Derivatives of Logarithmic Functions12.1 Derivatives of Logarithmic Functions • The derivatives of log functions are: ( )               += → hx h x h x x dx d / 0 1limln 1 lna. ( ) 0where 1 lnb. ≠= x x x dx d ( ) 0for 1 lnc. ≠⋅= u dx du u u dx d
  • 7. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.1 Derivatives of Logarithmic Functions Example 1 – Differentiating Functions Involving ln x b. Differentiate . Solution: 2 ln x x y = ( ) ( ) ( ) ( ) ( ) 0for ln21 2)(ln 1 lnln ' 3 4 2 22 22 > − = −      = − = x x x x xx x x x x dx d xx dx d x y a. Differentiate f(x) = 5 ln x. Solution: ( ) ( ) 0for 5 ln5' >== x x x dx d xf
  • 8. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.1 Derivatives of Logarithmic Functions Example 3 – Rewriting Logarithmic Functions before Differentiating a. Find dy/dx if . Solution: b. Find f’(p) if . Solution: ( )3 52ln += xy ( ) 2/5for 52 6 2 52 1 3 −> + =      + = x xxdx dy ( ) ( ) ( ) ( ) 3 4 2 3 1 2 1 3 1 41 2 1 31 1 1 2' + + + + + =       + +      + +      + = ppp ppp pf ( ) ( ) ( ) ( )( )432 321ln +++= ppppf
  • 9. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.1 Derivatives of Logarithmic Functions Example 5 – Differentiating a Logarithmic Function to the Base 2 Differentiate y = log2x. Solution: Procedure to Differentiate logbu • Convert logbu to and then differentiate. b u ln ln ( ) ( )x x dx d x dx dy 2ln 1 2ln ln log2 =      =
  • 10. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.2 Derivatives of Exponential Functions12.2 Derivatives of Exponential Functions • The derivatives of exponential functions are: ( ) dx du ee dx d uu =a. ( ) xx ee dx d =b. ( ) ( ) dx du bbb dx d uu lnc. = ( )( ) ( )( ) ( )( ) 0'for ' 1 d. 1 1 1 ≠= − − − xff xff xf dx d dy dx dx dy 1 e. =
  • 11. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.2 Derivatives of Exponential Functions Example 1 – Differentiating Functions Involving ex a.Find . Solution: b. If y = , find . Solution: c. Find y’ when . Solution: x e x ( ) x xx e x e dx d xx dx d e dx dy − =+= −− 1 3ln2 ++= x eey xx eey =++= 00' ( )x e dx d 3 ( ) ( ) xxx ee dx d e dx d 333 == dx dy
  • 12. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.2 Derivatives of Exponential Functions Example 3 – The Normal-Distribution Density Function Determine the rate of change of y with respect to x when x = μ + σ. ( ) ( ) ( )( )2 2 1 / 2 1 σµ σ −− == x e x xfy Solution: The rate of change is ( ) ( )( ) ( ) e e dx dy x x πσ σσ µσµ πσ σµ σµ 2 1 1 2 2 1 2 1 2 / 2 2 1 − =                   −+ −= −− +=
  • 13. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.2 Derivatives of Exponential Functions Example 5 – Differentiating Different Forms Example 7 – Differentiating Power Functions Again Find . Solution: ( )xe xe dx d 22 ++ ( ) ( ) [ ]( ) x ex x eexxe dx d x e xexe 2 2ln2 2 1 2ln2 1 2ln12 +=       +=++ − − Prove d/dx(xa ) = axa−1 . Solution: ( ) ( ) 11ln −− === aaxaa axaxxe dx d x dx d
  • 14. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.3 Elasticity of Demand12.3 Elasticity of Demand Example 1 – Finding Point Elasticity of Demand • Point elasticity of demand η is where p is price and q is quantity. ( ) dq dp q p q ==ηη Determine the point elasticity of the demand equation Solution: We have 0and0where >>= qk q k p 1 2 2 −=== − q k q k dq dp q p η
  • 15. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.4 Implicit Differentiation12.4 Implicit Differentiation Implicit Differentiation Procedure 1. Differentiate both sides. 2. Collect all dy/dx terms on one side and other terms on the other side. 3. Factor dy/dx terms. 4. Solve for dy/dx.
  • 16. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.4 Implicit Differentiation Example 1 – Implicit Differentiation Find dy/dx by implicit differentiation if . Solution: 73 =−+ xyy ( ) ( ) 2 2 3 31 1 013 7 ydx dy dx dy y dx dy dx d xyy dx d + = =−+ =−+
  • 17. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.4 Implicit Differentiation Example 3 – Implicit Differentiation Find the slope of the curve at (1,2). Solution: ( )223 xyx −= ( ) ( )[ ] ( ) ( ) ( ) 2 7 2 443 223 2,1 2 32 22 223 = − −+ =       −−= −= dx dy xy xxyx dx dy x dx dy xy dx dy x xy dx d x dx d
  • 18. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.5 Logarithmic Differentiation12.5 Logarithmic Differentiation Logarithmic Differentiation Procedure 1. Take the natural logarithm of both sides which gives . 2. Simplify In (f(x))by using properties of logarithms. 3. Differentiate both sides with respect to x. 4. Solve for dy/dx. 5. Express the answer in terms of x only. ( )( )xfy lnln =
  • 19. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.5 Logarithmic Differentiation Example 1 – Logarithmic Differentiation Find y’ if . Solution: ( ) 4 22 3 1 52 + − = xx x y ( ) ( ) ( ) ( )x x xx xxxy xx x y 2 1 1 4 1 ln252ln3 1ln52lnln 1 52 lnln 2 4 223 4 22 3       + −−−= +−−−= + − =
  • 20. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.5 Logarithmic Differentiation Example 1 – Logarithmic Differentiation       + −− −+ − = + −− − = + −− − = )1( 2 52 6 1 )52( ' )1(2 2 52 6 )2)( 1 1 ( 4 1 ) 1 (2)2)( 52 1 (3 ' 24 22 3 2 2 xx x xxxx x y x x xx x xxxy y Solution (continued):
  • 21. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.5 Logarithmic Differentiation Example 3 – Relative Rate of Change of a Product Show that the relative rate of change of a product is the sum of the relative rates of change of its factors. Use this result to express the percentage rate of change in revenue in terms of the percentage rate of change in price. Solution: Rate of change of a function r is ( ) %100 ' 1%100 ' %100 ' %100 ' %100 ' ''' p p r r q q p p r r q q p p r r η+= += +=
  • 22. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.6 Newton’s Method12.6 Newton’s Method Example 1 – Approximating a Root by Newton’s Method Newton’s method: ( ) ( ) ,...3,2,1 ' 1 =−=+ n xf xf xx n n nn Approximate the root of x4 − 4x + 1 = 0 that lies between 0 and 1. Continue the approximation procedure until two successive approximations differ by less than 0.0001.
  • 23. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.6 Newton’s Method Example 1 – Approximating a Root by Newton’s Method Solution: Letting , we have Since f (0) is closer to 0, we choose 0 to be our first x1. Thus, ( ) ( ) 44 13 ' 3 4 1 − − =−=+ n n n n nn x x xf xf xx 25099.0,3When 25099.0,2When 25.0,1When 0,0When 4 3 2 1 ≈= ≈= == == xn xn xn xn ( ) 144 +−= xxxf ( ) ( ) 21411 11000 −=+−= =+−= f f ( ) ( ) 44' 14 3 4 −= +−= nn nnn xxf xxxf
  • 24. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.7 Higher-Order Derivatives12.7 Higher-Order Derivatives For higher-order derivatives:
  • 25. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.7 Higher-Order Derivatives Example 1 – Finding Higher-Order Derivatives a. If , find all higher-order derivatives. Solution: b. If f(x) = 7, find f(x). Solution: ( ) 26126 23 −+−= xxxxf ( ) ( ) ( ) ( ) ( ) 0 36''' 2436'' 62418' 4 2 = = −= +−= xf xf xxf xxxf ( ) ( ) 0'' 0' = = xf xf
  • 26. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.7 Higher-Order Derivatives Example 3 – Evaluating a Second-Order Derivative Example 5 – Higher-Order Implicit Differentiation Solution: ( ) .4whenfind, 4 16 If 2 2 = + = x dx yd x xf ( ) ( ) 3 2 2 2 432 416 − − += +−= x dx yd x dx dy 16 1 4 2 2 = =x dx yd Solution: y x dx dy dx dy yx 4 082 − = =+ .44ifFind 22 2 2 =+ yx dx yd
  • 27. ©2007 Pearson Education Asia Chapter 12: Additional Differentiation Topics 12.7 Higher-Order Derivatives Example 5 – Higher-Order Implicit Differentiation Solution (continued): 32 2 3 22 2 2 4 1 16 4 getto 4 ateDifferenti ydx yd y xy dx yd y x dx dy −= + −= − =