Chapter 2
Functions and Graphs
Copyright © 2018 Pearson Education, Inc. 201
Section 2.1
Check Point Exercises
1. The domain is the set of all first components: {0, 10,
20, 30, 42}. The range is the set of all second
components: {9.1, 6.7, 10.7, 13.2, 21.7}.
2. a. The relation is not a function since the two
ordered pairs (5, 6) and (5, 8) have the same
first component but different second
components.
b. The relation is a function since no two ordered
pairs have the same first component and
different second components.
3. a. 2 6
6 2
x y
y x
+ =
= −
For each value of x, there is one and only one
value for y, so the equation defines y as a
function of x.
b. 2 2
2 2
2
1
1
1
x y
y x
y x
+ =
= −
= ± −
Since there are values of x (all values between –
1 and 1 exclusive) that give more than one
value for y (for example, if x = 0, then
2
1 0 1y = ± − = ± ), the equation does not
define y as a function of x.
4. a. 2
( 5) ( 5) 2( 5) 7
25 ( 10) 7
42
f − = − − − +
= − − +
=
b. 2
2
2
( 4) ( 4) 2( 4) 7
8 16 2 8 7
6 15
f x x x
x x x
x x
+ = + − + +
= + + − − +
= + +
c. 2
2
2
( ) ( ) 2( ) 7
( 2 ) 7
2 7
f x x x
x x
x x
− = − − − +
= − − +
= + +
5. x ( ) 2f x x= ( ),x y
-2 –4 ( )2, 4− −
-1 –2 ( )1, 2− −
0 0 ( )0,0
1 2 ( )1,2
2 4 ( )2,4
x ( ) 2 3g x x= − ( ),x y
-2 ( ) 2( 2) 32 7g − − =− = − ( )2, 7− −
-1 ( ) 2( 1) 31 5g − −− = = − ( )1, 5− −
0 ( ) 2(0) 30 3g −= = − ( )0, 3−
1 ( ) 2(1) 31 1g −= = − ( )1, 1−
2 ( ) 2(2) 32 1g −= = ( )2,1
The graph of g is the graph of f shifted down 3
units.
Chapter 2 Functions and Graphs
202 Copyright © 2018 Pearson Education, Inc.
6. The graph (a) passes the vertical line test and is
therefore is a function.
The graph (b) fails the vertical line test and is
therefore not a function.
The graph (c) passes the vertical line test and is
therefore is a function.
The graph (d) fails the vertical line test and is
therefore not a function.
7. a. (5) 400f =
b. 9x = , (9) 100f =
c. The minimum T cell count in the asymptomatic
stage is approximately 425.
8. a. domain: { } [ ]2 1 or 2,1 .x x− ≤ ≤ −
range: { } [ ]0 3 or 0,3 .y y≤ ≤
b. domain: { } ( ]2 1 or 2,1 .x x− < ≤ −
range: { } [ )1 2 or 1,2 .y y− ≤ < −
c. domain: { } [ )3 0 or 3,0 .x x− ≤ < −
range: { }3, 2, 1 .y y = − − −
Concept and Vocabulary Check 2.1
1. relation; domain; range
2. function
3. f; x
4. true
5. false
6. x; 6x +
7. ordered pairs
8. more than once; function
9. [0,3) ; domain
10. [1, )∞ ; range
11. 0; 0; zeros
12. false
Exercise Set 2.1
1. The relation is a function since no two ordered pairs
have the same first component and different second
components. The domain is {1, 3, 5} and the range is
{2, 4, 5}.
2. The relation is a function because no two ordered
pairs have the same first component and different
second components The domain is {4, 6, 8} and the
range is {5, 7, 8}.
3. The relation is not a function since the two ordered
pairs (3, 4) and (3, 5) have the same first component
but different second components (the same could be
said for the ordered pairs (4, 4) and (4, 5)). The
domain is {3, 4} and the range is {4, 5}.
4. The relation is not a function since the two ordered
pairs (5, 6) and (5, 7) have the same first component
but different second components (the same could be
said for the ordered pairs (6, 6) and (6, 7)). The
domain is {5, 6} and the range is {6, 7}.
5. The relation is a function because no two ordered
pairs have the same first component and different
second components The domain is
{3, 4, 5, 7} and the range is {–2, 1, 9}.
6. The relation is a function because no two ordered
pairs have the same first component and different
second components The domain is
{–2, –1, 5, 10} and the range is {1, 4, 6}.
7. The relation is a function since there are no same first
components with different second components. The
domain is {–3, –2, –1, 0} and the range is {–3, –2, –
1, 0}.
8. The relation is a function since there are no ordered
pairs that have the same first component but different
second components. The domain is {–7, –5, –3, 0}
and the range is {–7, –5, –3, 0}.
9. The relation is not a function since there are ordered
pairs with the same first component and different
second components. The domain is {1} and the range
is {4, 5, 6}.
10. The relation is a function since there are no two
ordered pairs that have the same first component and
different second components. The domain is
{4, 5, 6} and the range is {1}.
Section 2.1 Basics of Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 203
11. 16
16
x y
y x
+ =
= −
Since only one value of y can be obtained for each
value of x, y is a function of x.
12. 25
25
x y
y x
+ =
= −
Since only one value of y can be obtained for each
value of x, y is a function of x.
13. 2
2
16
16
x y
y x
+ =
= −
Since only one value of y can be obtained for each
value of x, y is a function of x.
14. 2
2
25
25
x y
y x
+ =
= −
Since only one value of y can be obtained for each
value of x, y is a function of x.
15. 2 2
2 2
2
16
16
16
x y
y x
y x
+ =
= −
= ± −
If x = 0, 4.y = ±
Since two values, y = 4 and y = – 4, can be obtained
for one value of x, y is not a function of x.
16. 2 2
2 2
2
25
25
25
If 0, 5.
x y
y x
y x
x y
+ =
= −
= ± −
= = ±
Since two values, y = 5 and y = –5, can be obtained
for one value of x, y is not a function of x.
17. 2
x y
y x
=
= ±
If x = 1, 1.y = ±
Since two values, y = 1 and y = –1, can be obtained
for x = 1, y is not a function of x.
18. 4 2
4 2
If 1, then 2.
x y
y x x
x y
=
= ± = ±
= = ±
Since two values, y = 2 and y = –2, can be obtained
for x = 1, y is not a function of x.
19. 4y x= +
Since only one value of y can be obtained for each
value of x, y is a function of x.
20. 4y x= − +
Since only one value of y can be obtained for each
value of x, y is a function of x.
21. 3
3
3
8
8
8
x y
y x
y x
+ =
= −
= −
Since only one value of y can be obtained for each
value of x, y is a function of x.
22.
3
3
3
27
27
27
x y
y x
y x
+ =
= −
= −
Since only one value of y can be obtained for each
value of x, y is a function of x.
23. 2 1xy y+ =
( )2 1
1
2
y x
y
x
+ =
=
+
Since only one value of y can be obtained for each
value of x, y is a function of x.
24. 5 1xy y− =
( )5 1
1
5
y x
y
x
− =
=
−
Since only one value of y can be obtained for each
value of x, y is a function of x.
25. 2x y− =
2
2
y x
y x
− = − +
= −
Since only one value of y can be obtained for each
value of x, y is a function of x.
26. 5x y− =
5
5
y x
y x
− = − +
= −
Since only one value of y can be obtained for each
value of x, y is a function of x.
Chapter 2 Functions and Graphs
204 Copyright © 2018 Pearson Education, Inc.
27. a. f(6) = 4(6) + 5 = 29
b. f(x + 1) = 4(x + 1) + 5 = 4x + 9
c. f(–x) = 4(–x) + 5 = – 4x + 5
28. a. f(4) = 3(4) + 7 = 19
b. f(x + 1) = 3(x + 1) + 7 = 3x + 10
c. f(–x) = 3(–x) + 7 = –3x + 7
29. a. 2
( 1) ( 1) 2( 1) 3
1 2 3
2
g − = − + − +
= − +
=
b. 2
2
2
( 5) ( 5) 2( 5) 3
10 25 2 10 3
12 38
g x x x
x x x
x x
+ = + + + +
= + + + + +
= + +
c. 2
2
( ) ( ) 2( ) 3
2 3
g x x x
x x
− = − + − +
= − +
30. a. 2
( 1) ( 1) 10( 1) 3
1 10 3
8
g − = − − − −
= + −
=
b. 2
2
2
( 2) ( 2) 10(8 2) 3
4 4 10 20 3
6 19
g x x
x x x
x x
+ = + − + −
= + + − − −
= − −
c. 2
2
( ) ( ) 10( ) 3
10 3
g x x x
x x
− = − − − −
= + −
31. a. 4 2
(2) 2 2 1
16 4 1
13
h = − +
= − +
=
b. 4 2
( 1) ( 1) ( 1) 1
1 1 1
1
h − = − − − +
= − +
=
c. 4 2 4 2
( ) ( ) ( ) 1 1h x x x x x− = − − − + = − +
d. 4 2
4 2
(3 ) (3 ) (3 ) 1
81 9 1
h a a a
a a
= − +
= − +
32. a. 3
(3) 3 3 1 25h = − + =
b. 3
( 2) ( 2) ( 2) 1
8 2 1
5
h − = − − − +
= − + +
= −
c. 3 3
( ) ( ) ( ) 1 1h x x x x x− = − − − + = − + +
d. 3
3
(3 ) (3 ) (3 ) 1
27 3 1
h a a a
a a
= − +
= − +
33. a. ( 6) 6 6 3 0 3 3f − = − + + = + =
b. (10) 10 6 3
16 3
4 3
7
f = + +
= +
= +
=
c. ( 6) 6 6 3 3f x x x− = − + + = +
34. a. (16) 25 16 6 9 6 3 6 3f = − − = − = − = −
b. ( 24) 25 ( 24) 6
49 6
7 6 1
f − = − − −
= −
= − =
c. (25 2 ) 25 (25 2 ) 6
2 6
f x x
x
− = − − −
= −
35. a.
2
2
4(2) 1 15
(2)
42
f
−
= =
b.
2
2
4( 2) 1 15
( 2)
4( 2)
f
− −
− = =
−
c.
2 2
2 2
4( ) 1 4 1
( )
( )
x x
f x
x x
− − −
− = =
−
36. a.
3
3
4(2) 1 33
(2)
82
f
+
= =
b.
3
3
4( 2) 1 31 31
( 2)
8 8( 2)
f
− + −
− = = =
−−
c.
3 3
3 3
4( ) 1 4 1
( )
( )
x x
f x
x x
− + − +
− = =
− −
3
3
4 1
or
x
x
−
Section 2.1 Basics of Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 205
37. a.
6
(6) 1
6
f = =
b.
6 6
( 6) 1
6 6
f
− −
− = = = −
−
c.
2 2
2
22
( ) 1
r r
f r
rr
= = =
38. a.
5 3 8
(5) 1
5 3 8
f
+
= = =
+
b.
5 3 2 2
( 5) 1
5 3 2 2
f
− + −
− = = = = −
− + − −
c.
9 3
( 9 )
9 3
x
f x
x
− − +
− − =
− − +
6 1, if 6
1,if 66
x x
xx
− − < −
= = 
− > −− − 
39. x ( )f x x= ( ),x y
−2 ( )2 2f − = − ( )2, 2− −
−1 ( )1 1f − = − ( )1, 1− −
0 ( )0 0f = ( )0,0
1 ( )1 1f = ( )1,1
2 ( )2 2f = ( )2,2
x ( ) 3g x x= + ( ),x y
−2 ( )2 2 3 1g − = − + = ( )2,1−
−1 ( )1 1 3 2g − = − + = ( )1,2−
0 ( )0 0 3 3g = + = ( )0,3
1 ( )1 1 3 4g = + = ( )1,4
2 ( )2 2 3 5g = + = ( )2,5
The graph of g is the graph of f shifted up 3 units.
40. x ( )f x x= ( ),x y
−2 ( )2 2f − = − ( )2, 2− −
−1 ( )1 1f − = − ( )1, 1− −
0 ( )0 0f = ( )0,0
1 ( )1 1f = ( )1,1
2 ( )2 2f = ( )2,2
x ( ) 4g x x= − ( ),x y
−2 ( )2 2 4 6g − = − − = − ( )2, 6− −
−1 ( )1 1 4 5g − = − − = − ( )1, 5− −
0 ( )0 0 4 4g = − = − ( )0, 4−
1 ( )1 1 4 3g = − = − ( )1, 3−
2 ( )2 2 4 2g = − = − ( )2, 2−
The graph of g is the graph of f shifted down 4 units.
41. x ( ) 2f x x= − ( ),x y
–2 ( ) ( )2 2 2 4f − = − − = ( )2,4−
–1 ( ) ( )1 2 1 2f − = − − = ( )1,2−
0 ( ) ( )0 2 0 0f = − = ( )0,0
1 ( ) ( )1 2 1 2f = − = − ( )1, 2−
2 ( ) ( )2 2 2 4f = − = − ( )2, 4−
x ( ) 2 1g x x= − − ( ),x y
–2 ( ) ( )2 2 1 32g − = − − =− ( )2,3−
–1 ( ) ( )1 2 1 11g − = − − =− ( )1,1−
0 ( ) ( )0 2 1 10g = − − = − ( )0, 1−
1 ( ) ( )1 2 1 31g = − − = − ( )1, 3−
2 ( ) ( )2 2 2 1 5g = − − = − ( )2, 5−
Chapter 2 Functions and Graphs
206 Copyright © 2018 Pearson Education, Inc.
The graph of g is the graph of f shifted down 1 unit.
43. x ( ) 2
f x x= ( ),x y
−2 ( ) ( )
2
2 2 4f − = − = ( )2,4−
−1 ( ) ( )
2
1 1 1f − = − = ( )1,1−
0 ( ) ( )
2
0 0 0f = = ( )0,0
1 ( ) ( )
2
1 1 1f = = ( )1,1
2 ( ) ( )
2
2 2 4f = = ( )2,4
x ( ) 2
1g x x= + ( ),x y
−2 ( ) ( )
2
2 2 1 5g − = − + = ( )2,5−
−1 ( ) ( )
2
1 11 2g − = +− = ( )1,2−
0 ( ) ( )
2
0 0 1 1g = + = ( )0,1
1 ( ) ( )
2
1 1 1 2g = =+ ( )1,2
2 ( ) ( )
2
2 2 1 5g = =+ ( )2,5
The graph of g is the graph of f shifted up 1 unit.
44. x ( ) 2
f x x= ( ),x y
−2 ( ) ( )
2
2 2 4f − = − = ( )2,4−
−1 ( ) ( )
2
1 1 1f − = − = ( )1,1−
0 ( ) ( )
2
0 0 0f = = ( )0,0
1 ( ) ( )
2
1 1 1f = = ( )1,1
2 ( ) ( )
2
2 2 4f = = ( )2,4
x ( ) 2
2g x x= − ( ),x y
−2 ( ) ( )
2
2 2 2 2g − = − − = ( )2,2−
−1 ( ) ( )
2
1 1 2 1g − = − − = − ( )1, 1− −
0 ( ) ( )
2
0 0 2 2g = − = − ( )0, 2−
1 ( ) ( )
2
1 1 2 1g = − = − ( )1, 1−
2 ( ) ( )
2
2 2 2 2g = − = ( )2,2
The graph of g is the graph of f shifted down 2 units.
42. x ( ) 2f x x= − ( ),x y
–2 ( ) ( )2 2 2 4f − = − − = ( )2,4−
–1 ( ) ( )1 2 1 2f − = − − = ( )1,2−
0 ( ) ( )0 2 0 0f = − = ( )0,0
1 ( ) ( )1 2 1 2f = − = − ( )1, 2−
2 ( ) ( )2 2 2 4f = − = − ( )2, 4−
x ( ) 2 3g x x= − + ( ),x y
–2 ( ) ( )2 2 3 72g − = − + =− ( )2,7−
–1 ( ) ( )1 2 3 51g − = − + =− ( )1,5−
0 ( ) ( )0 2 3 30g = − + = ( )0,3
1 ( ) ( )1 2 3 11g = − + = ( )1,1
2 ( ) ( )2 2 2 3 1g = − + = − ( )2, 1−
The graph of g is the graph of f shifted up 3 units.
Section 2.1 Basics of Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 207
45. x ( )f x x= ( ),x y
2− ( )2 2 2f − = − = ( )2,2−
1− ( )1 1 1f − = − = ( )1,1−
0 ( )0 0 0f = = ( )0,0
1 ( )1 1 1f = = ( )1,1
2 ( )2 2 2f = = ( )2,2
x ( ) 2g x x= − ( ),x y
2− ( )2 2 2 0g − = − − = ( )2,0−
1− ( )1 1 2 1g − = − − = − ( )1, 1− −
0 ( )0 0 2 2g = − = − ( )0, 2−
1 ( )1 1 2 1g = − = − ( )1, 1−
2 ( )2 2 2 0g = − = ( )2,0
The graph of g is the graph of f shifted down 2 units.
46. x ( )f x x= ( ),x y
2− ( )2 2 2f − = − = ( )2,2−
1− ( )1 1 1f − = − = ( )1,1−
0 ( )0 0 0f = = ( )0,0
1 ( )1 1 1f = = ( )1,1
2 ( )2 2 2f = = ( )2,2
x ( ) 1g x x= + ( ),x y
2− ( )2 2 1 3g − = − + = ( )2,3−
1− ( )1 1 1 2g − = − + = ( )1,2−
0 ( )0 0 1 1g = + = ( )0,1
1 ( )1 1 1 2g = + = ( )1,2
2 ( )2 2 1 3g = + = ( )2,3
The graph of g is the graph of f shifted up 1 unit.
47. x ( ) 3
f x x= ( ),x y
2−
( ) ( )
3
2 2 8f − = − = − ( )2, 8− −
1−
( ) ( )
3
1 1 1f − = − = − ( )1, 1− −
0 ( ) ( )
3
0 0 0f = = ( )0,0
1 ( ) ( )
3
1 1 1f = = ( )1,1
2 ( ) ( )
3
2 2 8f = = ( )2,8
x ( ) 3
2g x x= + ( ),x y
2− ( ) ( )
3
2 2 2 6g − = − + = − ( )2, 6− −
1− ( ) ( )
3
1 1 2 1g − = − + = ( )1,1−
0 ( ) ( )
3
0 0 2 2g = + = ( )0,2
1 ( ) ( )
3
1 1 2 3g = + = ( )1,3
2 ( ) ( )
3
2 2 2 10g = + = ( )2,10
The graph of g is the graph of f shifted up 2 units.
Chapter 2 Functions and Graphs
208 Copyright © 2018 Pearson Education, Inc.
48. x ( ) 3
f x x= ( ),x y
2− ( ) ( )
3
2 2 8f − = − = − ( )2, 8− −
1− ( ) ( )
3
1 1 1f − = − = − ( )1, 1− −
0 ( ) ( )
3
0 0 0f = = ( )0,0
1 ( ) ( )
3
1 1 1f = = ( )1,1
2 ( ) ( )
3
2 2 8f = = ( )2,8
x ( ) 3
1g x x= − ( ),x y
2− ( ) ( )
3
2 2 1 9g − = − − = − ( )2, 9− −
1− ( ) ( )
3
1 1 1 2g − = − − = − ( )1, 2− −
0 ( ) ( )
3
0 0 1 1g = − = − ( )0, 1−
1 ( ) ( )
3
1 1 1 0g = − = ( )1,0
2 ( ) ( )
3
2 2 1 7g = − = ( )2,7
The graph of g is the graph of f shifted down 1 unit.
49. x ( ) 3f x = ( ),x y
2− ( )2 3f − = ( )2,3−
1− ( )1 3f − = ( )1,3−
0 ( )0 3f = ( )0,3
1 ( )1 3f = ( )1,3
2 ( )2 3f = ( )2,3
x ( ) 5g x = ( ),x y
2− ( )2 5g − = ( )2,5−
1− ( )1 5g − = ( )1,5−
0 ( )0 5g = ( )0,5
1 ( )1 5g = ( )1,5
2 ( )2 5g = ( )2,5
The graph of g is the graph of f shifted up 2 units.
50. x ( ) 1f x = − ( ),x y
2− ( )2 1f − = − ( )2, 1− −
1− ( )1 1f − = − ( )1, 1− −
0 ( )0 1f = − ( )0, 1−
1 ( )1 1f = − ( )1, 1−
2 ( )2 1f = − ( )2, 1−
x ( ) 4g x = ( ),x y
2− ( )2 4g − = ( )2,4−
1− ( )1 4g − = ( )1,4−
0 ( )0 4g = ( )0,4
1 ( )1 4g = ( )1,4
2 ( )2 4g = ( )2,4
The graph of g is the graph of f shifted up 5 units.
Section 2.1 Basics of Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 209
51. x ( )f x x= ( ),x y
0 ( )0 0 0f = = ( )0,0
1 ( )1 1 1f = = ( )1,1
4 ( )4 4 2f = = ( )4,2
9 ( )9 9 3f = = ( )9,3
x ( ) 1g x x= − ( ),x y
0 ( )0 0 1 1g = − = − ( )0, 1−
1 ( )1 1 1 0g = − = ( )1,0
4 ( )4 4 1 1g = − = ( )4,1
9 ( )9 9 1 2g = − = ( )9,2
The graph of g is the graph of f shifted down 1 unit.
52. x ( )f x x= ( ),x y
0 ( )0 0 0f = = ( )0,0
1 ( )1 1 1f = = ( )1,1
4 ( )4 4 2f = = ( )4,2
9 ( )9 9 3f = = ( )9,3
x ( ) 2g x x= + ( ),x y
0 ( )0 0 2 2g = + = ( )0,2
1 ( )1 1 2 3g = + = ( )1,3
4 ( )4 4 2 4g = + = ( )4,4
9 ( )9 9 2 5g = + = ( )9, 5
The graph of g is the graph of f shifted up 2 units.
53. x ( )f x x= ( ),x y
0 ( )0 0 0f = = ( )0,0
1 ( )1 1 1f = = ( )1,1
4 ( )4 4 2f = = ( )4,2
9 ( )9 9 3f = = ( )9,3
x ( ) 1g x x= − ( ),x y
1 ( )1 1 1 0g = − = ( )1,0
2 ( )2 2 1 1g = − = ( )2,1
5 ( )5 5 1 2g = − = ( )5,2
10 ( )10 10 1 3g = − = ( )10,3
The graph of g is the graph of f shifted right 1 unit.
54. x ( )f x x= ( ),x y
0 ( )0 0 0f = = ( )0,0
1 ( )1 1 1f = = ( )1,1
4 ( )4 4 2f = = ( )4,2
9 ( )9 9 3f = = ( )9,3
x ( ) 2g x x= + ( ),x y
–2 ( )2 2 2 0g − = − + = ( )2,0−
–1 ( )1 1 2 1g − = − + = ( )1,1−
2 ( )2 2 2 2g = + = ( )2,2
7 ( )7 7 2 3g = + = ( )7,3
The graph of g is the graph of f shifted left 2 units.
Chapter 2 Functions and Graphs
210 Copyright © 2018 Pearson Education, Inc.
55. function
56. function
57. function
58. not a function
59. not a function
60. not a function
61. function
62. not a function
63. function
64. function
65. ( )2 4f − = −
66. (2) 4f = −
67. ( )4 4f =
68. ( 4) 4f − =
69. ( )3 0f − =
70. ( 1) 0f − =
71. ( )4 2g − =
72. ( )2 2g = −
73. ( )10 2g − =
74. (10) 2g = −
75. When ( )2, 1.x g x= − =
76. When 1, ( ) 1.x g x= = −
77. a. domain: ( , )−∞ ∞
b. range: [ 4, )− ∞
c. x-intercepts: –3 and 1
d. y-intercept: –3
e. ( 2) 3 and (2) 5f f− = − =
78. a. domain: (–∞, ∞)
b. range: (–∞, 4]
c. x-intercepts: –3 and 1
d. y-intercept: 3
e. ( 2) 3 and (2) 5f f− = = −
79. a. domain: ( , )−∞ ∞
b. range: [1, )∞
c. x-intercept: none
d. y-intercept: 1
e. ( 1) 2 and (3) 4f f− = =
80. a. domain: (–∞, ∞)
b. range: [0, ∞)
c. x-intercept: –1
d. y-intercept: 1
e. f(–4) = 3 and f(3) = 4
81. a. domain: [0, 5)
b. range: [–1, 5)
c. x-intercept: 2
d. y-intercept: –1
e. f(3) = 1
82. a. domain: (–6, 0]
b. range: [–3, 4)
c. x-intercept: –3.75
d. y-intercept: –3
e. f(–5) = 2
83. a. domain: [0, )∞
b. range: [1, )∞
c. x-intercept: none
d. y-intercept: 1
e. f(4) = 3
Section 2.1 Basics of Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 211
84. a. domain: [–1, ∞)
b. range: [0, ∞)
c. x-intercept: –1
d. y-intercept: 1
e. f(3) = 2
85. a. domain: [–2, 6]
b. range: [–2, 6]
c. x-intercept: 4
d. y-intercept: 4
e. f(–1) = 5
86. a. domain: [–3, 2]
b. range: [–5, 5]
c. x-intercept:
1
2
−
d. y-intercept: 1
e. f(–2) = –3
87. a. domain: ( , )−∞ ∞
b. range: ( , 2]−∞ −
c. x-intercept: none
d. y-intercept: –2
e. f(–4) = –5 and f(4) = –2
88. a. domain: (–∞, ∞)
b. range: [0, ∞)
c. x-intercept: { }0x x ≤
d. y-intercept: 0
e. f(–2) = 0 and f(2) = 4
89. a. domain: ( , )−∞ ∞
b. range: (0, )∞
c. x-intercept: none
d. y-intercept: 1.5
e. f(4) = 6
90. a. domain: ( ,1) (1, )−∞ ∞
b. range: ( ,0) (0, )−∞ ∞
c. x-intercept: none
d. y-intercept: 1−
e. f(2) = 1
91. a. domain: {–5, –2, 0, 1, 3}
b. range: {2}
c. x-intercept: none
d. y-intercept: 2
e. ( 5) (3) 2 2 4f f− + = + =
92. a. domain: {–5, –2, 0, 1, 4}
b. range: {–2}
c. x-intercept: none
d. y-intercept: –2
e. ( 5) (4) 2 ( 2) 4f f− + = − + − = −
93. ( ) ( )
( )( ) ( ) ( ) ( )
2
1 3 1 5 3 5 2
1 2 2 2 4
4 2 4 10
g
f g f
= − = − = −
= − = − − − +
= + + =
94. ( ) ( )
( )( ) ( ) ( ) ( )
2
1 3 1 5 3 5 8
1 8 8 8 4
64 8 4 76
g
f g f
− = − − = − − = −
− = − = − − − +
= + + =
95. ( ) ( ) ( )
( )
2
3 1 6 6 6 4
3 1 36 6 6 4
4 36 1 4
2 36 4
34 4
38
− − − − + ÷ − ⋅
= + − + ÷ − ⋅
= − + − ⋅
= − + −
= − + −
= −
96. ( ) ( )
2
4 1 3 3 3 6
4 1 9 3 3 6
3 9 1 6
3 9 6 6 6 0
− − − − − + − ÷ ⋅−
= − + − + − ÷ ⋅−
= − − + − ⋅−
= − + = − + =
97. ( ) ( )
( ) ( )
3 3
3 3 3
5 ( 5)
5 5 2 2
f x f x
x x x x
x x x x x x
− −
= − + − − − + −
= − − − − − + = − −
Chapter 2 Functions and Graphs
212 Copyright © 2018 Pearson Education, Inc.
98. ( ) ( )
( ) ( ) ( )2 2
2 2
3 7 3 7
3 7 3 7
6
f x f x
x x x x
x x x x
x
− −
= − − − + − − +
= + + − + −
=
99. a. {(Iceland, 9.7), (Finland, 9.6), (New Zealand,
9.6), (Denmark, 9.5)}
b. Yes, the relation is a function because each
country in the domain corresponds to exactly
one corruption rating in the range.
c. {(9.7, Iceland), (9.6, Finland), (9.6,
New Zealand), (9.5, Denmark)}
d. No, the relation is not a function because 9.6 in
the domain corresponds to two countries in the
range, Finland and New Zealand.
100. a. {(Bangladesh, 1.7), (Chad, 1.7), (Haiti, 1.8),
(Myanmar, 1.8)}
b. Yes, the relation is a function because each
country in the domain corresponds to exactly
one corruption rating in the range.
c. {(1.7, Bangladesh), (1.7, Chad), (1.8, Haiti),
(1.8, Myanmar)}
d. No, the relation is not a function because 1.7 in
the domain corresponds to two countries in the
range, Bangladesh and Chad.
101. a. (70) 83f = which means the chance that a 60-
year old will survive to age 70 is 83%.
b. (70) 76g = which means the chance that a 60-
year old will survive to age 70 is 76%.
c. Function f is the better model.
102. a. (90) 25f = which means the chance that a 60-
year old will survive to age 90 is 25%.
b. (90) 10g = which means the chance that a 60-
year old will survive to age 90 is 10%.
c. Function f is the better model.
103. a. 2
(30) 0.01(30) (30) 60 81G = − + + =
In 2010, the wage gap was 81%. This is
represented as (30,81) on the graph.
b. (30)G underestimates the actual data shown by
the bar graph by 2%.
104. a. 2
(10) 0.01(10) (10) 60 69G = − + + =
In 1990, the wage gap was 69%. This is
represented as (10,69) on the graph.
b. (10)G underestimates the actual data shown by
the bar graph by 2%.
105. ( ) 100,000 100C x x= +
(90) 100,000 100(90) $109,000C = + =
It will cost $109,000 to produce 90 bicycles.
106. ( ) 22,500 3200V x x= −
(3) 22,500 3200(3) $12,900V = − =
After 3 years, the car will be worth $12,900.
107. ( )
( )
40 40
30
40 40
30
30 30 30
80 40
60 60
120
60
2
T x
x x
T
= +
+
= +
+
= +
=
=
If you travel 30 mph going and 60 mph returning,
your total trip will take 2 hours.
108. ( ) 0.10 0.60(50 )S x x x= + −
(30) 0.10(30) 0.60(50 30) 15S = + − =
When 30 mL of the 10% mixture is mixed with 20
mL of the 60% mixture, there will be 15 mL of
sodium-iodine in the vaccine.
109. – 117. Answers will vary.
118. makes sense
119. does not make sense; Explanations will vary.
Sample explanation: The parentheses used in
function notation, such as ( ),f x do not imply
multiplication.
Section 2.1 Basics of Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 213
120. does not make sense; Explanations will vary.
Sample explanation: The domain is the number of
years worked for the company.
121. does not make sense; Explanations will vary.
Sample explanation: This would not be a function
because some elements in the domain would
correspond to more than one age in the range.
122. false; Changes to make the statement true will vary.
A sample change is: The domain is [ 4,4].−
123. false; Changes to make the statement true will vary.
A sample change is: The range is [ )2,2 .−
124. true
125. false; Changes to make the statement true will vary.
A sample change is: (0) 0.8f =
126. ( ) 3( ) 7 3 3 7
( ) 3 7
f a h a h a h
f a a
+ = + + = + +
= +
( ) ( )
( ) ( )
3 3 7 3 7
3 3 7 3 7 3
3
f a h f a
h
a h a
h
a h a h
h h
+ −
+ + − +
=
+ + − −
= = =
127. Answers will vary.
An example is {(1,1),(2,1)}
128. It is given that ( ) ( ) ( )f x y f x f y+ = + and (1) 3f = .
To find (2)f , rewrite 2 as 1 + 1.
(2) (1 1) (1) (1)
3 3 6
f f f f= + = +
= + =
Similarly:
(3) (2 1) (2) (1)
6 3 9
f f f f= + = +
= + =
(4) (3 1) (3) (1)
9 3 12
f f f f= + = +
= + =
While ( ) ( ) ( )f x y f x f y+ = + is true for this function,
it is not true for all functions. It is not true
for ( ) 2
f x x= , for example.
129. ( )1 3 4 2
1 3 12 2
3 13 2
13
13
x x
x x
x x
x
x
− + − =
− + − =
− =
− = −
=
The solution set is {13}.
130.
( )
3 4
5
5 2
3 4
10 10 10 5
5 2
2 6 5 20 50
3 14 50
3 36
12
x x
x x
x x
x
x
x
− −
− =
− −   
− =   
   
− − + =
− + =
− =
= −
The solution set is {–12}.
131. Let x = the number of deaths by snakes, in
thousands, in 2014
Let x + 661 = the number of deaths by
mosquitoes, in thousands, in 2014
Let x + 106 = the number of deaths by snails, in
thousands, in 2014
( ) ( )661 106 1049
661 106 1049
3 767 1049
3 282
94
x x x
x x x
x
x
x
+ + + + =
+ + + + =
+ =
=
=
94, thousand deaths by snakes
661 755, thousand deaths by mosquitoes
106 200, thousand deaths by snails
x
x
x
=
+ =
+ =
132. ( ) 20 0.40( 60)
(100) 20 0.40(100 60)
20 0.40(40)
20 16
36
C t t
C
= + −
= + −
= +
= +
=
For 100 calling minutes, the monthly cost is $36.
133.
134. 2 2
2 2 2
2 2 2
2 2 2
2
2( ) 3( ) 5 (2 3 5)
2( 2 ) 3 3 5 2 3 5
2 4 2 3 3 5 2 3 5
2 2 4 2 3 3 3 5 5
4 2 3
x h x h x x
x xh h x h x x
x xh h x h x x
x x xh h x x h
xh h h
+ + + + − + +
= + + + + + − − −
= + + + + + − − −
= − + + + − + + −
= + +
Chapter 2 Functions and Graphs
214 Copyright © 2018 Pearson Education, Inc.
Section 2.2
Check Point Exercises
1. The function is increasing on the interval ( , 1),−∞ −
decreasing on the interval ( 1,1),− and increasing on
the interval (1, ).∞
2. Test for symmetry with respect to the y-axis.
( )
2
2
2
1
1
1
y x
y x
y x
= −
= − −
= −
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
y-axis.
Test for symmetry with respect to the x-axis.
2
2
2
1
1
1
y x
y x
y x
= −
− = −
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( )
2
2
2
2
1
1
1
1
y x
y x
y x
y x
= −
− = − −
− = −
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
3. Test for symmetry with respect to the y-axis.
( )
5 3
35
5 3
y x
y x
y x
=
= −
= −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( )
5 3
5 3
5 3
5 3
y x
y x
y x
y x
=
− =
− =
= −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( ) ( )
5 3
5 3
5 3
5 3
y x
y x
y x
y x
=
− = −
− = −
=
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
origin.
4. a. The graph passes the vertical line test and is
therefore the graph of a function. The graph is
symmetric with respect to the y-axis. Therefore,
the graph is that of an even function.
b. The graph passes the vertical line test and is
therefore the graph of a function. The graph is
neither symmetric with respect to the y-axis nor
the origin. Therefore, the graph is that of a
function which is neither even nor odd.
c. The graph passes the vertical line test and is
therefore the graph of a function. The graph is
symmetric with respect to the origin. Therefore,
the graph is that of an odd function.
5. a. 2 2
( ) ( ) 6 6 ( )f x x x f x− = − + = + =
The function is even. The graph is symmetric
with respect to the y-axis.
b. 3 3
( ) 7( ) ( ) 7 ( )g x x x x x f x− = − − − = − + = −
The function is odd. The graph is symmetric
with respect to the origin.
c. 5 5
( ) ( ) 1 1h x x x− = − + = − +
The function is neither even nor odd. The graph
is neither symmetric to the y-axis nor the origin.
6.
20 if 0 60
( )
20 0.40( 60) if 60
t
C t
t t
≤ ≤
= 
+ − >
a. Since 0 40 60≤ ≤ , (40) 20C =
With 40 calling minutes, the cost is $20.
This is represented by ( )40,20 .
b. Since 80 60> ,
(80) 20 0.40(80 60) 28C = + − =
With 80 calling minutes, the cost is $28.
This is represented by ( )80,28 .
Section 2.2 More on Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 215
7.
8. a. 2
( ) 2 5f x x x= − + +
2
2 2
2 2
( ) 2( ) ( ) 5
2( 2 ) 5
2 4 2 5
f x h x h x h
x xh h x h
x xh h x h
+ = − + + + +
= − + + + + +
= − − − + + +
b.
( ) ( )f x h f x
h
+ −
( )
( )
2 2 2
2 2 2
2
2 4 2 5 2 5
2 4 2 5 2 5
4 2
4 2 1
4 2 1, 0
x xh h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h h
− − − + + + − − + +
=
− − − + + + + − −
=
− − +
=
− − +
=
= − − + ≠
Concept and Vocabulary Check 2.2
1. 2( )f x< ; 2( )f x> ; 2( )f x=
2. maximum; minimum
3. y-axis
4. x-axis
5. origin
6. ( )f x ; y-axis
7. ( )f x− ; origin
8. piecewise
9. less than or equal to x; 2; 3− ; 0
10. difference quotient; x h+ ; ( )f x ; h; h
11. false
12. false
Exercise Set 2.2
1. a. increasing: ( 1, )− ∞
b. decreasing: ( , 1)−∞ −
c. constant: none
2. a. increasing: (–∞, –1)
b. decreasing: (–1, ∞)
c. constant: none
3. a. increasing: (0, )∞
b. decreasing: none
c. constant: none
4. a. increasing: (–1, ∞)
b. decreasing: none
c. constant: none
5. a. increasing: none
b. decreasing: (–2, 6)
c. constant: none
6. a. increasing: (–3, 2)
b. decreasing: none
c. constant: none
7. a. increasing: ( , 1)−∞ −
b. decreasing: none
c. constant: ( 1, )− ∞
8. a. increasing: (0, ∞)
b. decreasing: none
c. constant: (–∞, 0)
9. a. increasing: ( , 0) or (1.5, 3)−∞
b. decreasing: (0,1.5) or (3, )∞
c. constant: none
Chapter 2 Functions and Graphs
216 Copyright © 2018 Pearson Education, Inc.
10. a. increasing: ( 5, 4) or ( 2,0) or (2,4)− − −
b. decreasing: ( 4, 2) or (0,2) or (4,5)− −
c. constant: none
11. a. increasing: (–2, 4)
b. decreasing: none
c. constant: ( , 2) or (4, )−∞ − ∞
12. a. increasing: none
b. decreasing: (–4, 2)
c. constant: ( , 4) or (2, )−∞ − ∞
13. a. x = 0, relative maximum = 4
b. x = −3, 3, relative minimum = 0
14. a. x = 0, relative maximum = 2
b. x = −3, 3, relative minimum = –1
15. a. x = −2, relative maximum = 21
b. x = 1, relative minimum = −6
16. a. x =1, relative maximum = 30
b. x = 4, relative minimum = 3
17. Test for symmetry with respect to the y-axis.
( )
2
2
2
6
6
6
y x
y x
y x
= +
= − +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
y-axis.
Test for symmetry with respect to the x-axis.
2
2
2
6
6
6
y x
y x
y x
= +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( )
2
2
2
2
6
6
6
6
y x
y x
y x
y x
= +
− = − +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
18. Test for symmetry with respect to the y-axis.
( )
2
2
2
2
2
2
y x
y x
y x
= −
= − −
= −
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
y-axis.
Test for symmetry with respect to the x-axis.
2
2
2
2
2
2
y x
y x
y x
= −
− = −
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( )
2
2
2
2
2
2
2
2
y x
y x
y x
y x
= −
− = − −
− = −
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
19. Test for symmetry with respect to the y-axis.
2
2
2
6
6
6
x y
x y
x y
= +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( )
2
2
2
6
6
6
x y
x y
x y
= +
= − +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
x-axis.
Section 2.2 More on Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 217
Test for symmetry with respect to the origin.
( )
2
2
2
2
6
6
6
6
x y
x y
x y
x y
= +
− = − +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
20. Test for symmetry with respect to the y-axis.
2
2
2
2
2
2
x y
x y
x y
= −
− = −
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( )
2
2
2
2
2
2
x y
x y
x y
= −
= − −
= −
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
x-axis.
Test for symmetry with respect to the origin.
( )
2
2
2
2
2
2
2
2
x y
x y
x y
x y
= −
− = − −
− = −
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
21. Test for symmetry with respect to the y-axis.
( )
2 2
22
2 2
6
6
6
y x
y x
y x
= +
= − +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the y-axis.
Test for symmetry with respect to the x-axis.
( )
2 2
2 2
2 2
6
6
6
y x
y x
y x
= +
− = +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the x-axis.
Test for symmetry with respect to the origin.
( ) ( )
2 2
2 2
2
6
6
6
y x
y x
y x
= +
− = − +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the origin.
22. Test for symmetry with respect to the y-axis.
( )
2 2
22
2 2
2
2
2
y x
y x
y x
= −
= − −
= −
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
y-axis.
Test for symmetry with respect to the x-axis.
( )
2 2
2 2
2 2
2
2
2
y x
y x
y x
= −
− = −
= −
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
x-axis.
Test for symmetry with respect to the origin.
( ) ( )
2 2
2 2
2
2
2
2
y x
y x
y x
= −
− = − −
= −
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
origin.
23. Test for symmetry with respect to the y-axis.
( )
2 3
2 3
2 3
y x
y x
y x
= +
= − +
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
2 3
2 3
2 3
y x
y x
y x
= +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
Chapter 2 Functions and Graphs
218 Copyright © 2018 Pearson Education, Inc.
( )
2 3
2 3
2 3
y x
y x
y x
= +
− = − +
= −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
24. Test for symmetry with respect to the y-axis.
( )
2 5
2 5
2 5
y x
y x
y x
= +
= − +
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
2 5
2 5
2 5
y x
y x
y x
= +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( )
2 5
2 5
2 5
y x
y x
y x
= +
− = − +
= −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
25. Test for symmetry with respect to the y-axis.
( )
2 3
2 3
2 3
2
2
2
x y
x y
x y
− =
− − =
− =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the y-
axis.
Test for symmetry with respect to the x-axis.
( )
2 3
32
2 3
2
2
2
x y
x y
x y
− =
− − =
+ =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( ) ( )
2 3
2 3
2 3
2
2
2
x y
x y
x y
− =
− − − =
+ =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
26. Test for symmetry with respect to the y-axis.
( )
3 2
3 2
3 2
5
5
5
x y
x y
x y
− =
− − =
− − =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( )
3 2
23
3 2
5
5
5
x y
x y
x y
− =
− − =
− =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the x-
axis.
Test for symmetry with respect to the origin.
( ) ( )
3 2
3 2
3 2
5
5
5
x y
x y
x y
− =
− − − =
− − =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
27. Test for symmetry with respect to the y-axis.
( )
2 2
2 2
2 2
100
100
100
x y
x y
x y
+ =
− + =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the y-
axis.
Test for symmetry with respect to the x-axis.
( )
2 2
22
2 2
100
100
100
x y
x y
x y
+ =
+ − =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the x-
axis.
Section 2.2 More on Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 219
Test for symmetry with respect to the origin.
( ) ( )
2 2
2 2
2 2
100
100
100
x y
x y
x y
+ =
− + − =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
origin.
28. Test for symmetry with respect to the y-axis.
( )
2 2
2 2
2 2
49
49
49
x y
x y
x y
+ =
− + =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the y-
axis.
Test for symmetry with respect to the x-axis.
( )
2 2
22
2 2
49
49
49
x y
x y
x y
+ =
+ − =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
x-axis.
Test for symmetry with respect to the origin.
( ) ( )
2 2
2 2
2 2
49
49
49
x y
x y
x y
+ =
− + − =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
origin.
29. Test for symmetry with respect to the y-axis.
( ) ( )
2 2
2 2
2 2
3 1
3 1
3 1
x y xy
x y x y
x y xy
+ =
− + − =
− =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( ) ( )
2 2
22
2 2
3 1
3 1
3 1
x y xy
x y x y
x y xy
+ =
− + − =
− =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
x-axis.
Test for symmetry with respect to the origin.
( ) ( ) ( )( )
2 2
2 2
2 2
3 1
3 1
3 1
x y xy
x y x y
x y xy
+ =
− − + − − =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
origin.
30. Test for symmetry with respect to the y-axis.
( ) ( )
2 2
2 2
2 2
5 2
5 2
5 2
x y xy
x y x y
x y xy
+ =
− + − =
− =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( ) ( )
2 2
22
2 2
5 2
5 2
5 2
x y xy
x y x y
x y xy
+ =
− + − =
− =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
x-axis.
Test for symmetry with respect to the origin.
( ) ( ) ( )( )
2 2
2 2
2 2
5 2
5 2
5 2
x y xy
x y x y
x y xy
+ =
− − + − − =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
origin.
31. Test for symmetry with respect to the y-axis.
( )
4 3
34
4 3
6
6
6
y x
y x
y x
= +
= − +
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( )
4 3
4 3
4 3
6
6
6
y x
y x
y x
= +
− = +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
x-axis.
Chapter 2 Functions and Graphs
220 Copyright © 2018 Pearson Education, Inc.
Test for symmetry with respect to the origin.
( ) ( )
4 3
4 3
4 3
6
6
6
y x
y x
y x
= +
− = − +
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
32. Test for symmetry with respect to the y-axis.
( )
5 4
45
5 4
2
2
2
y x
y x
y x
= +
= − +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the y-
axis.
Test for symmetry with respect to the x-axis.
( )
5 4
5 4
5 4
5 4
2
2
2
2
y x
y x
y x
y x
= +
− = +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( ) ( )
4 3
4 3
4 3
6
6
6
y x
y x
y x
= +
− = − +
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
33. The graph is symmetric with respect to the y-axis.
The function is even.
34. The graph is symmetric with respect to the origin.
The function is odd.
35. The graph is symmetric with respect to the origin.
The function is odd.
36. The graph is not symmetric with respect to the y-axis
or the origin. The function is neither even nor odd.
37. 3
3
3 3
( )
( ) ( ) ( )
( ) ( )
f x x x
f x x x
f x x x x x
= +
− = − + −
− = − − = − +
( ) ( ),f x f x− = − odd function
38. 3
3
3 3
( )
( ) ( ) ( )
( ) ( )
( ) ( ), odd function
f x x x
f x x x
f x x x x x
f x f x
= −
− = − − −
− = − + = − −
− = −
39. 2
2
( )
( ) ( ) ( )
g x x x
g x x x
= +
− = − + −
2
( ) ,g x x x− = − neither
40. 2
2
2
( )
( ) ( ) ( )
( ) , neither
g x x x
g x x x
g x x x
= −
− = − − −
− = +
41. 2 4
2 4
2 4
( )
( ) ( ) ( )
( )
h x x x
h x x x
h x x x
= −
− = − − −
− = −
( ) ( ),h x h x− = even function
42. 2 4
2 4
2 4
( ) 2
( ) 2( ) ( )
( ) 2
( ) ( ), even function
h x x x
h x x x
h x x x
h x h x
= +
− = − + −
− = +
− =
43. 2 4
2 4
2 4
( ) 1
( ) ( ) ( ) 1
( ) 1
f x x x
f x x x
f x x x
= − +
− = − − − +
− = − +
( ) ( ),f x f x− = even function
44. 2 4
2 4
2 4
( ) 2 1
( ) 2( ) ( ) 1
( ) 2 1
( ) ( ), even function
f x x x
f x x x
f x x x
f x f x
= + +
− = − + − +
− = + +
− =
45. 6 2
6 2
6 2
1
( ) 3
5
1
( ) ( ) 3( )
5
1
( ) 3
5
f x x x
f x x x
f x x x
= −
− = − − −
− = −
( ) ( )f x f x− = , even function
Section 2.2 More on Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 221
46. 3 5
3 5
3 5
3 5
( ) 2 6
( ) 2( ) 6( )
( ) 2 6
( ) (2 6 )
( ) ( ), odd function
f x x x
f x x x
f x x x
f x x x
f x f x
= −
− = − − −
− = − +
− = − −
− = −
47.
( )
2
2
2
2
( ) 1
( ) 1 ( )
( ) 1
1
f x x x
f x x x
f x x x
x x
= −
− = − − −
− = − −
= − −
f(–x) = – f(x), odd function
48. ( ) 2 2
1f x x x= −
( ) ( ) ( )
2 2
1f x x x− = − − −
( ) 2 2
1f x x x− = −
f(–x) = f(x), even function
49. a. domain: ( ),−∞ ∞
b. range: [ )4,− ∞
c. x-intercepts: 1, 7
d. y-intercept: 4
e. ( )4,∞
f. ( )0,4
g. ( ),0−∞
h. 4x =
i. 4y = −
j. ( 3) 4f − =
k. (2) 2f = − and (6) 2f = −
l. neither ; ( )f x x− ≠ , ( )f x x− ≠ −
50. a. domain: ( ),−∞ ∞
b. range: ( ],4−∞
c. x-intercepts: –4, 4
d. y-intercept: 1
e. ( ), 2−∞ − or ( )0,3
f. ( )2,0− or ( )3,∞
g. ( ], 4−∞ − or [ )4,∞
h. 2x = − and 3x =
i. ( 2) 4f − = and (3) 2f =
j. ( 2) 4f − =
k. 4x = − and 4x =
l. neither ; ( )f x x− ≠ , ( )f x x− ≠ −
51. a. domain: ( ],3−∞
b. range: ( ],4−∞
c. x-intercepts: –3, 3
d. (0) 3f =
e. ( ),1−∞
f. ( )1,3
g. ( ], 3−∞ −
h. (1) 4f =
i. 1x =
j. positive; ( 1) 2f − = +
52. a. domain: ( ],6−∞
b. range: ( ],1−∞
c. zeros of f: –3, 3
d. (0) 1f =
e. ( ), 2−∞ −
f. ( )2,6
g. ( )2,2−
Chapter 2 Functions and Graphs
222 Copyright © 2018 Pearson Education, Inc.
h. ( )3,3−
i. 5x = − and 5x =
j. negative; (4) 1f = −
k. neither
l. no; f(2) is not greater than the function values to
the immediate left.
53. a. f(–2) = 3(–2) + 5 = –1
b. f(0) = 4(0) + 7 = 7
c. f(3) = 4(3) + 7 = 19
54. a. f(–3) = 6(–3) – 1 = –19
b. f(0) = 7(0) + 3 = 3
c. f(4) = 7(4) + 3 = 31
55. a. g(0) = 0 + 3 = 3
b. g(–6) = –(–6 + 3) = –(–3) = 3
c. g(–3) = –3 + 3 = 0
56. a. g(0) = 0 + 5 = 5
b. g(–6) = –(–6 + 5) = –(–1) = 1
c. g(–5) = –5 + 5 = 0
57. a.
2
5 9 25 9 16
(5) 8
5 3 2 2
h
− −
= = = =
−
b.
2
0 9 9
(0) 3
0 3 3
h
− −
= = =
− −
c. h(3) = 6
58. a.
2
7 25 49 25 24
(7) 12
7 5 2 2
h
− −
= = = =
−
b.
2
0 25 25
(0) 5
0 5 5
h
− −
= = =
− −
c. h(5) = 10
59. a.
b. range: [ )0,∞
60. a.
b. range: ( ],0−∞
61. a.
b. range: ( ],0 {2}−∞ ∪
62. a.
b. range: ( ],0 {3}−∞ ∪
63. a.
b. range: ( , )−∞ ∞
Section 2.2 More on Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 223
64. a.
b. range: ( , )−∞ ∞
65. a.
b. range: { 3,3}−
66. a.
b. range: { 4,4}−
67. a.
b. range: [ )0,∞
68. a.
b. range: ( ] [ ),0 3,−∞ ∪ ∞
69. a.
b. range: [ )0,∞
70. a.
b. range: [ )1,− ∞
71.
( ) ( )f x h f x
h
+ −
4( ) 4
4 4 4
4
4
x h x
h
x h x
h
h
h
+ −
=
+ −
=
=
=
Chapter 2 Functions and Graphs
224 Copyright © 2018 Pearson Education, Inc.
72.
( ) ( )f x h f x
h
+ −
7( ) 7
7 7 7
7
7
x h x
h
x h x
h
h
h
+ −
=
+ −
=
=
=
73.
( ) ( )f x h f x
h
+ −
3( ) 7 (3 7)
3 3 7 3 7
3
3
x h x
h
x h x
h
h
h
+ + − +
=
+ + − −
=
=
=
74.
( ) ( )f x h f x
h
+ −
6( ) 1 (6 1)
6 6 1 6 1
6
6
x h x
h
x h x
h
h
h
+ + − +
=
+ + − −
=
=
=
75.
( ) ( )f x h f x
h
+ −
( )
( )
2 2
2 2 2
2
2
2
2
2
x h x
h
x xh h x
h
xh h
h
h x h
h
x h
+ −
=
+ + −
=
+
=
+
=
= +
76.
( ) ( )f x h f x
h
+ −
( )
2 2
2 2 2
2 2 2
2
2( ) 2
2( 2 ) 2
2 4 2 2
4 2
4 2
4 2
x h x
h
x xh h x
h
x xh h x
h
xh h
h
h x h
h
x h
+ −
=
+ + −
=
+ + −
=
+
=
+
=
= +
77.
( ) ( )f x h f x
h
+ −
2 2
2 2 2
2
( ) 4( ) 3 ( 4 3)
2 4 4 3 4 3
2 4
(2 4)
2 4
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
+ − + + − − +
=
+ + − − + − + −
=
+ −
=
+ −
=
= + −
78.
( ) ( )f x h f x
h
+ −
( )
2 2
2 2 2
2
( ) 5( ) 8 ( 5 8)
2 5 5 8 5 8
2 5
2 5
2 5
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
+ − + + − − +
=
+ + − − + − + −
=
+ −
=
+ −
=
= + −
Section 2.2 More on Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 225
79.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
2 2
2 2 2
2
2 1 (2 1)
2 4 2 1 2 1
4 2
4 2 1
4 2 1
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
+ + + − − + −
=
+ + + + − − − +
=
+ +
=
+ +
=
= + +
80.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
2 2
2 2 2
2
3 5 (3 5)
3 6 3 5 3 5
6 3
6 3 1
6 3 1
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
+ + + + − + +
=
+ + + + + − − −
=
+ +
=
+ +
=
= + +
81.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
2 2
2 2 2
2
2 4 ( 2 4)
2 2 2 4 2 4
2 2
2 2
2 2
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
− + + + + − − + +
=
− − − + + + + − −
=
− − +
=
− − +
=
= − − +
82.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
2 2
2 2 2
2
3 1 ( 3 1)
2 3 3 1 3 1
2 3
2 3
2 3
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
− + − + + − − − +
=
− − − − − + + + −
=
− − −
=
− − −
=
= − − −
83.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
2 2
2 2 2
2
2 5 7 ( 2 5 7)
2 4 2 5 5 7 2 5 7
4 2 5
4 2 5
4 2 5
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
− + + + + − − + +
=
− − − + + + + − −
=
− − +
=
− − +
=
= − − +
84.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
2 2
2 2 2
2
3 2 1 ( 3 2 1)
3 6 3 2 2 1 3 2 1
6 3 2
6 3 2
6 3 2
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
− + + + − − − + −
=
− − − + + − + − +
=
− − +
=
− − +
=
= − − +
Chapter 2 Functions and Graphs
226 Copyright © 2018 Pearson Education, Inc.
85.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
2 2
2 2 2
2
2 3 ( 2 3)
2 4 2 3 2 3
4 2
4 2 1
4 2 1
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
− + − + + − − − +
=
− − − − − + + + −
=
− − −
=
− − −
=
= − − −
86.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
2 2
2 2 2
2
3 1 ( 3 1)
3 6 3 1 3 1
6 3
6 3 1
6 3 1
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
− + + + − − − + −
=
− − − + + − + − +
=
− − +
=
− − +
=
= − − +
87.
( ) ( ) 6 6 0
0
f x h f x
h h h
+ − −
= = =
88.
( ) ( ) 7 7 0
0
f x h f x
h h h
+ − −
= = =
89.
( ) ( )f x h f x
h
+ −
( )
1 1
( ) ( )
( )
( )
1
( )
1
( )
x h x
h
x hx
x x h x x h
h
x x h
x x h
h
h
x x h
h
h
x x h h
x x h
−
+=
− +
+
+ +
=
− −
+
=
−
+
=
−
= ⋅
+
−
=
+
90.
( ) ( )f x h f x
h
+ −
( )
1 1
2( ) 2
2 ( ) 2 ( )
2 ( )
1
2 ( )
1
2
x h x
h
x x h
x x h x x h
h
h
x x h
h
h
x x h h
x x h
−
+
=
+
−
+ +
=
−
+
=
−
= ⋅
+
−
=
+
91.
( ) ( )f x h f x
h
+ −
( )
( )
1
x h x
h
x h x x h x
h x h x
x h x
h x h x
h
h x h x
x h x
+ −
=
+ − + +
= ⋅
+ +
+ −
=
+ +
=
+ +
=
+ +
92.
( ) ( )f x h f x
h
+ −
( )
( )
( )
1 1
1 1 1 1
1 1
1 ( 1)
1 1
1 1
1 1
1 1
1
1 1
x h x
h
x h x x h x
h x h x
x h x
h x h x
x h x
h x h x
h
h x h x
x h x
+ − − −
=
+ − − − + − + −
= ⋅
+ − + −
+ − − −
=
+ − + −
+ − − +
=
+ − + −
=
+ − + −
=
+ − + −
Section 2.2 More on Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 227
93. [ ]
2
( 1.5) ( 0.9) ( ) ( 3) (1) ( )f f f f f fπ π− + − − + − ÷ ⋅ −
[ ] ( )
( )
2
1 0 4 2 2 3
1 16 1 3
1 16 3
18
= + − − + ÷ − ⋅
= − + − ⋅
= − −
= −
94. [ ]
2
( 2.5) (1.9) ( ) ( 3) (1) ( )f f f f f fπ π− − − − + − ÷ ⋅
[ ]
[ ] ( ) ( )
( )( )
2
2
( 2.5) (1.9) ( ) ( 3) (1) ( )
2 ( 2) 3 2 2 4
4 9 1 4
2 9 4
3
f f f f f fπ π− − − − + − ÷ ⋅
= − − − + ÷ − ⋅ −
= − + − −
= − +
= −
95. 30 0.30( 120) 30 0.3 36 0.3 6t t t+ − = + − = −
96. 40 0.30( 200) 40 0.3 60 0.3 20t t t+ − = + − = −
97.
50 if 0 400
( )
50 0.30( 400) if 400
t
C t
t t
≤ ≤
= 
+ − >
98.
60 if 0 450
( )
60 0.35( 450) if 450
t
C t
t t
≤ ≤
= 
+ − >
99. increasing: (25, 55); decreasing: (55, 75)
100. increasing: (25, 65); decreasing: (65, 75)
101. The percent body fat in women reaches a maximum
at age 55. This maximum is 38%.
102. The percent body fat in men reaches a maximum at
age 65. This maximum is 26%.
103. domain: [25, 75]; range: [34, 38]
104. domain: [25, 75]; range: [23, 26]
105. This model describes percent body fat in men.
106. This model describes percent body fat in women.
107. (20,000) 850 0.15(20,000 8500)
2575
T = + −
=
A single taxpayer with taxable income of $20,000
owes $2575.
108. (50,000) 4750 0.25(50,000 34,500)
8625
T = + −
=
A single taxpayer with taxable income of $50,000
owes $8625.
109. 42,449+ 0.33( 174,400)x −
110. 110,016.50+ 0.35( ( 379,150)x x− −
111. (3) 0.93f =
The cost of mailing a first-class letter weighing 3
ounces is $0.93.
112. (3.5) 1.05f =
The cost of mailing a first-class letter weighing 3.5
ounces is $1.05.
113. The cost to mail a letter weighing 1.5 ounces is
$0.65.
Chapter 2 Functions and Graphs
228 Copyright © 2018 Pearson Education, Inc.
114. The cost to mail a letter weighing 1.8 ounces is
$0.65.
115.
116. – 124. Answers will vary.
125.
The number of doctor visits decreases during
childhood and then increases as you get older.
The minimum is (20.29, 3.99), which means that the
minimum number of doctor visits, about 4, occurs at
around age 20.
126.
Increasing: ( ,1) or (3, )−∞ ∞
Decreasing: (1, 3)
127.
Increasing: (–2, 0) or (2, ∞)
Decreasing: (–∞, –2) or (0, 2)
128.
Increasing: (2, )∞
Decreasing: ( , 2)−∞ −
Constant: (–2, 2)
129.
Increasing: (1, ∞)
Decreasing: (–∞, 1)
130.
Increasing: (0, )∞
Decreasing: ( , 0)−∞
131.
Increasing: (–∞, 0)
Decreasing: (0, ∞)
Section 2.2 More on Functions and Their Graphs
Copyright © 2018 Pearson Education, Inc. 229
132. a.
b.
c. Increasing: (0, ∞)
Decreasing: (–∞, 0)
d. ( ) n
f x x= is increasing from (–∞, ∞) when n
is odd.
e.
133. does not make sense; Explanations will vary.
Sample explanation: It’s possible the graph is not
defined at a.
134. makes sense
135. makes sense
136. makes sense
137. answers will vary
138. answers will vary
139. a. h is even if both f and g are even or if both f and
g are odd.
f and g are both even:
(– ) ( )
(– ) ( )
(– ) ( )
f x f x
h x h x
g x g x
= = =
f and g are both odd:
(– ) – ( ) ( )
(– ) ( )
(– ) – ( ) ( )
f x f x f x
h x h x
g x g x g x
= = = =
b. h is odd if f is odd and g is even or if f is even
and g is odd.
f is odd and g is even:
(– ) – ( ) ( )
(– ) – – ( )
(– ) ( ) ( )
f x f x f x
h x h x
g x g x g x
= = = =
f is even and g is odd:
(– ) ( ) ( )
(– ) – – ( )
(– ) – ( ) ( )
f x f x f x
h x h x
g x g x g x
= = = =
140. Let x = the amount invested at 5%.
Let 80,000 – x = the amount invested at 7%.
0.05 0.07(80,000 ) 5200
0.05 5600 0.07 5200
0.02 5600 5200
0.02 400
20,000
80,000 60,000
x x
x x
x
x
x
x
+ − =
+ − =
− + =
− = −
=
− =
$20,000 was invested at 5% and $60,000 was
invested at 7%.
141. C A Ar= +
( )1
1
C A Ar
C A r
C
A
r
= +
= +
=
+
Chapter 2 Functions and Graphs
230 Copyright © 2018 Pearson Education, Inc.
142. 2
5 7 3 0
5, 7, 3
x x
a b c
− + =
= = − =
2
2
4
2
( 7) ( 7) 4(5)(3)
2(5)
7 49 60
10
7 11
10
7 11
10
7 11
10 10
b b ac
x
a
x
x
x
i
x
x i
− ± −
=
− − ± − −
=
± −
=
± −
=
±
=
= ±
The solution set is
7 11 7 11
, .
10 10 10 10
i
  
+ − 
  
143. 2 1
2 1
4 1 3
3
2 ( 3) 1
y y
x x
− −
= = =
− − − −
144. When 0 :y =
4 3 6 0
4 3(0) 6 0
4 6 0
4 6
3
2
x y
x
x
x
x
− − =
− − =
− =
=
=
The point is
3
,0 .
2
 
 
 
When 0 :x =
4 3 6 0
4(0) 3 6 0
3 6 0
3 6
2
x y
y
y
y
x
− − =
− − =
− − =
− =
= −
The point is ( )0, 2 .−
145. 3 2 4 0
2 3 4
3 4
2
or
3
2
2
x y
y x
x
y
y x
+ − =
= − +
− +
=
= − +
Section 2.3
Check Point Exercises
1. a.
2 4 6
6
4 ( 3) 1
m
− − −
= = =
− − − −
b.
5 ( 2) 7 7
1 4 5 5
m
− −
= = = −
− − −
2. Point-slope form:
1 1( )
( 5) 6( 2)
5 6( 2)
y y m x x
y x
y x
− = −
− − = −
+ = −
Slope-intercept form:
5 6( 2)
5 6 12
6 17
y x
y x
y x
+ = −
+ = −
= −
3.
6 ( 1) 5
5
1 ( 2) 1
m
− − − −
= = = −
− − −
,
so the slope is –5.
Using the point (–2, –1), we get the following point-
slope equation:
1 1( )
( 1) 5[ ( 2)]
1 5( 2)
y y m x x
y x
y x
− = −
− − = − − −
+ = − +
Using the point (–1, –6), we get the following point-
slope equation:
1 1( )
( 6) 5[ ( 1)]
6 5( 1)
y y m x x
y x
y x
− = −
− − = − − −
+ = − +
Solve the equation for y:
1 5( 2)
1 5 10
5 11.
y x
y x
y x
+ = − +
+ = − −
= − −
4. The slope m is 3
5
and the y-intercept is 1, so one
point on the line is (0, 1). We can find a second point
on the line by using the slope 3 Rise
5 Run
:m = = starting at
the point (0, 1), move 3 units up and 5 units to the
right, to obtain the point (5, 4).
Section 2.3 Linear Functions and Slope
Copyright © 2018 Pearson Education, Inc. 231
5. 3y = is a horizontal line.
6. All ordered pairs that are solutions of 3x = − have a
value of x that is always –3. Any value can be used
for y.
7. 3 6 12 0
6 3 12
3 12
6 6
1
2
2
x y
y x
y x
y x
+ − =
= − +
−
= +
= − +
The slope is
1
2
− and the y-intercept is 2.
8. Find the x-intercept:
3 2 6 0
3 2(0) 6 0
3 6 0
3 6
2
x y
x
x
x
x
− − =
− − =
− =
=
=
Find the y-intercept:
3 2 6 0
3(0) 2 6 0
2 6 0
2 6
3
x y
y
y
y
y
− − =
− − =
− − =
− =
= −
9. First find the slope.
Change in 57.64 57.04 0.6
0.016
Change in 354 317 37
y
m
x
−
= = = ≈
−
Use the point-slope form and then find slope-
intercept form.
1 1( )
57.04 0.016( 317)
57.04 0.016 5.072
0.016 51.968
( ) 0.016 52.0
y y m x x
y x
y x
y x
f x x
− = −
− = −
− = −
= +
= +
Find the temperature at a concentration of 600 parts
per million.
( ) 0.016 52.0
(600) 0.016(600) 52.0
61.6
f x x
f
= +
= +
=
The temperature at a concentration of 600 parts per
million would be 61.6 F.°
Concept and Vocabulary Check 2.3
1. scatter plot; regression
2. 2 1
2 1
y y
x x
−
−
3. positive
4. negative
5. zero
6. undefined
7. 1 1( )y y m x x− = −
Chapter 2 Functions and Graphs
232 Copyright © 2018 Pearson Education, Inc.
8. y mx b= + ; slope; y-intercept
9. (0,3) ; 2; 5
10. horizontal
11. vertical
12. general
Exercise Set 2.3
1.
10 7 3
;
8 4 4
m
−
= =
−
rises
2.
4 1 3
3;
3 2 1
m
−
= = =
−
rises
3.
2 1 1
;
2 ( 2) 4
m
−
= =
− −
rises
4.
4 3 1
;
2 ( 1) 3
m
−
= =
− −
rises
5.
2 ( 2) 0
0;
3 4 1
m
− −
= = =
− −
horizontal
6.
1 ( 1) 0
0;
3 4 1
m
− − −
= = =
− −
horizontal
7.
1 4 5
5;
1 ( 2) 1
m
− − −
= = = −
− − −
falls
8.
2 ( 4) 2
1;
4 6 2
m
− − −
= = = −
− −
falls
9.
2 3 5
5 5 0
m
− − −
= =
−
undefined; vertical
10.
5 ( 4) 9
3 3 0
m
− −
= =
−
undefined; vertical
11. 1 12, 3, 5;m x y= = =
point-slope form: y – 5 = 2(x – 3);
slope-intercept form: 5 2 6
2 1
y x
y x
− = −
= −
12. point-slope form: y – 3 = 4(x – 1);
1 14, 1, 3;m x y= = =
slope-intercept form: y = 4x – 1
13. 1 16, 2, 5;m x y= = − =
point-slope form: y – 5 = 6(x + 2);
slope-intercept form: 5 6 12
6 17
y x
y x
− = +
= +
14. point-slope form: y + 1 = 8(x – 4);
1 18, 4, 1;m x y= = = −
slope-intercept form: y = 8x – 33
15. 1 13, 2, 3;m x y= − = − = −
point-slope form: y + 3 = –3(x + 2);
slope-intercept form: 3 3 6
3 9
y x
y x
+ = − −
= − −
16. point-slope form: y + 2 = –5(x + 4);
1 15, 4, 2;m x y= − = − = −
slope-intercept form: y = –5x – 22
17. 1 14, 4, 0;m x y= − = − =
point-slope form: y – 0 = –4(x + 4);
slope-intercept form: 4( 4)
4 16
y x
y x
= − +
= − −
18. point-slope form: y + 3 = –2(x – 0)
1 12, 0, 3;m x y= − = = −
slope-intercept form: y = –2x – 3
19. 1 1
1
1, , 2;
2
m x y
−
= − = = −
point-slope form:
1
2 1 ;
2
y x
 
+ = − + 
 
slope-intercept form:
1
2
2
5
2
y x
y x
+ = − −
= − −
20. point-slope form:
1
1( 4);
4
y x+ = − +
1 1
1
1, 4, ;
4
m x y= − = − = −
slope-intercept form:
17
4
y x= − −
21. 1 1
1
, 0, 0;
2
m x y= = =
point-slope form:
1
0 ( 0);
2
y x− = −
slope-intercept form:
1
2
y x=
Section 2.3 Linear Functions and Slope
Copyright © 2018 Pearson Education, Inc. 233
22. point-slope form:
1
0 ( 0);
3
y x− = −
1 1
1
, 0, 0;
3
m x y= = =
slope-intercept form:
1
3
y x=
23. 1 1
2
, 6, 2;
3
m x y= − = = −
point-slope form:
2
2 ( 6);
3
y x+ = − −
slope-intercept form:
2
2 4
3
2
2
3
y x
y x
+ = − +
= − +
24. point-slope form:
3
4 ( 10);
5
y x+ = − −
1 1
3
, 10, 4;
5
m x y= − = = −
slope-intercept form:
3
2
5
y x= − +
25.
10 2 8
2
5 1 4
m
−
= = =
−
;
point-slope form: y – 2 = 2(x – 1) using
1 1( , ) (1, 2)x y = , or y – 10 = 2(x – 5) using
1 1( , ) (5, 10)x y = ;
slope-intercept form: 2 2 2or
10 2 10,
2
y x
y x
y x
− = −
− = −
=
26.
15 5 10
2
8 3 5
m
−
= = =
−
;
point-slope form: y – 5 = 2(x – 3) using
( ) ( )1 1, 3,5x y = ,or y – 15 = 2(x – 8) using
( ) ( )1 1, 8,15x y = ;
slope-intercept form: y = 2x – 1
27.
3 0 3
1
0 ( 3) 3
m
−
= = =
− −
;
point-slope form: y – 0 = 1(x + 3) using
1 1( , ) ( 3, 0)x y = − , or y – 3 = 1(x – 0) using
1 1( , ) (0, 3)x y = ; slope-intercept form: y = x + 3
28.
2 0 2
1
0 ( 2) 2
m
−
= = =
− −
;
point-slope form: y – 0 = 1(x + 2) using
( ) ( )1 1, 2,0x y = − , or y – 2 = 1(x – 0) using
( ) ( )1 1, 0,2x y = ;
slope-intercept form: y = x + 2
29.
4 ( 1)
1
2 ( 3) 5
m
− − 5
= = =
− −
;
point-slope form: y + 1 = 1(x + 3) using
1 1( , ) ( 3, 1)x y = − − , or y – 4 = 1(x – 2) using
1 1( , ) (2, 4)x y = ; slope-intercept form:
1 3or
4 2
2
y x
y x
y x
+ = +
− = −
= +
30.
1 ( 4) 3
1
1 ( 2) 3
m
− − −
= = =
− −
;
point-slope form: y + 4 = 1(x + 2) using
( ) ( )1 1, 2, 4x y = − − , or y + 1 = 1(x – 1) using
( ) ( )1 1, 1, 1x y = −
slope-intercept form: y = x – 2
31.
6 ( 2) 8 4
3 ( 3) 6 3
m
− −
= = =
− −
;
point-slope form:
4
2 ( 3)
3
y x+ = + using
1 1( , ) ( 3, 2)x y = − − , or
4
6 ( 3)
3
y x− = − using
1 1( , ) (3, 6)x y = ;
slope-intercept form:
4
2 4or
3
4
6 4,
3
4
2
3
y
x
y x
y x
+ = +
− = −
= +
32.
2 6 8 4
3 ( 3) 6 3
m
− − −
= = = −
− −
;
point-slope form:
4
6 ( 3)
3
y x− = − + using
( ) ( )1 1, 3,6x y = − , or
4
2 ( 3)
3
y x+ = − − using
( ) ( )1 1, 3, 2x y = − ;
slope-intercept form:
4
2
3
y x= − +
Chapter 2 Functions and Graphs
234 Copyright © 2018 Pearson Education, Inc.
33.
1 ( 1) 0
0
4 ( 3) 7
m
− − −
= = =
− −
;
point-slope form: y + 1 = 0(x + 3) using
1 1( , ) ( 3, 1)x y = − − , or y + 1 = 0(x – 4) using
1 1( , ) (4, 1)x y = − ;
slope-intercept form: 1 0,so
1
y
y
+ =
= −
34.
5 ( 5) 0
0
6 ( 2) 8
m
− − −
= = =
− −
;
point-slope form: y + 5 = 0(x + 2) using
( ) ( )1 1, 2, 5x y = − − , or y + 5 = 0(x – 6) using
( ) ( )1 1, 6, 5x y = − ;
slope-intercept form: 5 0, so
5
y
y
+ =
= −
35.
0 4 4
1
2 2 4
m
− −
= = =
− − −
;
point-slope form: y – 4 = 1(x – 2) using
1 1( , ) (2, 4)x y = , or y – 0 = 1(x + 2) using
1 1( , ) ( 2, 0)x y = − ;
slope-intercept form: 9 2,or
2
y x
y x
− = −
= +
36.
0 ( 3) 3 3
1 1 2 2
m
− −
= = = −
− − −
point-slope form:
3
3 ( 1)
2
y x+ = − − using
( ) ( )1 1, 1, 3x y = − , or
3
0 ( 1)
2
y x− = − + using
( ) ( )1 1, 1,0x y = − ;
slope-intercept form:
3 3
3 , or
2 2
3 3
2 2
y x
y x
+ = − +
= − −
37.
( )1 1
2 2
4 0 4
8
0
m
−
= = =
− −
;
point-slope form: y – 4 = 8(x – 0) using
1 1( , ) (0, 4)x y = , or ( )1
2
0 8y x− = + using
( )1
1 1 2
( , ) , 0x y = − ; or ( )1
2
0 8y x− = +
slope-intercept form: 8 4y x= +
38.
2 0 2 1
0 4 4 2
m
− − −
= = =
− −
;
point-slope form:
1
0 ( 4)
2
y x− = − using
( ) ( )1 1, 4,0x y = ,
or
1
2 ( 0)
2
y x+ = − using ( ) ( )1 1, 0, 2x y = − ;
slope-intercept form:
1
2
2
y x= −
39. m = 2; b = 1
40. m = 3; b = 2
41. m = –2; b = 1
42. m = –3; b = 2
Section 2.3 Linear Functions and Slope
Copyright © 2018 Pearson Education, Inc. 235
43.
3
;
4
m = b = –2
44.
3
; 3
4
m b= = −
45.
3
;
5
m = − b = 7
46.
2
; 6
5
m b= − =
47.
1
; 0
2
m b= − =
48.
1
; 0
3
m b= − =
49.
50.
51.
52.
53.
Chapter 2 Functions and Graphs
236 Copyright © 2018 Pearson Education, Inc.
54.
55.
56.
57. 3 18 0x − =
3 18
6
x
x
=
=
58. 3 12 0x + =
3 12
4
x
x
= −
= −
59. a. 3 5 0
5 3
3 5
x y
y x
y x
+ − =
− = −
= − +
b. m = –3; b = 5
c.
60. a. 4 6 0
6 4
4 6
x y
y x
y x
+ − =
− = −
= − +
b. 4; 6m b= − =
c.
61. a. 2 3 18 0x y+ − =
2 18 3
3 2 18
2 18
3 3
2
6
3
x y
y x
y x
y x
− = −
− = −
= −
− −
= − +
b.
2
;
3
m = − b = 6
c.
62. a. 4 6 12 0x y+ + =
4 12 6
6 4 12
4 12
6 6
2
2
3
x y
y x
y x
y x
+ = −
− = +
= +
− −
= − −
Section 2.3 Linear Functions and Slope
Copyright © 2018 Pearson Education, Inc. 237
b.
2
;
3
m = − b = –2
c.
63. a. 8 4 12 0
8 12 4
4 8 12
8 12
4 4
2 3
x y
x y
y x
y x
y x
− − =
− =
= −
= −
= −
b. m = 2; b = –3
c.
64. a. 6 5 20 0x y− − =
6 20 5
5 6 20
6 20
5 5
6
4
5
x y
y x
y x
y x
− =
= −
= −
= −
b.
6
; 4
5
m b= = −
c.
65. a. 3 9 0y − =
3 9
3
y
y
=
=
b. 0; 3m b= =
c.
66. a. 4 28 0y + =
4 28
7
y
y
= −
= −
b. 0; 7m b= = −
c.
67. Find the x-intercept:
6 2 12 0
6 2(0) 12 0
6 12 0
6 12
2
x y
x
x
x
x
− − =
− − =
− =
=
=
Find the y-intercept:
6 2 12 0
6(0) 2 12 0
2 12 0
2 12
6
x y
y
y
y
y
− − =
− − =
− − =
− =
= −
Chapter 2 Functions and Graphs
238 Copyright © 2018 Pearson Education, Inc.
68. Find the x-intercept:
6 9 18 0
6 9(0) 18 0
6 18 0
6 18
3
x y
x
x
x
x
− − =
− − =
− =
=
=
Find the y-intercept:
6 9 18 0
6(0) 9 18 0
9 18 0
9 18
2
x y
y
y
y
y
− − =
− − =
− − =
− =
= −
69. Find the x-intercept:
2 3 6 0
2 3(0) 6 0
2 6 0
2 6
3
x y
x
x
x
x
+ + =
+ + =
+ =
= −
= −
Find the y-intercept:
2 3 6 0
2(0) 3 6 0
3 6 0
3 6
2
x y
y
y
y
y
+ + =
+ + =
+ =
= −
= −
70. Find the x-intercept:
3 5 15 0
3 5(0) 15 0
3 15 0
3 15
5
x y
x
x
x
x
+ + =
+ + =
+ =
= −
= −
Find the y-intercept:
3 5 15 0
3(0) 5 15 0
5 15 0
5 15
3
x y
y
y
y
y
+ + =
+ + =
+ =
= −
= −
71. Find the x-intercept:
8 2 12 0
8 2(0) 12 0
8 12 0
8 12
8 12
8 8
3
2
x y
x
x
x
x
x
− + =
− + =
+ =
= −
−
=
−
=
Find the y-intercept:
8 2 12 0
8(0) 2 12 0
2 12 0
2 12
6
x y
y
y
y
y
− + =
− + =
− + =
− = −
= −
Section 2.3 Linear Functions and Slope
Copyright © 2018 Pearson Education, Inc. 239
72. Find the x-intercept:
6 3 15 0
6 3(0) 15 0
6 15 0
6 15
6 15
6 6
5
2
x y
x
x
x
x
x
− + =
− + =
+ =
= −
−
=
= −
Find the y-intercept:
6 3 15 0
6(0) 3 15 0
3 15 0
3 15
5
x y
y
y
y
y
− + =
− + =
− + =
− = −
=
73. 0
0
a a a
m
b b b
− −
= = = −
−
Since a and b are both positive,
a
b
− is
negative. Therefore, the line falls.
74.
( )
0
0
b b b
m
a a a
− − −
= = = −
− −
Since a and b are both positive,
b
a
− is
negative. Therefore, the line falls.
75. ( )
0
b c b c
m
a a
+ −
= =
−
The slope is undefined.
The line is vertical.
76. ( )
( )
a c c a
m
a a b b
+ −
= =
− −
Since a and b are both positive,
a
b
is positive.
Therefore, the line rises.
77. Ax By C
By Ax C
A C
y x
B B
+ =
= − +
= − +
The slope is
A
B
− and the y − intercept is .
C
B
78. Ax By C
Ax C By
A C
x y
B B
= −
+ =
+ =
The slope is
A
B
and the y − intercept is .
C
B
79. 4
3
1 3
4
3
2
6 4
2
2
y
y
y
y
y
−
− =
−
−
− =
−
= −
= −
− =
80.
( )
( )
1 4
3 4 2
1 4
3 4 2
1 4
3 6
6 3 4
6 12 3
18 3
6
y
y
y
y
y
y
y
− −
=
− −
− −
=
+
− −
=
= − −
= − −
= −
− =
81. ( )
( )
( )
3 4 6
4 3 6
3 3
4 2
x f x
f x x
f x x
− =
− = − +
= −
Chapter 2 Functions and Graphs
240 Copyright © 2018 Pearson Education, Inc.
82. ( )
( )
( )
6 5 20
5 6 20
6
4
5
x f x
f x x
f x x
− =
− = − +
= −
83. Using the slope-intercept form for the equation
of a line:
( )1 2 3
1 6
5
b
b
b
− = − +
− = − +
=
84.
( )
3
6 2
2
6 3
3
b
b
b
− = − +
− = − +
− =
85. 1 3 2 4, , ,m m m m
86. 2 1 4 3, , ,b b b b
87. a. First, find the slope using ( )20,38.9 and
( )30,47.8 .
47.8 38.9 8.9
0.89
30 20 10
m
−
= = =
−
Then use the slope and one of the points to
write the equation in point-slope form.
( )
( )
( )
1 1
47.8 0.89 30
or
38.9 0.89 20
y y m x x
y x
y x
− = −
− = −
− = −
b. ( )
( )
47.8 0.89 30
47.8 0.89 26.7
0.89 21.1
0.89 21.1
y x
y x
y x
f x x
− = −
− = −
= +
= +
c. ( )40 0.89(40) 21.1 56.7f = + =
The linear function predicts the percentage of
never married American females, ages 25 – 29,
to be 56.7% in 2020.
88. a. First, find the slope using ( )20,51.7 and
( )30,62.6 .
51.7 62.6 10.9
1.09
20 30 10
m
− −
= = =
− −
Then use the slope and one of the points to
write the equation in point-slope form.
( )
( )
( )
1 1
62.6 1.09 30
or
51.7 1.09 20
y y m x x
y x
y x
− = −
− = −
− = −
b. ( )
( )
62.6 1.09 30
62.6 1.09 32.7
1.09 29.9
1.09 29.9
y x
y x
y x
f x x
− = −
− = −
= +
= +
c. ( )35 1.09(35) 29.9 68.05f = + =
The linear function predicts the percentage of
never married American males, ages 25 – 29, to
be 68.05% in 2015.
89. a.
b.
Change in 74.3 70.0
0.215
Change in 40 20
y
m
x
−
= = =
−
1 1( )
70.0 0.215( 20)
70.0 0.215 4.3
0.215 65.7
( ) 0.215 65.7
y y m x x
y x
y x
y x
E x x
− = −
− = −
− = −
= +
= +
c. ( ) 0.215 65.7
(60) 0.215(60) 65.7
78.6
E x x
E
= +
= +
=
The life expectancy of American men born in
2020 is expected to be 78.6.
Section 2.3 Linear Functions and Slope
Copyright © 2018 Pearson Education, Inc. 241
90. a.
b.
Change in 79.7 74.7
0.17
Change in 40 10
y
m
x
−
= = ≈
−
1 1( )
74.7 0.17( 10)
74.7 0.17 1.7
0.17 73
( ) 0.17 73
y y m x x
y x
y x
y x
E x x
− = −
− = −
− = −
= +
= +
c. ( ) 0.17 73
(60) 0.17(60) 73
83.2
E x x
E
= +
= +
=
The life expectancy of American women born
in 2020 is expected to be 83.2.
91. (10, 230) (60, 110) Points may vary.
110 230 120
2.4
60 10 50
230 2.4( 10)
230 2.4 24
2.4 254
m
y x
y x
y x
−
= = − = −
−
− = − −
− = − +
= − +
Answers will vary for predictions.
92. – 99. Answers will vary.
100. Two points are (0,4) and (10,24).
24 4 20
2.
10 0 10
m
−
= = =
−
101. Two points are (0, 6) and (10, –24).
24 6 30
3.
10 0 10
m
− − −
= = = −
−
Check: : 3 6y mx b y x= + = − + .
102. Two points are (0,–5) and (10,–10).
10 ( 5) 5 1
.
10 0 10 2
m
− − − −
= = = −
−
103. Two points are (0, –2) and (10, 5.5).
5.5 ( 2) 7.5 3
0.75 or .
10 0 10 4
m
− −
= = =
−
Check:
3
: 2
4
y mx b y x= + = − .
104. a. Enter data from table.
b.
Chapter 2 Functions and Graphs
242 Copyright © 2018 Pearson Education, Inc.
c. 22.96876741a = −
260.5633751b =
0.8428126855r = −
d.
105. does not make sense; Explanations will vary.
Sample explanation: Linear functions never change
from increasing to decreasing.
106. does not make sense; Explanations will vary.
Sample explanation: Since college cost are going
up, this function has a positive slope.
107. does not make sense; Explanations will vary.
Sample explanation: The slope of line’s whose
equations are in this form can be determined in
several ways. One such way is to rewrite the
equation in slope-intercept form.
108. makes sense
109. false; Changes to make the statement true will vary.
A sample change is: It is possible for m to equal b.
110. false; Changes to make the statement true will vary.
A sample change is: Slope-intercept form is
y mx b= + . Vertical lines have equations of the
form x a= . Equations of this form have undefined
slope and cannot be written in slope-intercept form.
111. true
112. false; Changes to make the statement true will vary.
A sample change is: The graph of 7x = is a vertical
line through the point (7, 0).
113. We are given that the interceptx − is 2− and the
intercept is 4y − . We can use the points
( ) ( )2,0 and 0,4− to find the slope.
( )
4 0 4 4
2
0 2 0 2 2
m
−
= = = =
− − +
Using the slope and one of the intercepts, we can
write the line in point-slope form.
( )
( )( )
( )
1 1
0 2 2
2 2
2 4
2 4
y y m x x
y x
y x
y x
x y
− = −
− = − −
= +
= +
− + =
Find the x– and y–coefficients for the equation of the
line with right-hand-side equal to 12. Multiply both
sides of 2 4x y− + = by 3 to obtain 12 on the right-
hand-side.
( ) ( )
2 4
3 2 3 4
6 3 12
x y
x y
x y
− + =
− + =
− + =
Therefore, the coefficient of x is –6 and the
coefficient of y is 3.
114. We are given that the intercept is 6y − − and the
slope is
1
.
2
So the equation of the line is
1
6.
2
y x= −
We can put this equation in the form ax by c+ = to
find the missing coefficients.
( )
1
6
2
1
6
2
1
2 2 6
2
2 12
2 12
y x
y x
y x
y x
x y
= −
− = −
 
− = − 
 
− = −
− =
Therefore, the coefficient of x is 1 and the
coefficient of y is 2.−
115. Answers will vary.
116. Let (25, 40) and (125, 280) be ordered pairs
(M, E) where M is degrees Madonna and E is degrees
Elvis. Then
280 40 240
2.4
125 25 100
m
−
= = =
−
. Using ( ) ( )1 1, 25,40x y = ,
point-slope form tells us that
E – 40 = 2.4 (M – 25) or
E = 2.4 M – 20.
117. Answers will vary.
Section 2.4 More on Slope
Copyright © 2018 Pearson Education, Inc. 243
118. Let x = the number of years after 1994.
714 17 289
17 425
25
x
x
x
− =
− = −
=
Violent crime incidents will decrease to 289 per
100,000 people 25 years after 1994, or 2019.
119.
3 2
1
4 3
3 2
12 12 1
4 3
x x
x x
+ −
≥ +
+ −   
≥ +   
   
3( 3) 4( 2) 12
3 9 4 8 12
3 9 4 4
5
5
x x
x x
x x
x
x
+ ≥ − +
+ ≥ − +
+ ≥ +
≥
≤
The solution set is { } ( ]5 or ,5 .x x ≤ −∞
120. 3 2 6 9 15x + − <
3 2 6 24
3 2 6 24
3 3
2 6 8
8 2 6 8
14 2 2
7 1
x
x
x
x
x
x
+ <
+
<
+ <
− < + <
− < <
− < <
The solution set is { } ( )7 1 or 7,1x x− < < − .
121. Since the slope is the same as the slope of 2 1,y x= +
then 2.m =
( )
( )( )
( )
1 1
1 2 3
1 2 3
1 2 6
2 7
y y m x x
y x
y x
y x
y x
− = −
− = − −
− = +
− = +
= +
122. Since the slope is the negative reciprocal of
1
,
4
−
then 4.m =
( )
( )
1 1
( 5) 4 3
5 4 12
4 17 0
4 17 0
y y m x x
y x
y x
x y
x y
− = −
− − = −
+ = −
− + + =
− − =
123. 2 1
2 1
2 2
( ) ( ) (4) (1)
4 1
4 1
4 1
15
3
5
f x f x f f
x x
− −
=
− −
−
=
−
=
=
Section 2.4
Check Point Exercises
1. The slope of the line 3 1y x= + is 3.
( )
1 1( )
5 3 ( 2)
5 3( 2) point-slope
5 3 6
3 11 slope-intercept
y y m x x
y x
y x
y x
y x
− = −
− = − −
− = +
− = +
= +
2. a. Write the equation in slope-intercept form:
3 12 0
3 12
1
4
3
x y
y x
y x
+ − =
= − +
= − +
The slope of this line is
1
3
− thus the slope of
any line perpendicular to this line is 3.
b. Use 3m = and the point (–2, –6) to write the
equation.
( )
1 1( )
( 6) 3 ( 2)
6 3( 2)
6 3 6
3 0
3 0 general form
y y m x x
y x
y x
y x
x y
x y
− = −
− − = − −
+ = +
+ = +
− + =
− =
Chapter 2 Functions and Graphs
244 Copyright © 2018 Pearson Education, Inc.
3.
Change in 15 11.2 3.8
0.29
Change in 2013 2000 13
y
m
x
−
= = = ≈
−
The slope indicates that the number of U.S. men
living alone increased at a rate of 0.29 million each
year.
The rate of change is 0.29 million men per year.
4. a.
3 3
2 1
2 1
( ) ( ) 1 0
1
1 0
f x f x
x x
− −
= =
− −
b.
3 3
2 1
2 1
( ) ( ) 2 1 8 1
7
2 1 1
f x f x
x x
− − −
= = =
− −
c.
3 3
2 1
2 1
( ) ( ) 0 ( 2) 8
4
0 ( 2) 2
f x f x
x x
− − −
= = =
− − −
5. 2 1
2 1
( ) ( ) (3) (1)
3 1
0.05 0.03
3 1
0.01
f x f x f f
x x
− −
=
− −
−
=
−
=
The average rate of change in the drug's
concentration between 1 hour and 3 hours is 0.01
mg per 100 mL per hour.
Concept and Vocabulary Check 2.4
1. the same
2. 1−
3.
1
3
− ; 3
4. 2− ;
1
2
5. y; x
6. 2 1
2 1
( ) ( )f x f x
x x
−
−
Exercise Set 2.4
1. Since L is parallel to 2 ,y x= we know it will have
slope 2.m = We are given that it passes through
( )4,2 . We use the slope and point to write the
equation in point-slope form.
( )
( )
1 1
2 2 4
y y m x x
y x
− = −
− = −
Solve for y to obtain slope-intercept form.
( )2 2 4
2 2 8
2 6
y x
y x
y x
− = −
− = −
= −
In function notation, the equation of the line is
( ) 2 6.f x x= −
2. L will have slope 2m = − . Using the point and the
slope, we have ( )4 2 3 .y x− = − − Solve for y to
obtain slope-intercept form.
( )
4 2 6
2 10
2 10
y x
y x
f x x
− = − +
= − +
= − +
3. Since L is perpendicular to 2 ,y x= we know it will
have slope
1
.
2
m = − We are given that it passes
through (2,4). We use the slope and point to write the
equation in point-slope form.
( )
( )
1 1
1
4 2
2
y y m x x
y x
− = −
− = − −
Solve for y to obtain slope-intercept form.
( )
1
4 2
2
1
4 1
2
1
5
2
y x
y x
y x
− = − −
− = − +
= − +
In function notation, the equation of the line is
( )
1
5.
2
f x x= − +
Section 2.4 More on Slope
Copyright © 2018 Pearson Education, Inc. 245
4. L will have slope
1
.
2
m = The line passes through
(–1, 2). Use the slope and point to write the equation
in point-slope form.
( )( )
( )
1
2 1
2
1
2 1
2
y x
y x
− = − −
− = +
Solve for y to obtain slope-intercept form.
1 1
2
2 2
1 1
2
2 2
y x
y x
− = +
= + +
( )
1 5
2 2
1 5
2 2
y x
f x x
= +
= +
5. m = –4 since the line is parallel to
1 14 3; 8, 10;y x x y= − + = − = −
point-slope form: y + 10 = –4(x + 8)
slope-intercept form: y + 10 = –4x – 32
y = –4x – 42
6. m = –5 since the line is parallel to 5 4y x= − + ;
1 12, 7x y= − = − ;
point-slope form: y + 7 = –5(x + 2)
slope-intercept form: 7 5 10
5 17
y x
y x
+ = − −
= − −
7. m = –5 since the line is perpendicular to
1 1
1
6; 2, 3;
5
y x x y= + = = −
point-slope form: y + 3 = –5(x – 2)
slope-intercept form: 3 5 10
5 7
y x
y x
+ = − +
= − +
8. 3m = − since the line is perpendicular to
1
7
3
y x= + ;
1 14, 2x y= − = ;
point-slope form: 2 3( 4)y x− = − +
slope-intercept form: 2 3 12
3 10
y x
y x
− = − −
= − −
9. 2 3 7 0
3 2 7
2 7
3 3
x y
y x
y x
− − =
− = − +
= −
The slope of the given line is
2 2
, so
3 3
m = since the
lines are parallel.
point-slope form:
2
2 ( 2)
3
y x− = +
general form: 2 3 10 0x y− + =
10. 3 2 0
2 3 5
3 5
2 2
x y
y x
y x
− − =
− = − +
= −
The slope of the given line is
3
2
, so
3
2
m = since the
lines are parallel.
point-slope form:
3
3 ( 1)
2
y x− = +
general form: 3 2 9 0x y− + =
11. 2 3 0
2 3
1 3
2 2
x y
y x
y x
− − =
− = − +
= −
The slope of the given line is
1
2
, so m = –2 since the
lines are perpendicular.
point-slope form: ( )7 –2 4y x+ = −
general form: 2 1 0x y+ − =
12. 7 12 0
7 12
1 12
7 7
x y
y x
y x
+ − =
= − +
−
= +
The slope of the given line is
1
7
− , so m = 7 since the
lines are perpendicular.
point-slope form: y + 9 = 7(x – 5)
general form: 7 44 0x y− − =
13.
15 0 15
3
5 0 5
−
= =
−
14.
24 0 24
6
4 0 4
−
= =
−
Chapter 2 Functions and Graphs
246 Copyright © 2018 Pearson Education, Inc.
15.
2 2
5 2 5 (3 2 3) 25 10 (9 6)
5 3 2
20
2
10
+ ⋅ − + ⋅ + − +
=
−
=
=
16.
( ) ( )2 2
6 2 6 (3 2 3) 36 12 9 6 21
7
6 3 3 3
− − − ⋅ − − −
= = =
−
17.
9 4 3 2 1
9 4 5 5
− −
= =
−
18.
16 9 4 3 1
16 9 7 7
− −
= =
−
19. Since the line is perpendicular to 6x = which is a
vertical line, we know the graph of f is a horizontal
line with 0 slope. The graph of f passes through
( )1,5− , so the equation of f is ( ) 5.f x =
20. Since the line is perpendicular to 4x = − which is a
vertical line, we know the graph of f is a horizontal
line with 0 slope. The graph of f passes through
( )2,6− , so the equation of f is ( ) 6.f x =
21. First we need to find the equation of the line with
x − intercept of 2 and y − intercept of 4.− This line
will pass through ( )2,0 and ( )0, 4 .− We use these
points to find the slope.
4 0 4
2
0 2 2
m
− − −
= = =
− −
Since the graph of f is perpendicular to this line, it
will have slope
1
.
2
m = −
Use the point ( )6,4− and the slope
1
2
− to find the
equation of the line.
( )
( )( )
( )
( )
1 1
1
4 6
2
1
4 6
2
1
4 3
2
1
1
2
1
1
2
y y m x x
y x
y x
y x
y x
f x x
− = −
− = − − −
− = − +
− = − −
= − +
= − +
22. First we need to find the equation of the line with
x − intercept of 3 and y − intercept of 9.− This line
will pass through ( )3,0 and ( )0, 9 .− We use these
points to find the slope.
9 0 9
3
0 3 3
m
− − −
= = =
− −
Since the graph of f is perpendicular to this line, it
will have slope
1
.
3
m = −
Use the point ( )5,6− and the slope
1
3
− to find the
equation of the line.
( )
( )( )
( )
( )
1 1
1
6 5
3
1
6 5
3
1 5
6
3 3
1 13
3 3
1 13
3 3
y y m x x
y x
y x
y x
y x
f x x
− = −
− = − − −
− = − +
− = − −
= − +
= − +
Section 2.4 More on Slope
Copyright © 2018 Pearson Education, Inc. 247
23. First put the equation 3 2 4 0x y− − = in slope-
intercept form.
3 2 4 0
2 3 4
3
2
2
x y
y x
y x
− − =
− = − +
= −
The equation of f will have slope
2
3
− since it is
perpendicular to the line above and the same
y − intercept 2.−
So the equation of f is ( )
2
2.
3
f x x= − −
24. First put the equation 4 6 0x y− − = in slope-intercept
form.
4 6 0
4 6
4 6
x y
y x
y x
− − =
− = − +
= −
The equation of f will have slope
1
4
− since it is
perpendicular to the line above and the same
y − intercept 6.−
So the equation of f is ( )
1
6.
4
f x x= − −
25. ( ) 0.25 22p x x= − +
26. ( ) 0.22 3p x x= +
27.
1163 617 546
137
1998 1994 4
m
−
= = ≈
−
There was an average increase of approximately 137
discharges per year.
28.
623 1273 650
130
2006 2001 5
m
− −
= = ≈ −
−
There was an average decrease of approximately 130
discharges per year.
29. a. 3 2
( ) 1.1 35 264 557f x x x x= − + +
3 2
(0) 1.1(0) 35(0) 264(0) 557 557f = − + + =
3 2
(4) 1.1(4) 35(4) 264(4) 557 1123.4f = − + + =
1123.4 557
142
4 0
m
−
= ≈
−
b. This overestimates by 5 discharges per year.
30. a. 3 2
( ) 1.1 35 264 557f x x x x= − + +
3 2
(0) 1.1(7) 35(7) 264(7) 557 1067.3f = − + + =
3 2
(12) 1.1(12) 35(12) 264(12) 557 585.8f = − + + =
585.8 1067.3
96
12 7
m
−
= ≈ −
−
b. This underestimates the decrease by 34
discharges per year.
31. – 36. Answers will vary.
37.
1
1
3
3 2
y x
y x
= +
= − −
a. The lines are perpendicular because their slopes
are negative reciprocals of each other. This is
verified because product of their slopes is –1.
b. The lines do not appear to be perpendicular.
c. The lines appear to be perpendicular. The
calculator screen is rectangular and does not
have the same width and height. This causes
the scale of the x–axis to differ from the scale
on the y–axis despite using the same scale in
the window settings. In part (b), this causes the
lines not to appear perpendicular when indeed
they are. The zoom square feature compensates
for this and in part (c), the lines appear to be
perpendicular.
38. does not make sense; Explanations will vary.
Sample explanation: Perpendicular lines have slopes
with opposite signs.
Chapter 2 Functions and Graphs
248 Copyright © 2018 Pearson Education, Inc.
39. makes sense
40. does not make sense; Explanations will vary.
Sample explanation: Slopes can be used for
segments of the graph.
41. makes sense
42. Write 0Ax By C+ + = in slope-intercept form.
0Ax By C
By Ax C
By Ax C
B B B
A C
y x
B B
+ + =
= − −
−
= −
= − −
The slope of the given line is
A
B
− .
The slope of any line perpendicular to
0Ax By C+ + = is
B
A
.
43. The slope of the line containing ( )1, 3− and ( )2,4−
has slope
( )4 3 4 3 7 7
2 1 3 3 3
m
− − +
= = = = −
− − − −
Solve 2 0Ax y+ − = for y to obtain slope-intercept
form.
2 0
2
Ax y
y Ax
+ − =
= − +
So the slope of this line is .A−
This line is perpendicular to the line above so its
slope is
3
.
7
Therefore,
3
7
A− = so
3
.
7
A = −
44. 24 3( 2) 5( 12)x x+ + = −
24 3 6 5 60
3 30 5 60
90 2
45
x x
x x
x
x
+ + = −
+ = −
=
=
The solution set is {45}.
45. Let x = the television’s price before the
reduction.
0.30 980
0.70 980
980
0.70
1400
x x
x
x
x
− =
=
=
=
Before the reduction the television’s price was
$1400.
46. 2/3 1/3
2 5 3 0x x− − =
Let 1/3
t x= .
2
2 5 3 0
(2 1)( 3) 0
t t
t t
− − =
+ − =
2 1 0 or 3 0
2 = 1
1
= 3
2
t t
t
t t
+ = − =
−
− =
1/3 1/3
3
3
1
3
2
1
3
2
1
27
8
x x
x x
x x
= − =
 
= − = 
 
= − =
The solution set is
1
, 27
8
 
− 
 
.
47. a.
b.
c. The graph in part (b) is the graph in part (a)
shifted down 4 units.
48. a.
Mid-Chapter 2 Check Point
Copyright © 2018 Pearson Education, Inc. 249
b.
c. The graph in part (b) is the graph in part (a)
shifted to the right 2 units.
49. a.
b.
c. The graph in part (b) is the graph in part (a)
reflected across the y-axis.
Mid-Chapter 2 Check Point
1. The relation is not a function.
The domain is {1,2}.
The range is { 6,4,6}.−
2. The relation is a function.
The domain is {0,2,3}.
The range is {1,4}.
3. The relation is a function.
The domain is { | 2 2}.x x− ≤ <
The range is { | 0 3}.y y≤ ≤
4. The relation is not a function.
The domain is { | 3 4}.x x− < ≤
The range is { | 1 2}.y y− ≤ ≤
5. The relation is not a function.
The domain is { 2, 1,0,1,2}.− −
The range is { 2, 1,1,3}.− −
6. The relation is a function.
The domain is { | 1}.x x ≤
The range is { | 1}.y y ≥ −
7. 2
5x y+ =
2
5y x= − +
For each value of x, there is one and only one value
for y, so the equation defines y as a function of x.
8. 2
5x y+ =
2
5
5
y x
y x
= −
= ± −
Since there are values of x that give more than one
value for y (for example, if x = 4, then
5 4 1y = ± − = ± ), the equation does not define y as
a function of x.
9. No vertical line intersects the graph in more than one
point. Each value of x corresponds to exactly one
value of y.
10. Domain: ( ),−∞ ∞
11. Range: ( ],4−∞
12. x-intercepts: –6 and 2
13. y-intercept: 3
14. increasing: (–∞, –2)
15. decreasing: (–2, ∞)
16. 2x = −
17. ( 2) 4f − =
18. ( 4) 3f − =
19. ( 7) 2f − = − and (3) 2f = −
20. ( 6) 0f − = and (2) 0f =
21. ( )6,2−
22. (100)f is negative.
Chapter 2 Functions and Graphs
250 Copyright © 2018 Pearson Education, Inc.
23. neither; ( )f x x− ≠ and ( )f x x− ≠ −
24. 2 1
2 1
( ) ( ) (4) ( 4) 5 3
1
4 ( 4) 4 4
f x f x f f
x x
− − − − −
= = = −
− − − +
25. Test for symmetry with respect to the y-axis.
2
2
2
1
1
1
x y
x y
x y
= +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( )
2
2
2
1
1
1
x y
x y
x y
= +
= − +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the x-
axis.
Test for symmetry with respect to the origin.
( )
2
2
2
2
1
1
1
1
x y
x y
x y
x y
= +
− = − +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
26. Test for symmetry with respect to the y-axis.
( )
3
3
3
1
1
1
y x
y x
y x
= −
= − −
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
3
3
3
1
1
1
y x
y x
y x
= −
− = −
= − +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( )
3
3
3
3
1
1
1
1
y x
y x
y x
y x
= −
− = − −
− = − −
= +
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
27.
28.
29.
30.
31.
Mid-Chapter 2 Check Point
Copyright © 2018 Pearson Education, Inc. 251
32.
33.
34.
35.
36. 5 3y x= −
3
5
y x= −
37. 5 20y =
4y =
38.
39. a. 2
2
( ) 2( ) 5
2 5
f x x x
x x
− = − − − −
= − − −
neither; ( )f x x− ≠ and ( )f x x− ≠ −
b.
( ) ( )f x h f x
h
+ −
( )
2 2
2 2 2
2
2( ) ( ) 5 ( 2 5)
2 4 2 5 2 5
4 2
4 2 1
4 2 1
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
− + + + − − − + −
=
− − − + + − + − +
=
− − +
=
− − +
=
= − − +
40.
30 if 0 200
( )
30 0.40( 200) if 200
t
C x
t t
≤ ≤
= 
+ − >
a. (150) 30C =
b. (250) 30 0.40(250 200) 50C = + − =
41. 1 1( )y y m x x− = −
( )3 2 ( 4)
3 2( 4)
3 2 8
2 5
( ) 2 5
y x
y x
y x
y x
f x x
− = − − −
− = − +
− = − −
= − −
= − −
42.
Change in 1 ( 5) 6
2
Change in 2 ( 1) 3
y
m
x
− −
= = = =
− −
1 1( )y y m x x− = −
( )1 2 2
1 2 4
2 3
( ) 2 3
y x
y x
y x
f x x
− = −
− = −
= −
= −
Chapter 2 Functions and Graphs
252 Copyright © 2018 Pearson Education, Inc.
43. 3 5 0x y− − =
3 5
3 5
y x
y x
− = − +
= −
The slope of the given line is 3, and the lines are
parallel, so 3.m =
1 1( )
( 4) 3( 3)
4 3 9
3 13
( ) 3 13
y y m x x
y x
y x
y x
f x x
− = −
− − = −
+ = −
= −
= −
44. 2 5 10 0x y− − =
5 2 10
5 2 10
5 5 5
2
2
5
y x
y x
y x
− = − +
− −
= +
− − −
= −
The slope of the given line is
2
5
, and the lines are
perpendicular, so
5
.
2
m = −
( )
1 1( )
5
( 3) ( 4)
2
5
3 10
2
5
13
2
5
( ) 13
2
y y m x x
y x
y x
y x
f x x
− = −
− − = − − −
+ = − −
= − −
= − −
45. 1
Change in 0 ( 4) 4
Change in 7 2 5
y
m
x
− −
= = =
−
2
Change in 6 2 4
Change in 1 ( 4) 5
y
m
x
−
= = =
− −
The slope of the lines are equal thus the lines are
parallel.
46. a.
Change in 42 26 16
0.16
Change in 180 80 100
y
m
x
−
= = = =
−
b. For each minute of brisk walking, the
percentage of patients with depression in
remission increased by 0.16%. The rate of
change is 0.16% per minute of brisk walking.
47. 2 1
2 1
( ) ( ) (2) ( 1)
2 ( 1)
f x f x f f
x x
− − −
=
− − −
( ) ( )2 2
3(2) 2 3( 1) ( 1)
2 1
2
− − − − −
=
+
=
Section 2.5
Check Point Exercises
1. Shift up vertically 3 units.
2. Shift to the right 4 units.
3. Shift to the right 1 unit and down 2 units.
4. Reflect about the x-axis.
Section 2.5 Transformations of Functions
Copyright © 2018 Pearson Education, Inc. 253
5. Reflect about the y-axis.
6. Vertically stretch the graph of ( )f x x= .
7. a. Horizontally shrink the graph of ( )y f x= .
b. Horizontally stretch the graph of ( )y f x= .
8. The graph of ( )y f x= is shifted 1 unit left, shrunk
by a factor of
1
,
3
reflected about the x-axis, then
shifted down 2 units.
9. The graph of 2
( )f x x= is shifted 1 unit right,
stretched by a factor of 2, then shifted up 3 units.
Concept and Vocabulary Check 2.5
1. vertical; down
2. horizontal; to the right
3. x-axis
4. y-axis
5. vertical; y
6. horizontal; x
7. false
Exercise Set 2.5
1.
2.
Chapter 2 Functions and Graphs
254 Copyright © 2018 Pearson Education, Inc.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Section 2.5 Transformations of Functions
Copyright © 2018 Pearson Education, Inc. 255
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
Chapter 2 Functions and Graphs
256 Copyright © 2018 Pearson Education, Inc.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
Section 2.5 Transformations of Functions
Copyright © 2018 Pearson Education, Inc. 257
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
Chapter 2 Functions and Graphs
258 Copyright © 2018 Pearson Education, Inc.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
Section 2.5 Transformations of Functions
Copyright © 2018 Pearson Education, Inc. 259
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
Chapter 2 Functions and Graphs
260 Copyright © 2018 Pearson Education, Inc.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
Section 2.5 Transformations of Functions
Copyright © 2018 Pearson Education, Inc. 261
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
Chapter 2 Functions and Graphs
262 Copyright © 2018 Pearson Education, Inc.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
Section 2.5 Transformations of Functions
Copyright © 2018 Pearson Education, Inc. 263
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
Chapter 2 Functions and Graphs
264 Copyright © 2018 Pearson Education, Inc.
116.
117.
118.
119.
120.
121.
122.
123. 2y x= −
124. 3
2y x= − +
125. 2
( 1) 4y x= + −
126. 2 1y x= − +
127. a. First, vertically stretch the graph of ( )f x x= by
the factor 2.9; then shift the result up 20.1 units.
b. ( ) 2.9 20.1f x x= +
(48) 2.9 48 20.1 40.2f = + ≈
The model describes the actual data very well.
c. 2 1
2 1
( ) ( )f x f x
x x
−
−
( ) ( )
(10) (0)
10 0
2.9 10 20.1 2.9 0 20.1
10 0
29.27 20.1
10
0.9
f f−
=
−
+ − +
=
−
−
=
≈
0.9 inches per month
d. 2 1
2 1
( ) ( )f x f x
x x
−
−
( ) ( )
(60) (50)
60 50
2.9 60 20.1 2.9 50 20.1
60 50
42.5633 40.6061
10
0.2
f f−
=
−
+ − +
=
−
−
=
≈
This rate of change is lower than the rate of
change in part (c). The relative leveling off of
the curve shows this difference.
Section 2.5 Transformations of Functions
Copyright © 2018 Pearson Education, Inc. 265
128. a. First, vertically stretch the graph of ( )f x x=
by the factor 3.1; then shift the result up 19
units.
b. ( ) 3.1 19f x x= +
(48) 3.1 48 19 40.5f = + ≈
The model describes the actual data very well.
c. 2 1
2 1
( ) ( )f x f x
x x
−
−
( ) ( )
(10) (0)
10 0
3.1 10 19 3.1 0 19
10 0
28.8031 19
10
1.0
f f−
=
−
+ − +
=
−
−
=
≈
1.0 inches per month
d. 2 1
2 1
( ) ( )f x f x
x x
−
−
( ) ( )
(60) (50)
60 50
3.1 60 19 3.1 50 19
60 50
43.0125 40.9203
10
0.2
f f−
=
−
+ − +
=
−
−
=
≈
This rate of change is lower than the rate of
change in part (c). The relative leveling off of
the curve shows this difference.
129. – 134. Answers will vary.
135. a.
b.
136. a.
b.
137. makes sense
138. makes sense
139. does not make sense; Explanations will vary.
Sample explanation: The reprogram should be
( 1).y f t= +
140. does not make sense; Explanations will vary.
Sample explanation: The reprogram should be
( 1).y f t= −
141. false; Changes to make the statement true will vary.
A sample change is: The graph of g is a translation
of f three units to the left and three units upward.
142. false; Changes to make the statement true will vary.
A sample change is: The graph of f is a reflection of
the graph of y x= in the x-axis, while the graph of
g is a reflection of the graph of y x= in the y-axis.
143. false; Changes to make the statement true will vary.
A sample change is: The stretch will be 5 units and
the downward shift will be 10 units.
Chapter 2 Functions and Graphs
266 Copyright © 2018 Pearson Education, Inc.
144. true
145. 2
( ) ( 4)g x x= − +
146. ( ) – – 5 1g x x= +
147. ( ) 2 2g x x= − − +
148. 21
( ) 16 – 1
4
g x x= − −
149. (–a, b)
150. (a, 2b)
151. (a + 3, b)
152. (a, b – 3)
153. Let x = the width of the rectangle.
Let x + 13 = the length of the rectangle.
2 2
2( 13) 2 82
2 26 2 82
4 26 82
4 56
56
4
14
13 27
l w P
x x
x x
x
x
x
x
x
+ =
+ + =
+ + =
+ =
=
=
=
+ =
The dimensions of the rectangle are 14 yards by 27
yards.
154. 10 4x x+ − =
( ) ( )
2 2
2
2
10 4
10 4
10 8 16
0 7 6
0 ( 6)( 1)
x x
x x
x x x
x x
x x
+ = +
+ = +
+ = + +
= + +
= + +
6 0 or 1 0
6 1
x x
x x
+ = + =
= − = −
–6 does not check and must be rejected.
The solution set is { }1 .−
155. 2
(3 7 )(5 2 ) 15 6 35 14
15 6 35 14( 1)
15 6 35 14
29 29
i i i i i
i i
i i
i
− + = + − −
= + − − −
= + − +
= −
156. 2 2 2
3 2 2
3 2 2
3 2
(2 1)( 2) 2 ( 2) 1( 2)
2 2 4 2
2 2 4 2
2 5 2
x x x x x x x x
x x x x x
x x x x x
x x x
− + − = + − − + −
= + − − − +
= + − − − +
= + − +
157. ( ) ( )
2 2
2
2
2
( ) 2 ( ) 6 3 4 2(3 4) 6
9 24 16 6 8 6
9 24 6 16 8 6
9 30 30
f x f x x x
x x x
x x x
x x
− + = − − − +
= − + − + +
= − − + + +
= − +
158.
2 2 2
3 3 31
x x
x xx
x x
= =
−− −
Section 2.6
Check Point Exercises
1. a. The function 2
( ) 3 17f x x x= + − contains
neither division nor an even root. The domain of
f is the set of all real numbers or ( ),−∞ ∞ .
b. The denominator equals zero when x = 7 or x =
–7. These values must be excluded from the
domain.
domain of g = ( ) ( ) ( ), 7 7,7 7, .−∞ − − ∞ 
c. Since ( ) 9 27h x x= − contains an even root; the
quantity under the radical must be greater than or
equal to 0.
9 27 0
9 27
3
x
x
x
− ≥
≥
≥
Thus, the domain of h is { 3}x x ≥ , or the
interval [ )3, .∞
Section 2.6 Combinations of Functions; Composite Functions
Copyright © 2018 Pearson Education, Inc. 267
d. Since the denominator of ( )j x contains an even
root; the quantity under the radical must be greater
than or equal to 0. But that quantity must also not
be 0 (because we cannot have division by 0).
Thus, 24 3x− must be strictly greater than 0.
24 3 0
3 24
8
x
x
x
− >
− > −
<
Thus, the domain of j is { 8}x x < , or the
interval ( ,8).−∞
2. a.
( )2
2
2
( )( ) ( ) ( )
5 1
5 1
6
f g x f x g x
x x
x x
x x
+ = +
= − + −
= − + −
= − + −
domain: ( , )−∞ ∞
b.
( )2
2
2
( )( ) ( ) ( )
5 1
5 1
4
f g x f x g x
x x
x x
x x
− = −
= − − −
= − − +
= − + −
domain: ( , )−∞ ∞
c. ( )( )
( ) ( )
2
2 2
3 2
3 2
( )( ) 5 1
1 5 1
5 5
5 5
fg x x x
x x x
x x x
x x x
= − −
= − − −
= − − +
= − − +
domain: ( , )−∞ ∞
d.
2
( )
( )
( )
5
, 1
1
f f x
x
g g x
x
x
x
 
= 
 
−
= ≠ ±
−
domain: ( , 1) ( 1,1) (1, )−∞ − − ∞ 
3. a. ( )( ) ( ) ( )
3 1
f g x f x g x
x x
+ = +
= − + +
b. domain of f: 3 0
3
[3, )
x
x
− ≥
≥
∞
domain of g: 1 0
1
[ 1, )
x
x
+ ≥
≥ −
− ∞
The domain of f + g is the set of all real
numbers that are common to the domain of f
and the domain of g. Thus, the domain of f + g
is [3, ∞).
4. a. ( )( )
( ) ( )
2 2
2 2
2
( 2.6 49 3994) ( 0.6 7 2412)
2.6 49 3994 0.6 7 2412
3.2 56 6406
B D x
B x D x
x x x x
x x x x
x x
+
= +
= − + + + − + +
= − + + − + +
= − + +
b. ( )( )
( )( )
2
2
3.2 56 6406
5 3.2(3) 56(3) 6406
6545.2
B D x x x
B D
+ = − + +
+ = − + +
=
The number of births and deaths in the U.S. in
2003 was 6545.2 thousand.
c. ( )( )B D x+ overestimates the actual number of
births and deaths in 2003 by 7.2 thousand.
5. a. ( ) ( )( ) ( )f g x f g x=
( )2
2
2
5 2 1 6
10 5 5 6
10 5 1
x x
x x
x x
= − − +
= − − +
= − +
b. ( ) ( )( ) ( )g f x g f x=
( ) ( )
2
2
2
2
2 5 6 5 6 1
2(25 60 36) 5 6 1
50 120 72 5 6 1
50 115 65
x x
x x x
x x x
x x
= + − + −
= + + − − −
= + + − − −
= + +
c. ( ) 2
( ) 10 5 1f g x x x= − +
( ) 2
( 1) 10( 1) 5( 1) 1
10 5 1
16
f g − = − − − +
= + +
=

6. a.
4 4
( )( )
1 1 22
x
f g x
x
x
= =
++

b. domain:
1
0,
2
x x x
 
≠ ≠ − 
 
or ( )
1 1
, ,0 0,
2 2
   
−∞ − − ∞   
   
 
7. ( ) 2
where ( ) ; ( ) 5h x f g f x x g x x= = = +
Chapter 2 Functions and Graphs
268 Copyright © 2018 Pearson Education, Inc.
Concept and Vocabulary Check 2.6
1. zero
2. negative
3. ( ) ( )f x g x+
4. ( ) ( )f x g x−
5. ( ) ( )f x g x⋅
6.
( )
( )
f x
g x
; ( )g x
7. ( , )−∞ ∞
8. (2, )∞
9. (0,3) ; (3, )∞
10. composition; ( )( )f g x
11. f; ( )g x
12. composition; ( )( )g f x
13. g; ( )f x
14. false
15. false
16. 2
Exercise Set 2.6
1. The function contains neither division nor an even
root. The domain ( ),= −∞ ∞
2. The function contains neither division nor an even
root. The domain ( ),= −∞ ∞
3. The denominator equals zero when 4.x = This value
must be excluded from the domain.
domain: ( ) ( ),4 4, .−∞ ∞
4. The denominator equals zero when 5.x = − This
value must be excluded from the domain.
domain: ( ) ( ), 5 5, .−∞ − − ∞
5. The function contains neither division nor an even
root. The domain ( ),= −∞ ∞
6. The function contains neither division nor an even
root. The domain ( ),= −∞ ∞
7. The values that make the denominator equal zero
must be excluded from the domain.
domain: ( ) ( ) ( ), 3 3,5 5,−∞ − − ∞ 
8. The values that make the denominator equal zero
must be excluded from the domain.
domain: ( ) ( ) ( ), 4 4,3 3,−∞ − − ∞ 
9. The values that make the denominators equal zero
must be excluded from the domain.
domain: ( ) ( ) ( ), 7 7,9 9,−∞ − − ∞ 
10. The values that make the denominators equal zero
must be excluded from the domain.
domain: ( ) ( ) ( ), 8 8,10 10,−∞ − − ∞ 
11. The first denominator cannot equal zero. The values
that make the second denominator equal zero must be
excluded from the domain.
domain: ( ) ( ) ( ), 1 1,1 1,−∞ − − ∞ 
12. The first denominator cannot equal zero. The values
that make the second denominator equal zero must be
excluded from the domain.
domain: ( ) ( ) ( ), 2 2,2 2,−∞ − − ∞ 
13. Exclude x for 0x = .
Exclude x for
3
1 0
x
− = .
( )
3
1 0
3
1 0
3 0
3
3
x
x x
x
x
x
x
− =
 
− = 
 
− =
− = −
=
domain: ( ) ( ) ( ),0 0,3 3,−∞ ∞ 
Section 2.6 Combinations of Functions; Composite Functions
Copyright © 2018 Pearson Education, Inc. 269
14. Exclude x for 0x = .
Exclude x for
4
1 0
x
− = .
( )
4
1 0
4
1 0
4 0
4
4
x
x x
x
x
x
x
− =
 
− = 
 
− =
− = −
=
domain: ( ) ( ) ( ),0 0,4 4,−∞ ∞ 
15. Exclude x for 1 0x − = .
1 0
1
x
x
− =
=
Exclude x for
4
2 0
1x
− =
−
.
( ) ( )( )
( )
4
2 0
1
4
1 2 1 0
1
4 2 1 0
4 2 2 0
2 6 0
2 6
3
x
x x
x
x
x
x
x
x
− =
−
 
− − = − − 
− − =
− + =
− + =
− = −
=
domain: ( ) ( ) ( ),1 1,3 3,−∞ ∞ 
16. Exclude x for 2 0x − = .
2 0
2
x
x
− =
=
Exclude x for
4
3 0
2x
− =
−
.
( ) ( )( )
( )
4
3 0
2
4
2 3 2 0
2
4 3 2 0
4 3 6 0
3 10 0
3 10
10
3
x
x x
x
x
x
x
x
x
− =
−
 
− − = − − 
− − =
− + =
− + =
− = −
=
domain: ( )
10 10
,2 2, ,
3 3
   
−∞ ∞   
   
 
17. The expression under the radical must not be
negative.
3 0
3
x
x
− ≥
≥
domain: [ )3,∞
18. The expression under the radical must not be
negative.
2 0
2
x
x
+ ≥
≥ −
domain: [ )2,− ∞
19. The expression under the radical must be positive.
3 0
3
x
x
− >
>
domain: ( )3,∞
20. The expression under the radical must be positive.
2 0
2
x
x
+ >
> −
domain: ( )2,− ∞
21. The expression under the radical must not be
negative.
5 35 0
5 35
7
x
x
x
+ ≥
≥ −
≥ −
domain: [ )7,− ∞
22. The expression under the radical must not be
negative.
7 70 0
7 70
10
x
x
x
− ≥
≥
≥
domain: [ )10,∞
23. The expression under the radical must not be
negative.
24 2 0
2 24
2 24
2 2
12
x
x
x
x
− ≥
− ≥ −
− −
≤
− −
≤
domain: ( ],12−∞
Chapter 2 Functions and Graphs
270 Copyright © 2018 Pearson Education, Inc.
24. The expression under the radical must not be
negative.
84 6 0
6 84
6 84
6 6
14
x
x
x
x
− ≥
− ≥ −
− −
≤
− −
≤
domain: ( ],14−∞
25. The expressions under the radicals must not be
negative.
2 0
2
x
x
− ≥
≥
and
3 0
3
x
x
+ ≥
≥ −
To make both inequalities true, 2x ≥ .
domain: [ )2,∞
26. The expressions under the radicals must not be
negative.
3 0
3
x
x
− ≥
≥
and
4 0
4
x
x
+ ≥
≥ −
To make both inequalities true, 3x ≥ .
domain: [ )3,∞
27. The expression under the radical must not be
negative.
2 0
2
x
x
− ≥
≥
The denominator equals zero when 5.x =
domain: [ ) ( )2,5 5, .∞
28. The expression under the radical must not be
negative.
3 0
3
x
x
− ≥
≥
The denominator equals zero when 6.x =
domain: [ ) ( )3,6 6, .∞
29. Find the values that make the denominator equal zero
and must be excluded from the domain.
( ) ( )
( )( )
3 2
2
2
5 4 20
5 4 5
5 4
( 5)( 2)( 2)
x x x
x x x
x x
x x x
− − +
= − − −
= − −
= − + −
–2, 2, and 5 must be excluded.
domain: ( ) ( ) ( ) ( ), 2 2,2 2,5 5,−∞ − − ∞  
30. Find the values that make the denominator equal zero
and must be excluded from the domain.
( ) ( )
( )( )
3 2
2
2
2 9 18
2 9 2
2 9
( 2)( 3)( 3)
x x x
x x x
x x
x x x
− − +
= − − −
= − −
= − + −
–3, 2, and 3 must be excluded.
domain: ( ) ( ) ( ) ( ), 3 3,2 2,3 3,−∞ − − ∞  
31. (f + g)(x) = 3x + 2
domain: ( , )−∞ ∞
(f – g)(x) = f(x) – g(x)
= (2x + 3) – (x – 1)
= x + 4
domain: ( , )−∞ ∞
2
( )( ) ( ) ( )
(2 3) ( 1)
2 3
fg x f x g x
x x
x x
= ⋅
= + ⋅ −
= + −
domain: ( , )−∞ ∞
( ) 2 3
( )
( ) 1
f f x x
x
g g x x
  +
= = 
− 
domain: ( ) ( ),1 1,−∞ ∞
32. (f + g)(x) = 4x – 2
domain: (–∞, ∞)
(f – g)(x) = (3x – 4) – (x + 2) = 2x – 6
domain: (–∞, ∞)
(fg)(x) = (3x – 4)(x + 2) = 3x2 + 2x – 8
domain: (–∞, ∞)
3 4
( )
2
f x
x
g x
  −
= 
+ 
domain: ( ) ( ), 2 2,−∞ − − ∞
33. 2
( )( ) 3 5f g x x x+ = + −
domain: ( , )−∞ ∞
2
( )( ) 3 5f g x x x− = − + −
domain: ( , )−∞ ∞
2 3 2
( )( ) ( 5)(3 ) 3 15fg x x x x x= − = −
domain: ( , )−∞ ∞
2
5
( )
3
f x
x
g x
  −
= 
 
domain: ( ) ( ),0 0,−∞ ∞
Section 2.6 Combinations of Functions; Composite Functions
Copyright © 2018 Pearson Education, Inc. 271
34. 2
( )( ) 5 – 6f g x x x+ = +
domain: (–∞, ∞)
2
( )( ) –5 – 6f g x x x− = +
domain: (–∞, ∞)
2 3 2
( )( ) ( – 6)(5 ) 5 – 30fg x x x x x= =
domain: (–∞, ∞)
2
6
( )
5
f x
x
g x
  −
= 
 
domain: ( ) ( ),0 0,−∞ ∞
35. 2
( )( ) 2 – 2f g x x+ =
domain: (–∞, ∞)
2
( – )( ) 2 – 2 – 4f g x x x=
domain: (–∞, ∞)
2
3 2
( )( ) (2 – – 3)( 1)
2 – 4 – 3
fg x x x x
x x x
= +
= +
domain: (–∞, ∞)
2
2 – – 3
( )
1
(2 – 3)( 1)
2 – 3
( 1)
f x x
x
g x
x x
x
x
 
= 
+ 
+
= =
+
domain: ( ) ( ), 1 1,−∞ − − ∞
36. 2
( )( ) 6 – 2f g x x+ =
domain: (–∞, ∞)
2
( )( ) 6 2f g x x x− = −
domain: (–∞, ∞)
2 3 2
( )( ) (6 1)( 1) 6 7 1fg x x x x x x= − − − = − +
domain: (–∞, ∞)
2
6 1
( )
1
f x x
x
g x
  − −
= 
− 
domain: ( ) ( ),1 1,−∞ ∞
37. 2 2
( )( ) (3 ) ( 2 15)f g x x x x+ = − + + −
2 12x= −
domain: (–∞, ∞)
2 2
2
( )( ) (3 ) ( 2 15)
2 2 18
f g x x x x
x x
− = − − + −
= − − +
domain: (–∞, ∞)
2 2
4 3 2
( )( ) (3 )( 2 15)
2 18 6 45
fg x x x x
x x x x
= − + −
= − − + + −
domain: (–∞, ∞)
2
2
3
( )
2 15
f x
x
g x x
  −
= 
+ − 
domain: ( ) ( ) ( ), 5 5,3 3,−∞ − − ∞ 
38. 2 2
( )( ) (5 ) ( 4 12)f g x x x x+ = − + + −
4 7x= −
domain: (–∞, ∞)
2 2
2
( )( ) (5 ) ( 4 12)
2 4 17
f g x x x x
x x
− = − − + −
= − − +
domain: (–∞, ∞)
2 2
4 3 2
( )( ) (5 )( 4 12)
4 17 20 60
fg x x x x
x x x x
= − + −
= − − + + −
domain: (–∞, ∞)
2
2
5
( )
4 12
f x
x
g x x
  −
= 
+ − 
domain: ( ) ( ) ( ), 6 6,2 2,−∞ − − ∞ 
39. ( )( ) 4f g x x x+ = + −
domain: [0, )∞
( )( ) 4f g x x x− = − +
domain: [0, )∞
( )( ) ( 4)fg x x x= −
domain: [0, )∞
( )
4
f x
x
g x
 
= 
− 
domain: [ ) ( )0,4 4,∞
40. ( )( ) 5f g x x x+ = + −
domain: [0, )∞
( )( ) 5f g x x x− = − +
domain: [0, )∞
( )( ) ( 5)fg x x x= −
domain: [0, )∞
( )
5
f x
x
g x
 
= 
− 
domain: [ ) ( )0,5 5,∞
Chapter 2 Functions and Graphs
272 Copyright © 2018 Pearson Education, Inc.
41.
1 1 2 2 2
( )( ) 2 2
x
f g x
x x x x
+
+ = + + = + =
domain: ( ) ( ),0 0,−∞ ∞
1 1
( )( ) 2 2f g x
x x
− = + − =
domain: ( ) ( ),0 0,−∞ ∞
2 2
1 1 2 1 2 1
( )( ) 2
x
fg x
x x x x x
+ 
= + ⋅ = + = 
 
domain: ( ) ( ),0 0,−∞ ∞
1
1
2 1
( ) 2 2 1x
x
f
x x x
g x
+   
= = + ⋅ = +   
  
domain: ( ) ( ),0 0,−∞ ∞
42.
1 1
( )( ) 6 6f g x
x x
+ = − + =
domain: ( ) ( ),0 0,−∞ ∞
1 1 2 6 2
( )( ) 6 – 6
x
f g x
x x x x
−
− = − = − =
domain: ( ) ( ),0 0,−∞ ∞
2 2
1 1 6 1 6 1
( )( ) 6
x
fg x
x x x x x
− 
= − ⋅ = − = 
 
domain: ( ) ( ),0 0,−∞ ∞
1
1
6 1
( ) 6 6 1x
x
f
x x x
g x
−   
= = − ⋅ = −   
  
domain: ( ) ( ),0 0,−∞ ∞
43. ( )( ) ( ) ( )f g x f x g x+ = +
2 2
2
5 1 4 2
9 9
9 1
9
x x
x x
x
x
+ −
= +
− −
−
=
−
domain: ( ) ( ) ( ), 3 3,3 3,−∞ − − ∞ 
2 2
2
( )( ) ( ) ( )
5 1 4 2
9 9
3
9
1
3
f g x f x g x
x x
x x
x
x
x
− = −
+ −
= −
− −
+
=
−
=
−
domain: ( ) ( ) ( ), 3 3,3 3,−∞ − − ∞ 
( )
2 2
22
( )( ) ( ) ( )
5 1 4 2
9 9
(5 1)(4 2)
9
fg x f x g x
x x
x x
x x
x
= ⋅
+ −
= ⋅
− −
+ −
=
−
domain: ( ) ( ) ( ), 3 3,3 3,−∞ − − ∞ 
2
2
2
2
5 1
9( )
4 2
9
5 1 9
4 29
5 1
4 2
x
f xx
xg
x
x x
xx
x
x
+
  −=  − 
−
+ −
= ⋅
−−
+
=
−
The domain must exclude –3, 3, and any values that
make 4 2 0.x − =
4 2 0
4 2
1
2
x
x
x
− =
=
=
domain: ( ) ( ) ( ) ( )1 1
2 2
, 3 3, ,3 3,−∞ − − ∞  
Section 2.6 Combinations of Functions; Composite Functions
Copyright © 2018 Pearson Education, Inc. 273
44. ( )( ) ( ) ( )f g x f x g x+ = +
2 2
2
3 1 2 4
25 25
5 3
25
x x
x x
x
x
+ −
= +
− −
−
=
−
domain: ( ) ( ) ( ), 5 5,5 5,−∞ − − ∞ 
2 2
2
( )( ) ( ) ( )
3 1 2 4
25 25
5
25
1
5
f g x f x g x
x x
x x
x
x
x
− = −
+ −
= −
− −
+
=
−
=
−
domain: ( ) ( ) ( ), 5 5,5 5,−∞ − − ∞ 
( )
2 2
22
( )( ) ( ) ( )
3 1 2 4
25 25
(3 1)(2 4)
25
fg x f x g x
x x
x x
x x
x
= ⋅
+ −
= ⋅
− −
+ −
=
−
domain: ( ) ( ) ( ), 5 5,5 5,−∞ − − ∞ 
2
2
2
2
3 1
25( )
2 4
25
3 1 25
2 425
3 1
2 4
x
f xx
xg
x
x x
xx
x
x
+
  −=  − 
−
+ −
= ⋅
−−
+
=
−
The domain must exclude –5, 5, and any values that
make 2 4 0.x − =
2 4 0
2 4
2
x
x
x
− =
=
=
domain: ( ) ( ) ( ) ( ), 5 5,2 2,5 5,−∞ − − ∞  
45. ( )( ) ( ) ( )f g x f x g x+ = +
2
2
8 6
2 3
8 ( 3) 6( 2)
( 2)( 3) ( 2)( 3)
8 24 6 12
( 2)( 3) ( 2)( 3)
8 30 12
( 2)( 3)
x
x x
x x x
x x x x
x x x
x x x x
x x
x x
= +
− +
+ −
= +
− + − +
+ −
= +
− + − +
+ −
=
− +
domain: ( ) ( ) ( ), 3 3,2 2,−∞ − − ∞ 
( )( ) ( ) ( )f g x f x g x+ = −
2
2
8 6
2 3
8 ( 3) 6( 2)
( 2)( 3) ( 2)( 3)
8 24 6 12
( 2)( 3) ( 2)( 3)
8 18 12
( 2)( 3)
x
x x
x x x
x x x x
x x x
x x x x
x x
x x
= −
− +
+ −
= −
− + − +
+ −
= −
− + − +
+ +
=
− +
domain: ( ) ( ) ( ), 3 3,2 2,−∞ − − ∞ 
( )( ) ( ) ( )
8 6
2 3
48
( 2)( 3)
fg x f x g x
x
x x
x
x x
= ⋅
= ⋅
− +
=
− +
domain: ( ) ( ) ( ), 3 3,2 2,−∞ − − ∞ 
8
2( )
6
3
8 3
2 6
4 ( 3)
3( 2)
x
f xx
g
x
x x
x
x x
x
  −= 
 
+
+
= ⋅
−
+
=
−
The domain must exclude –3, 2, and any values that
make 3( 2) 0.x − =
3( 2) 0
3 6 0
3 6
2
x
x
x
x
− =
− =
=
=
domain: ( ) ( ) ( ), 3 3,2 2,−∞ − − ∞ 
Chapter 2 Functions and Graphs
274 Copyright © 2018 Pearson Education, Inc.
46. ( )( ) ( ) ( )f g x f x g x+ = +
2
2
9 7
4 8
9 ( 8) 7( 4)
( 4)( 8) ( 4)( 8)
9 72 7 28
( 4)( 8) ( 4)( 8)
9 79 28
( 4)( 8)
x
x x
x x x
x x x x
x x x
x x x x
x x
x x
= +
− +
+ −
= +
− + − +
+ −
= +
− + − +
+ −
=
− +
domain: ( ) ( ) ( ), 8 8,4 4,−∞ − − ∞ 
( )( ) ( ) ( )f g x f x g x+ = −
2
2
9 7
4 8
9 ( 8) 7( 4)
( 4)( 8) ( 4)( 8)
9 72 7 28
( 4)( 8) ( 4)( 8)
9 65 28
( 4)( 8)
x
x x
x x x
x x x x
x x x
x x x x
x x
x x
= −
− +
+ −
= −
− + − +
+ −
= −
− + − +
+ +
=
− +
domain: ( ) ( ) ( ), 8 8,4 4,−∞ − − ∞ 
( )( ) ( ) ( )
9 7
4 8
63
( 4)( 8)
fg x f x g x
x
x x
x
x x
= ⋅
= ⋅
− +
=
− +
domain: ( ) ( ) ( ), 8 8,4 4,−∞ − − ∞ 
9
4( )
7
8
9 8
4 7
9 ( 8)
7( 4)
x
f xx
g
x
x x
x
x x
x
  −= 
 
+
+
= ⋅
−
+
=
−
The domain must exclude –8, 4, and any values that
make 7( 4) 0.x − =
7( 4) 0
7 28 0
7 28
4
x
x
x
x
− =
− =
=
=
domain: ( ) ( ) ( ), 8 8,4 4,−∞ − − ∞ 
47. ( )( ) 4 1f g x x x+ = + + −
domain: [1, )∞
( )( ) 4 1f g x x x− = + − −
domain: [1, )∞
2
( )( ) 4 1 3 4fg x x x x x= + ⋅ − = + −
domain: [1, )∞
4
( )
1
f x
x
g x
  +
= 
− 
domain: (1, )∞
48. ( )( ) 6 3f g x x x+ = + + −
domain: [3, ∞)
( )( ) 6 3f g x x x− = + − −
domain: [3, ∞)
2
( )( ) 6 3 3 18fg x x x x x= + ⋅ − = + −
domain: [3, ∞)
6
( )
3
f x
x
g x
  +
= 
− 
domain: (3, ∞)
49. ( )( ) 2 2f g x x x+ = − + −
domain: {2}
( )( ) 2 2f g x x x− = − − −
domain: {2}
2
( )( ) 2 2 4 4fg x x x x x= − ⋅ − = − + −
domain: {2}
2
( )
2
f x
x
g x
  −
= 
− 
domain: ∅
50. ( )( ) 5 5f g x x x+ = − + −
domain: {5}
( )( ) 5 5f g x x x− = − − −
domain: {5}
2
( )( ) 5 5 10 25fg x x x x x= − ⋅ − = − + −
domain: {5}
5
( )
5
f x
x
g x
  −
= 
− 
domain: ∅
Section 2.6 Combinations of Functions; Composite Functions
Copyright © 2018 Pearson Education, Inc. 275
51. f(x) = 2x; g(x) = x + 7
a. ( )( ) 2( 7) 2 14f g x x x= + = +
b. ( )( ) 2 7g f x x= +
c. ( )(2) 2(2) 14 18f g = + =
52. f(x) = 3x; g(x) = x – 5
a. ( )( ) 3( 5) 3 15f g x x x= − = −
b. ( )( ) 3 – 5g f x x=
c. ( )(2) 3(2) 15 9f g = − = −
53. f(x) = x + 4; g(x) = 2x + 1
a. ( )( ) (2 1) 4 2 5f g x x x= + + = +
b. ( )( ) 2( 4) 1 2 9g f x x x= + + = +
c. ( )(2) 2(2) 5 9f g = + =
54. f(x) = 5x + 2 ; g(x) = 3x – 4
a. ( )( ) 5(3 4) 2 15 18f g x x x= − + = −
b. ( )( ) 3(5 2) 4 15 2g f x x x= + − = +
c. ( )(2) 15(2) 18 12f g = − =
55. f(x) = 4x – 3; 2
( ) 5 2g x x= −
a. 2
2
( )( ) 4(5 2) 3
20 11
f g x x
x
= − −
= −

b. 2
2
2
( )( ) 5(4 3) 2
5(16 24 9) 2
80 120 43
g f x x
x x
x x
= − −
= − + −
= − +

c. 2
( )(2) 20(2) 11 69f g = − =
56. 2
( ) 7 1; ( ) 2 – 9f x x g x x= + =
a. 2 2
( )( ) 7(2 9) 1 14 62f g x x x= − + = −
b. 2
2
2
( )( ) 2(7 1) 9
2(49 14 1) 9
98 28 7
g f x x
x x
x x
= + −
= + + −
= + −

c. 2
( )(2) 14(2) 62 6f g = − = −
57. 2 2
( ) 2; ( ) 2f x x g x x= + = −
a. 2 2
4 2
4 2
( )( ) ( 2) 2
4 4 2
4 6
f g x x
x x
x x
= − +
= − + +
= − +

b. 2 2
4 2
4 2
( )( ) ( 2) 2
4 4 2
4 2
g f x x
x x
x x
= + −
= + + −
= + +

c. 4 2
( )(2) 2 4(2) 6 6f g = − + =
58. 2 2
( ) 1; ( ) 3f x x g x x= + = −
a. 2 2
4 2
4 2
( )( ) ( 3) 1
6 9 1
6 10
f g x x
x x
x x
= − +
= − + +
= − +

b. 2 2
4 2
4 2
( )( ) ( 1) 3
2 1 3
2 2
g f x x
x x
x x
= + −
= + + −
= + −

c. 4 2
( )(2) 2 6(2) 10 2f g = − + =
59. 2
( ) 4 ; ( ) 2 5f x x g x x x= − = + +
a. ( )2
2
2
( )( ) 4 2 5
4 2 5
2 1
f g x x x
x x
x x
= − + +
= − − −
= − − −

b. ( ) ( )
2
2
2
2
( )( ) 2 4 4 5
2(16 8 ) 4 5
32 16 2 4 5
2 17 41
g f x x x
x x x
x x x
x x
= − + − +
= − + + − +
= − + + − +
= − +

c. 2
( )(2) 2(2) 2 1 11f g = − − − = −
Chapter 2 Functions and Graphs
276 Copyright © 2018 Pearson Education, Inc.
60. 2
( ) 5 2; ( ) 4 1f x x g x x x= − = − + −
a. ( )2
2
2
( )( ) 5 4 1 2
5 20 5 2
5 20 7
f g x x x
x x
x x
= − + − −
= − + − −
= − + −

b. ( ) ( )
2
2
2
2
( )( ) 5 2 4 5 2 1
(25 20 4) 20 8 1
25 20 4 20 8 1
25 40 13
g f x x x
x x x
x x x
x x
= − − + − −
= − − + + − −
= − + − + − −
= − + −

c. 2
( )(2) 5(2) 20(2) 7 13f g = − + − =
61. ( ) ;f x x= g(x) = x – 1
a. ( )( ) 1f g x x= −
b. ( )( ) 1g f x x= −
c. ( )(2) 2 1 1 1f g = − = =
62. ( ) ; ( ) 2f x x g x x= = +
a. ( )( ) 2f g x x= +
b. ( )( ) 2g f x x= +
c. ( )(2) 2 2 4 2f g = + = =
63. f(x) = 2x – 3;
3
( )
2
x
g x
+
=
a.
3
( )( ) 2 3
2
3 3
x
f g x
x
x
+ 
= − 
 
= + −
=

b.
(2 3) 3 2
( )( )
2 2
x x
g f x x
− +
= = =
c. ( )(2) 2f g =
64.
3
( ) 6 3; ( )
6
x
f x x g x
+
= − =
a.
3
( )( ) 6 3 3 3
6
x
f g x x x
+ 
= − = + − = 
 

b.
6 3 3 6
( )( )
6 6
x x
g f x x
− +
= = =
c. ( )(2) 2f g =
65.
1 1
( ) ; ( )f x g x
x x
= =
a. 1
1
( )( )
x
f g x x= =
b. 1
1
( )( )
x
g f x x= =
c. ( )(2) 2f g =
66.
2 2
( ) ; ( )f x g x
x x
= =
a. 2
2
( )( )
x
f g x x= =
b. 2
2
( )( )
x
g f x x= =
c. ( )(2) 2f g =
67. a.
1 2
( )( ) , 0
1
3
f g x f x
x
x
 
= = ≠ 
  +

( )
2( )
1
3
2
1 3
x
x
x
x
x
=
 
+ 
 
=
+
b. We must exclude 0 because it is excluded from
g.
We must exclude
1
3
− because it causes the
denominator of f g to be 0.
domain: ( )
1 1
, ,0 0, .
3 3
   
−∞ − − ∞   
   
 
Section 2.6 Combinations of Functions; Composite Functions
Copyright © 2018 Pearson Education, Inc. 277
68. a.
1 5 5
( )
1 1 44
x
f g x f
x x
x
 
= = = 
+  +

b. We must exclude 0 because it is excluded from g.
We must exclude
1
4
− because it causes the
denominator of f g to be 0.
domain: ( )
1 1
, ,0 0, .
4 4
   
−∞ − − ∞   
   
 
69. a.
4
4
( )( )
4
1
xf g x f
x
x
 
= = 
  +

( )
4
( )
4
1
4
, 4
4
x
x
x
x
x
x
 
 
 =
 
+ 
 
= ≠ −
+
b. We must exclude 0 because it is excluded from
g.
We must exclude 4− because it causes the
denominator of f g to be 0.
domain: ( ) ( ) ( ), 4 4,0 0, .−∞ − − ∞ 
70. a. ( )
6
6 6
6 6 55
xf g x f
x x
x
 
= = = 
+  +

b. We must exclude 0 because it is excluded from
g.
We must exclude
6
5
− because it causes the
denominator of f g to be 0.
domain: ( )
6 6
, ,0 0, .
5 5
   
−∞ − − ∞   
   
 
71. a. ( ) ( )2 2f g x f x x= − = −
b. The expression under the radical in f g must
not be negative.
2 0
2
x
x
− ≥
≥
domain: [ )2, .∞
72. a. ( ) ( )3 3f g x f x x= − = −
b. The expression under the radical in f g must
not be negative.
3 0
3
x
x
− ≥
≥
domain: [ )3, .∞
73. a. ( )( ) ( 1 )f g x f x= −
( )
2
1 4
1 4
5
x
x
x
= − +
= − +
= −
b. The domain of f g must exclude any values
that are excluded from g.
1 0
1
1
x
x
x
− ≥
− ≥ −
≤
domain: (−•, 1]., 1].
74. a. ( )( ) ( 2 )f g x f x= −
( )
2
2 1
2 1
3
x
x
x
= − +
= − +
= −
b. The domain of f g must exclude any values
that are excluded from g.
2 0
2
2
x
x
x
− ≥
− ≥ −
≤
domain: (−•, 2]., 2].
75. ( )4
( ) 3 1f x x g x x= = −
76. ( ) ( )3
; 2 5f x x g x x= = −
77. ( ) ( ) 23
9f x x g x x= = −
78. ( ) ( ) 2
; 5 3f x x g x x= = +
79. f(x) = |x| g(x) = 2x – 5
80. f (x) = |x|; g(x) = 3x – 4
81.
1
( ) ( ) 2 3f x g x x
x
= = −
82. ( ) ( )
1
; 4 5f x g x x
x
= = +
Chapter 2 Functions and Graphs
278 Copyright © 2018 Pearson Education, Inc.
83. ( )( ) ( ) ( )3 3 3 4 1 5f g f g+ − = − + − = + =
84. ( )( ) ( ) ( )2 2 2 2 3 1g f g f− − = − − − = − = −
85. ( )( ) ( ) ( ) ( )( )2 2 2 1 1 1fg f g= = − = −
86. ( )
( )
( )
3 0
3 0
3 3
gg
f f
 
= = = 
− 
87. The domain of f g+ is [ ]4,3− .
88. The domain of
f
g
is ( )4,3− .
89. The graph of f g+
90. The graph of f g−
91. ( )( ) ( ) ( )1 ( 1) 3 1f g f g f− = − = − =
92. ( )( ) ( ) ( )1 (1) 5 3f g f g f= = − =
93. ( )( ) ( ) ( )0 (0) 2 6g f g f g= = = −
94. ( )( ) ( ) ( )1 ( 1) 1 5g f g f g− = − = = −
95. ( )( ) 7f g x =
( )2
2
2
2
2
2 3 8 5 7
2 6 16 5 7
2 6 11 7
2 6 4 0
3 2 0
( 1)( 2) 0
x x
x x
x x
x x
x x
x x
− + − =
− + − =
− + =
− + =
− + =
− − =
1 0 or 2 0
1 2
x x
x x
− = − =
= =
96. ( )( ) 5f g x = −
( )2
2
2
2
2
1 2 3 1 5
1 6 2 2 5
6 2 3 5
6 2 8 0
3 4 0
(3 4)( 1) 0
x x
x x
x x
x x
x x
x x
− + − = −
− − + = −
− − + = −
− − + =
+ − =
+ − =
3 4 0 or 1 0
3 4 1
4
3
x x
x x
x
+ = − =
= − =
= −
97. a. ( )( ) ( ) ( )
(1.48 115.1) (1.44 120.9)
2.92 236
M F x M x F x
x x
x
+ = +
= + + +
= +
b. ( )( ) 2.92 236
( )(25) 2.92(25) 236
309
M F x x
M F
+ = +
+ = +
=
The total U.S. population in 2010 was 309
million.
c. It is the same.
98. a. ( )( ) ( ) ( )
(1.44 120.9) (1.48 115.1)
0.04 5.8
F M x F x M x
x x
x
− = −
= + − +
= − +
b. ( )( ) 0.04 5.8
( )(25) 0.04(25) 5.8
4.8
F M x x
F M
− = − +
− = − +
=
In 2010 there were 4.8 million more women
than men.
c. The result in part (b) underestimates the actual
difference by 0.2 million.
Section 2.6 Combinations of Functions; Composite Functions
Copyright © 2018 Pearson Education, Inc. 279
99. ( )(20,000)
65(20,000) (600,000 45(20,000))
200,000
R C−
= − +
= −
The company lost $200,000 since costs exceeded
revenues.
(R – C)(30,000)
= 65(30,000) – (600,000 + 45(30,000))
= 0
The company broke even.
(R – C)(40,000)
= 65(40,000) – (600,000 + 45(40,000))
= 200,000
The company gained $200,000 since revenues
exceeded costs.
100. a. The slope for f is -0.44 This is the decrease in
profits for the first store for each year after
2012.
b. The slope of g is 0.51 This is the increase in
profits for the second store for each year after
2012.
c. f + g = -.044x + 13.62 + 0.51x + 11.14
= 0.07x + 24.76
The slope for f + g is 0.07 This is the profit for
the two stores combined for each year after
2012.
101. a. f gives the price of the computer after a $400
discount. g gives the price of the computer after
a 25% discount.
b. ( )( ) 0.75 400f g x x= −
This models the price of a computer after first a
25% discount and then a $400 discount.
c. ( )( ) 0.75( 400)g f x x= −
This models the price of a computer after first a
$400 discount and then a 25% discount.
d. The function f g models the greater discount,
since the 25% discount is taken on the regular
price first.
102. a. f gives the cost of a pair of jeans for which a $5
rebate is offered.
g gives the cost of a pair of jeans that has been
discounted 40%.
b. ( )( ) 0.6 5f g x x= −
The cost of a pair of jeans is 60% of the regular
price minus a $5 rebate.
c. ( )( ) ( )0.6 5g f x x= −
= 0.6x – 3
The cost of a pair of jeans is 60% of the regular
price minus a $3 rebate.
d. f g because of a $5 rebate.
103. – 107. Answers will vary.
108. When your trace reaches x = 0, the y value disappears
because the function is not defined at x = 0.
109.
( )( ) 2f g x x= −
The domain of g is [ )0,∞ .
The expression under the radical in f g must not
be negative.
2 0
2
2
4
x
x
x
x
− ≥
− ≥ −
≤
≤
domain: [ ]0,4
110. makes sense
111. makes sense
112. does not make sense; Explanations will vary.
Sample explanation: It is common that f g and
g f are not the same.
Chapter 2 Functions and Graphs
280 Copyright © 2018 Pearson Education, Inc.
113. does not make sense; Explanations will vary.
Sample explanation: The diagram illustrates
( ) 2
( ) 4.g f x x= +
114. false; Changes to make the statement true will vary.
A sample change is: ( )( ) ( )
( )
2
2
2
2
2
4
4 4
4 4
8
f g x f x
x
x
x
= −
= − −
= − −
= −

115. false; Changes to make the statement true will vary.
A sample change is:
( ) ( )
( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )
2 ; 3
( ) 3 2(3 ) 6
( ) 3 2 6
f x x g x x
f g x f g x f x x x
g f x g f x g f x x x
= =
= = = =
= = = =


116. false; Changes to make the statement true will vary.
A sample change is:
( ) ( )( ) ( )( ) 4 4 7 5f g f g f= = =
117. true
118. ( )( ) ( )( )f g x f g x= − 
( ( )) ( ( )) since is even
( ( )) ( ( )) so is even
f g x f g x g
f g x f g x f g
= −
= 
119. Answers will vary.
120.
1 3
1
5 2 4
x x x− +
− = −
( ) ( )
1 3
20 20 1
5 2 4
4 1 10 3 20 5
4 4 10 30 20 5
6 34 20 5
6 5 20 34
1 54
54
x x x
x x x
x x x
x x
x x
x
x
− +   
− = −   
   
− − + = −
− − − = −
− − = −
− + = +
− =
= −
The solution set is {-54}.
121. Let x = the number of bridge crossings at which the
costs of the two plans are the same.
 Discount PassNo Pass
6 30 4
6 4 30
2 30
15
x x
x x
x
x
= +
− =
=
=

The two plans cost the same for 15 bridge crossings.
The monthly cost is ( )$6 15 $90.=
122.
( )
Ax By Cy D
By Cy D Ax
y B C D Ax
D Ax
y
B C
+ = +
− = −
− = −
−
=
−
123. {(4, 2),(1, 1),(1,1),(4,2)}− −
The element 1 in the domain corresponds to two
elements in the range.
Thus, the relation is not a function.
124.
5
4
5
( ) 4
5 4
4 5
( 4) 5
5
4
x
y
y x y
y
xy y
xy y
y x
y
x
= +
 
= + 
 
= +
− =
− =
=
−
125. 2
2
2
1
1
1
1
1
x y
x y
x y
x y
y x
= −
+ =
+ =
+ =
= +
Section 2.7 Inverse Functions
Copyright © 2018 Pearson Education, Inc. 281
Section 2.7
Check Point Exercises
1. ( )
7
( ) 4 7
4
7 7
x
f g x
x
x
+ 
= − 
 
= + −
=
( )
(4 7) 7
( )
4
4 7 7
4
4
4
x
g f x
x
x
x
− +
=
− +
=
=
=
( ) ( )( ) ( )f g x g f x x= =
2. ( ) 2 7f x x= +
Replace ( )f x with y:
2 7y x= +
Interchange x and y:
2 7x y= +
Solve for y:
2 7
7 2
7
2
x y
x y
x
y
= +
− =
−
=
Replace y with 1
( )f x−
:
1 7
( )
2
x
f x− −
=
3. 3
( ) 4 1f x x= −
Replace ( )f x with y:
3
4 1y x= −
Interchange x and y:
3
4 1x y= −
Solve for y:
3
3
3
3
4 1
1 4
1
4
1
4
x y
x y
x
y
x
y
= −
+ =
+
=
+
=
Replace y with 1
( )f x−
:
1 3
1
( )
4
x
f x− +
=
Alternative form for answer:
3
1 3
3
33 3
3 3 3
3
1 1
( )
4 4
1 2 2 2
4 2 8
2 2
2
x x
f x
x x
x
− + +
= =
+ +
= ⋅ =
+
=
4.
1
( ) , 5
5
x
f x x
x
+
= ≠
−
Replace ( )f x with y:
1
5
x
y
x
+
=
−
Interchange x and y:
1
5
y
x
y
+
=
−
Solve for y:
( )
1
5
5 1
5 1
5 1
( 1) 5 1
5 1
1
y
x
y
x y y
xy x y
xy y x
y x x
x
y
x
+
=
−
− = +
− = +
− = +
− = +
+
=
−
Replace y with 1
( )f x−
:
1 5 1
( )
1
x
f x
x
− +
=
−
5. The graphs of (b) and (c) pass the horizontal line test
and thus have an inverse.
6. Find points of 1
f −
.
( )f x 1
( )f x−
( 2, 2)− − ( 2, 2)− −
( 1,0)− (0, 1)−
(1,2) (2,1)
Chapter 2 Functions and Graphs
282 Copyright © 2018 Pearson Education, Inc.
7. 2
( ) 1f x x= +
Replace ( )f x with y:
2
1y x= +
Interchange x and y:
2
1x y= +
Solve for y:
2
2
1
1
1
x y
x y
x y
= +
− =
− =
Replace y with 1
( )f x−
:
1
( ) 1f x x−
= −
Concept and Vocabulary Check 2.7
1. inverse
2. x; x
3. horizontal; one-to-one
4. y x=
Exercise Set 2.7
1. ( ) 4 ; ( )
4
( ( )) 4
4
4
( ( ))
4
x
f x x g x
x
f g x x
x
g f x x
= =
 
= = 
 
= =
f and g are inverses.
2.
( )
( )
( ) 6 ; ( )
6
( ) 6
6
6
( )
6
x
f x x g x
x
f g x x
x
g f x x
= =
 
= = 
 
= =
f and g are inverses.
3. f(x) = 3x + 8;
8
( )
3
x
g x
−
=
8
( ( )) 3 8 8 8
3
(3 8) 8 3
( ( ))
3 3
x
f g x x x
x x
g f x x
− 
= + = − + = 
 
+ −
= = =
f and g are inverses.
4.
( )
( )
9
( ) 4 9; ( )
4
9
( ) 4 9 9 9
4
(4 9) 9 4
( )
4 4
x
f x x g x
x
f g x x x
x x
g f x x
−
= + =
− 
= + = − + = 
 
+ −
= = =
f and g are inverses.
5. f(x) = 5x – 9;
5
( )
9
x
g x
+
=
5
( ( )) 5 9
9
5 25
9
9
5 56
9
5 9 5 5 4
( ( ))
9 9
x
f g x
x
x
x x
g f x
+ 
= − 
 
+
= −
−
=
− + −
= =
f and g are not inverses.
6.
( )
( )
3
( ) 3 7; ( )
7
3 3 9 3 40
( ) 3 7 7
7 7 7
3 7 3 3 4
( )
7 7
x
f x x g x
x x x
f g x
x x
g f x
+
= − =
+ + − 
= − = − = 
 
− + −
= =
f and g are not inverses.
7.
3 3
3 3
( ) ; ( ) 4
4
3 3
( ( ))
4 4x x
f x g x
x x
f g x x
= = +
−
= = =
+ −
3
4
3
( ( )) 4
4
3 4
3
4 4
x
g f x
x
x
x
−
= +
− 
= ⋅ + 
 
= − +
=
f and g are inverses.
Section 2.7 Inverse Functions
Copyright © 2018 Pearson Education, Inc. 283
8.
( )
( )
2
2
5
2 2
( ) ; ( ) 5
5
2 2
( ( ))
5 5 2
2 5
( ) 5 2 5 5 5
2
x
x
f x g x
x x
x
f g x x
x
g f x x x
−
= = +
−
= = =
+ −
− 
= + = + = − + = 
 
f and g are inverses.
9. ( ) ; ( )
( ( )) ( )
( ( )) ( )
f x x g x x
f g x x x
g f x x x
= − = −
= − − =
= − − =
f and g are inverses.
10.
( )
( ) ( )
33
3 33 3
3
3
( ) 4; ( ) 4
( ) 4 4
( ) 4 4 4 4
f x x g x x
f g x x x x
g f x x x x
= − = +
= + − = =
= − + = − + =
f and g are inverses.
11. a. f(x) = x + 3
y = x + 3
x = y + 3
y = x – 3
1
( ) 3f x x−
= −
b. 1
1
( ( )) 3 3
( ( )) 3 3
f f x x x
f f x x x
−
−
= − + =
= + − =
12. a.
1
( ) 5
5
5
5
( ) 5
f x x
y x
x y
y x
f x x−
= +
= +
= +
= −
= −
b. ( )
( )
1
1
( ) 5 5
( ) 5 5
f f x x x
f f x x x
−
−
= − + =
= + − =
13. a.
1
( ) 2
2
2
2
( )
2
f x x
y x
x y
x
y
x
f x−
=
=
=
=
=
b. 1
1
( ( )) 2
2
2
( ( ))
2
x
f f x x
x
f f x x
−
−
 
= = 
 
= =
14. a.
1
( ) 4
4
4
4
( )
4
f x x
y x
x y
x
y
x
f x−
=
=
=
=
=
b. ( )
( )
1
1
( ) 4
4
4
( )
4
x
f f x x
x
f f x x
−
−
 
= = 
 
= =
15. a.
1
( ) 2 3
2 3
2 3
3 2
3
2
3
( )
2
f x x
y x
x y
x y
x
y
x
f x−
= +
= +
= +
− =
−
=
−
=
b. 1
1
3
( ( )) 2 3
2
3 3
2 3 3 2
( ( ))
2 2
x
f f x
x
x
x x
f f x x
−
−
− 
= + 
 
= − +
=
+ −
= = =
16. a. ( ) 3 1
3 1
3 1
1 3
f x x
y x
x y
x y
= −
= −
= −
+ =
1
1
3
1
( )
3
x
y
x
f x−
+
=
+
=
b. ( )
( )
1
1
1
( ) 3 1 1 1
3
3 1 1 3
( )
3 3
x
f f x x x
x x
f f x x
−
−
+ 
= − = + − = 
 
− +
= = =
Chapter 2 Functions and Graphs
284 Copyright © 2018 Pearson Education, Inc.
3
3
3
3
3
1 3
( ) 2
2
2
2
2
( ) 2
. . f x x
y x
x y
x y
y x
f x x−
= +
= +
= +
− =
= −
= −
17 a
b. ( )
3
1 3
( ( )) 2 2
2 2
f f x x
x
x
−
= − +
= − +
=
3 31 3 3
( ( )) 2 2f f x x x x−
= + − = =
18. a. 3
3
3
3
3
1 3
( ) 1
1
1
1
1
( ) 1
f x x
y x
x y
x y
y x
f x x−
= −
= −
= −
+ =
= +
= +
b. ( )
3
1 3
3 31 3 3
( ( )) 1 1
1 1
( ( )) 1 1
f f x x
x
x
f f x x x x
−
−
= + −
= + −
=
= − + = =
19. a. 3
3
3
3
3
1 3
( ) ( 2)
( 2)
( 2)
2
2
( ) 2
f x x
y x
x y
x y
y x
f x x−
= +
= +
= +
= +
= −
= −
b. ( ) ( )
3 3
1 3 3
1 33
( ( )) 2 2
( ( )) ( 2) 2
2 2
f f x x x x
f f x x
x
x
−
−
= − + = =
= + −
= + −
=
20. a. 3
3
3
3
3
( ) ( 1)
( 1)
( 1)
1
1
f x x
y x
x y
x y
y x
= −
= −
= −
= −
= +
b. ( ) ( ) ( )
( )
3 3
1 3 3
1 33
( ) 1 1
( ) ( 1 1 1 1
f f x x x x
f f x x x x
−
−
= + − = =
= − + = − + =
21. a.
1
1
( )
1
1
1
1
1
( )
f x
x
y
x
x
y
xy
y
x
f x
x
−
=
=
=
=
=
=
b. 1
1
1
( ( ))
1
1
( ( ))
1
f f x x
x
f f x x
x
−
−
= =
= =
22. a.
1
2
( )
2
2
2
2
2
( )
f x
x
y
x
x
y
xy
y
x
f x
x
−
=
=
=
=
=
=
b.
21( ( )) 2
2 2
x
f f x x
x
− = = ⋅ =
( )
21( ) 2
2 2
x
f f x x
x
− = = ⋅ =
Section 2.7 Inverse Functions
Copyright © 2018 Pearson Education, Inc. 285
23. a.
2
1 2
( )
( ) , 0
f x x
y x
x y
y x
f x x x−
=
=
=
=
= ≥
b. 1 2
1 2
( ( )) for 0.
( ( )) ( )
f f x x x x x
f f x x x
−
−
= = = ≥
= =
24. a. 3
3
3
3
1 3
( )
( )
f x x
y x
x y
y x
f x x−
=
=
=
=
=
b. ( )
( ) ( )
31 3
3
1 3
( )
( )
f f x x x
f f x x x
−
−
= =
= =
25. a.
4
( )
2
x
f x
x
+
=
−
( )
1
4
2
4
2
2 4
2 4
1 2 4
2 4
1
2 4
( ) , 1
1
x
y
x
y
x
y
xy x y
xy y x
y x x
x
y
x
x
f x x
x
−
+
=
−
+
=
−
− = +
− = +
− = +
+
=
−
+
= ≠
−
b. ( )
( )
( )
1
2 4
4
1( )
2 4
2
1
2 4 4 1
2 4 2 1
6
6
x
xf f x
x
x
x x
x x
x
x
−
+
+
−=
+
−
−
+ + −
=
+ − −
=
=
( )
( )
( )
1
4
2 4
2
( )
4
1
2
2 8 4 2
4 2
6
6
x
x
f f x
x
x
x x
x x
x
x
−
+ 
+ − =
+
−
−
+ + −
=
+ − −
=
=
26. a.
5
( )
6
x
f x
x
+
=
−
( )
1
5
6
5
6
6 5
6 5
1 6 5
6 5
1
6 5
( ) , 1
1
x
y
x
y
x
y
xy x y
xy y x
y x x
x
y
x
x
f x x
x
−
+
=
−
+
=
−
− = +
− = +
− = +
+
=
−
+
= ≠
−
Chapter 2 Functions and Graphs
286 Copyright © 2018 Pearson Education, Inc.
b. ( )
( )
( )
1
6 5
5
1( )
6 5
6
1
6 5 5 1
6 5 6 1
11
11
x
xf f x
x
x
x x
x x
x
x
−
+
+
−=
+
−
−
+ + −
=
+ − −
=
=
( )
( )
( )
1
5
6 5
6
( )
5
1
6
6 30 5 6
5 6
11
11
x
x
f f x
x
x
x x
x x
x
x
−
+ 
+ − =
+
−
−
+ + −
=
+ − −
=
=
27. a. ( )
2 1
3
2 1
3
2 1
3
x
f x
x
x
y
x
y
x
y
+
=
−
+
=
−
+
=
−
x(y – 3) = 2y + 1
xy – 3x = 2y + 1
xy – 2y = 3x + 1
y(x – 2) = 3x + 1
3 1
2
x
y
x
+
=
−
( )1 3 1
2
x
f x
x
− +
=
−
b.
( )–1
3 12 1
2( ( ))
3 1 3
2
x
xf f x
x
x
+ +
−=
+ −
−
( )
( )
2 3 1 2 6 2 2
3 1 3 2 3 1 3 6
x x x x
x x x x
+ + − + + −
= =
+ − − + − +
7
7
x
x= =
( )
( )
( )
1
2 13 1
3( ( ))
2 1 2
3
3 2 1 3
2 1 2 3
6 3 3 7
2 1 2 6 7
x
xf f x
x
x
x x
x x
x x x
x
x x
−
+ +
−=
+ −
−
+ + −
=
+ − −
+ + −
= = =
+ − +
28. a. ( )
2 3
1
x
f x
x
−
=
+
2 3
1
x
y
x
−
=
+
2 3
1
y
x
y
−
=
+
xy + x = 2y – 3
y(x – 2) = –x – 3
3
2
x
y
x
− −
=
−
( )1 3
2
x
f x
x
− − −
=
−
, 2x ≠
b. ( )( )
( )1
32 3
2
3 1
2
x
xf f x
x
x
−
− − −
−=
− − +
−
2 6 3 6 5
3 2 5
x x x
x
x x
− − − + −
= = =
− − + − −
( )1
2 3 3
1( ( ))
2 3 2
1
x
xf f x
x
x
−
−− −
+=
− −
+
2 3 3 3 5
2 3 2 2 5
x x x
x
x x
− + − − −
= = =
− − − −
29. The function fails the horizontal line test, so it does
not have an inverse function.
30. The function passes the horizontal line test, so it does
have an inverse function.
Section 2.7 Inverse Functions
Copyright © 2018 Pearson Education, Inc. 287
31. The function fails the horizontal line test, so it does
not have an inverse function.
32. The function fails the horizontal line test, so it does
not have an inverse function.
33. The function passes the horizontal line test, so it does
have an inverse function.
34. The function passes the horizontal line test, so it does
have an inverse function.
35.
36.
37.
38.
39. a. ( ) 2 1f x x= −
1
2 1
2 1
1 2
1
2
1
( )
2
y x
x y
x y
x
y
x
f x−
= −
= −
+ =
+
=
+
=
b.
c. domain of f : ( ),−∞ ∞
range of f : ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
40. a. ( ) 2 3f x x= −
1
2 3
2 3
3 2
3
2
3
( )
2
y x
x y
x y
x
y
x
f x−
= −
= −
+ =
+
=
+
=
b.
c. domain of f : ( ),−∞ ∞
range of f : ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
Chapter 2 Functions and Graphs
288 Copyright © 2018 Pearson Education, Inc.
41. a. 2
( ) 4f x x= −
2
2
2
1
4
4
4
4
( ) 4
y x
x y
x y
x y
f x x−
= −
= −
+ =
+ =
= +
b.
c. domain of f : [ )0,∞
range of f : [ )4,− ∞
domain of 1
f −
: [ )4,− ∞
range of 1
f −
: [ )0,∞
42. a. 2
( ) 1f x x= −
2
2
2
1
1
1
1
1
( ) 1
y x
x y
x y
x y
f x x−
= −
= −
+ =
− + =
= − +
b.
c. domain of f : ( ],0−∞
range of f : [ )1,− ∞
domain of 1
f −
: [ )1,− ∞
range of 1
f −
: ( ],0−∞
43. a. ( )
2
( ) 1f x x= −
( )
( )
2
2
1
1
1
1
1
( ) 1
y x
x y
x y
x y
f x x−
= −
= −
− = −
− + =
= −
b.
c. domain of f : ( ],1−∞
range of f : [ )0,∞
domain of 1
f −
: [ )0,∞
range of 1
f −
: ( ],1−∞
44. a. ( )
2
( ) 1f x x= −
( )
( )
2
2
1
1
1
1
1
( ) 1
y x
x y
x y
x y
f x x−
= −
= −
= −
+ =
= +
b.
c. domain of f : [ )1,∞
range of f : [ )0,∞
domain of 1
f −
: [ )0,∞
range of 1
f −
: [ )1,∞
45. a. 3
( ) 1f x x= −
3
3
3
3
1 3
1
1
1
1
( ) 1
y x
x y
x y
x y
f x x−
= −
= −
+ =
+ =
= +
b.
Section 2.7 Inverse Functions
Copyright © 2018 Pearson Education, Inc. 289
c. domain of f : ( ),−∞ ∞
range of f : ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
46. a. 3
( ) 1f x x= +
3
3
3
3
1 3
1
1
1
1
( ) 1
y x
x y
x y
x y
f x x−
= +
= +
− =
− =
= −
b.
c. domain of f : ( ),−∞ ∞
range of f : ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
47. a. 3
( ) ( 2)f x x= +
3
3
3
3
1 3
( 2)
( 2)
2
2
( ) 2
y x
x y
x y
x y
f x x−
= +
= +
= +
− =
= −
b.
c. domain of f : ( ),−∞ ∞
range of f : ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
48. a. 3
( ) ( 2)f x x= −
3
3
3
3
1 3
( 2)
( 2)
2
2
( ) 2
y x
x y
x y
x y
f x x−
= −
= −
= −
+ =
= +
b.
c. domain of f : ( ),−∞ ∞
range of f : ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
49. a. ( ) 1f x x= −
2
2
1 2
1
1
1
1
( ) 1
y x
x y
x y
x y
f x x−
= −
= −
= −
+ =
= +
b.
c. domain of f : [ )1,∞
range of f : [ )0,∞
domain of 1
f −
: [ )0,∞
range of 1
f −
: [ )1,∞
50. a. ( ) 2f x x= +
2
1 2
2
2
2
( 2)
( ) ( 2)
y x
x y
x y
x y
f x x−
= +
= +
− =
− =
= −
Chapter 2 Functions and Graphs
290 Copyright © 2018 Pearson Education, Inc.
b.
c. domain of f : [ )0,∞
range of f : [ )2,∞
domain of 1
f −
: [ )2,∞
range of 1
f −
: [ )0,∞
51. a. 3
( ) 1f x x= +
3
3
3
3
1 3
1
1
1
( 1)
( ) ( 1)
y x
x y
x y
x y
f x x−
= +
= +
− =
− =
= −
b.
c. domain of f : ( ),−∞ ∞
range of f : ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
52. a. 3
( ) 1f x x= −
3
3
3
3
1 3
1
1
1
1
( ) 1
y x
x y
x y
x y
f x x−
= −
= −
= −
+ =
= +
b.
c. domain of f : ( ),−∞ ∞
range of f : ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
53. ( ) ( )(1) 1 5f g f= =
54. ( ) ( )(4) 2 1f g f= = −
55. ( )( ) ( ) ( )1 ( 1) 1 1g f g f g− = − = =
56. ( )( ) ( ) ( )0 (0) 4 2g f g f g= = =
57. ( ) ( )1 1
(10) 1 2f g f− −
= − = , since ( )2 1f = − .
58. ( ) ( )1 1
(1) 1 1f g f− −
= = − , since ( )1 1f − = .
59. ( )( ) ( )
( )
( ) ( )
0 (0)
4 0 1
1 2 1 5 7
f g f g
f
f
=
= ⋅ −
= − = − − = −

60. ( )( ) ( )
( )
( ) ( )
0 (0)
2 0 5
5 4 5 1 21
g f g f
g
g
=
= ⋅ −
= − = − − = −

61. Let ( )1
1f x−
= . Then
( ) 1
2 5 1
2 6
3
f x
x
x
x
=
− =
=
=
Thus, ( )1
1 3f −
=
62. Let ( )1
7g x−
= . Then
( ) 7
4 1 7
4 8
2
g x
x
x
x
=
− =
=
=
Thus, ( )1
7 2g−
=
Section 2.7 Inverse Functions
Copyright © 2018 Pearson Education, Inc. 291
63. [ ]( ) ( )
( )
( )
( )
2
(1) 1 1 2
(4)
2 4 5
3
4 3 1 11
g f h g f
g f
g
g
 = + + 
=
= ⋅ −
=
= ⋅ − =
64. [ ]( ) ( )
( )
( )
( )
2
(1) 1 1 2
(4)
4 4 1
15
2 15 5 25
f g h f g
f g
f
f
 = + + 
=
= ⋅ −
=
= ⋅ − =
65. a. {(Zambia, 4.2), (Colombia, 4.5),
(Poland, 3.3), (Italy, 3.3),
(United States, 2.5)}
b. {(4.2, Zambia), (4.5 , Colombia),
(3.3 , Poland), (3.3, Italy),
(2.5, United States)}
f is not a one-to-one function because the
inverse of f is not a function.
66. a. {(Zambia,- 7.3), (Colombia, - 4.5),
(Poland, - 2.8), (Italy, - 2.8),
(United States, - 1.9)}
b. { (- 7.3, Zambia), (- 4.5, Colombia),
(- 2.8, Po land), (- 2.8, Italy),
(- 1.9, United States)}
g is not a one-to-one function because the
inverse of g is not a function.
67. a. It passes the horizontal line test and is one-to-
one.
b. f--1
(0.25) = 15 If there are 15 people in the
room, the probability that 2 of them have the
same birthday is 0.25.
f--1
(0.5) = 21 If there are 21 people in the room,
the probability that 2 of them have the same
birthday is 0.5.
f--1
(0.7) = 30 If there are 30 people in the room,
the probability that 2 of them have the same
birthday is 0.7.
68. a. This function fails the horizontal line test.
Thus, this function does not have an inverse.
b. The average happiness level is 3 at 12 noon and
at 7 p.m. These values can be represented as
(12,3) and (19,3) .
c. The graph does not represent a one-to-one
function. (12,3) and (19,3) are an example of
two x-values that correspond to the same y-
value.
69.
9 5
( ( )) ( 32) 32
5 9
32 32
f g x x
x
x
 
= − +  
= − +
=
5 9
( ( )) 32 32
9 5
32 32
g f x x
x
x
  
= + −  
  
= + −
=
f and g are inverses.
70. – 75. Answers will vary.
76.
not one-to-one
77.
one-to-one
Chapter 2 Functions and Graphs
292 Copyright © 2018 Pearson Education, Inc.
78.
one-to-one
79.
not one-to-one
80.
not one-to-one
81.
not one-to-one
82.
one-to-one
83.
not one-to-one
84.
f and g are inverses
85.
f and g are inverses
86.
f and g are inverses
87. makes sense
88. makes sense
89. makes sense
90. does not make sense; Explanations will vary.
Sample explanation: The vertical line test is used to
determine if a relation is a function, but does not tell
us if a function is one-to-one.
Section 2.7 Inverse Functions
Copyright © 2018 Pearson Education, Inc. 293
91. false; Changes to make the statement true will vary.
A sample change is: The inverse is {(4,1), (7,2)}.
92. false; Changes to make the statement true will vary.
A sample change is: f(x) = 5 is a horizontal line, so
it does not pass the horizontal line test.
93. false; Changes to make the statement true will vary.
A sample change is: 1
( ) .
3
x
f x−
=
94. true
95. ( )( ) 3( 5) 3 15.f g x x x= + = +
3 15
3 15
15
3
y x
x y
x
y
= +
= +
−
=
( )
1 15
( )
3
x
f g x
− −
=
1
( ) 5
5
5
5
( ) 5
g x x
y x
x y
y x
g x x−
= +
= +
= +
= −
= −
1
( ) 3
3
3
3
( )
3
f x x
y x
x y
x
y
x
f x−
=
=
=
=
=
( )1 1 15
( ) 5
3 3
x x
g f x− − −
= − =
96.
1
3 2
( )
5 3
3 2
5 3
3 2
5 3
(5 3) 3 2
5 3 3 2
5 3 3 2
(5 3) 3 2
3 2
5 3
3 2
( )
5 3
x
f x
x
x
y
x
y
x
y
x y y
xy x y
xy y x
y x x
x
y
x
x
f x
x
−
−
=
−
−
=
−
−
=
−
− = −
− = −
− = −
− = −
−
=
−
−
=
−
Note: An alternative approach is to show that
( )( ) .f f x x=
97. No, there will be 2 times when the spacecraft is at the
same height, when it is going up and when it is
coming down.
98. 1
8 ( 1) 10f x−
+ − =
1
( 1) 2
(2) 1
6 1
7
7
f x
f x
x
x
x
−
− =
= −
= −
=
=
99. Answers will vary.
Chapter 2 Functions and Graphs
294 Copyright © 2018 Pearson Education, Inc.
100. 2
2 5 1 0x x− + =
2
2
2
2
5 1
0
2 2
5 1
2 2
5 25 1 25
2 16 2 16
5 17
4 16
5 17
4 16
5 17
4 4
5 17
4 4
5 17
4
x x
x x
x x
x
x
x
x
x
− + =
− = −
− + = − +
 
− = 
 
− = ±
− = ±
= ±
±
=
The solution set is
5 17
4
 ± 
 
  
.
101.
( ) ( )
3/4
3/2
3/4
4 3 4 33/4
4/3
5 15 0
5 15
3
3
3
x
x
x
x
x
− =
=
=
=
=
The solution set is { }4/3
3 .
102. 3 2 1 21
2 1 7
x
x
− ≥
− ≥
2 1 7 2 1 7
or
2 6 2 8
2 6 2 8
2 2 2 2
3 4
x x
x x
x x
x x
− ≤ − − ≥
≤ − ≥
−
≤ ≥
≤ − ≥
The solution set is { }3 or 4x x x≤ − ≥
or ( ] [ ), 3 4, .−∞ − ∞
103. 2 2 2 2
2 1 2 1
2 2
( ) ( ) (1 7) ( 1 2)
( 6) ( 3)
36 9
45
3 5
x x y y− + − = − + − −
= − + −
= +
=
=
104.
105. 2
2
2
2
6 4 0
6 4
6 9 4 9
( 3) 13
3 13
3 13
y y
y y
y y
y
y
y
− − =
− =
− + = +
− =
− = ±
= ±
Solution set: { }3 13±
Section 2.8 Distance and Midpoint Formulas; Circles
Copyright © 2018 Pearson Education, Inc. 295
Section 2.8
Check Point Exercises
1. ( ) ( )
2 2
2 1 2 1d x x y y= − + −
( ) ( )
2 2
2 2
2 ( 1) 3 ( 3)
3 6
9 36
45
3 5
6.71
d = − − + − −
= +
= +
=
=
≈
2.
1 7 2 ( 3) 8 1 1
, , 4,
2 2 2 2 2
+ + − −     
= = −     
     
3.
2 2 2
2 2
0, 0, 4;
( 0) ( 0) 4
16
h k r
x y
x y
= = =
− + − =
+ =
4.
2 2 2
2 2
2 2
0, 6, 10;
( 0) [ ( 6)] 10
( 0) ( 6) 100
( 6) 100
h k r
x y
x y
x y
= = − =
− + − − =
− + + =
+ + =
5. a. 2 2
2 2 2
( 3) ( 1) 4
[ ( 3)] ( 1) 2
x y
x y
+ + − =
− − + − =
So in the standard form of the circle’s equation
2 2 2
( ) ( )x h y k r− + − = ,
we have 3, 1, 2.h k r= − = =
center: ( , ) ( 3, 1)h k = −
radius: r = 2
b.
c. domain: [ ]5, 1− −
range: [ ]1,3−
6. 2 2
4 4 1 0x y x y+ + − − =
( ) ( )
( ) ( )
2 2
2 2
2 2
2 2
2 2 2
4 4 1 0
4 4 0
4 4 4 4 1 4 4
( 2) ( 2) 9
[ ( )] ( 2) 3
x y x y
x x y y
x x y y
x y
x x y
+ + − − =
+ + − =
+ + + + + = + +
+ + − =
− − + − =
So in the standard form of the circle’s equation
2 2 2
( ) ( )x h y k r− + − = , we have
2, 2, 3h k r= − = = .
Concept and Vocabulary Check 2.8
1. 2 2
2 1 2 1( ) ( )x x y y− + −
2. 1 2
2
x x+
; 1 2
2
y y+
3. circle; center; radius
4. 2 2 2
( ) ( )x h y k r− + − =
5. general
6. 4; 16
Exercise Set 2.8
1. 2 2
(14 2) (8 3)d = − + −
2 2
12 5
144 25
169
13
= +
= +
=
=
Chapter 2 Functions and Graphs
296 Copyright © 2018 Pearson Education, Inc.
2. 2 2
(8 5) (5 1)d = − + −
2 2
3 4
9 16
25
5
= +
= +
=
=
3. ( ) ( )
2 2
6 4 3 ( 1)d = − − + − −
( ) ( )
2 2
10 4
100 16
116
2 29
10.77
= − +
= +
=
=
≈
4. ( ) ( )
2 2
1 2 5 ( 3)d = − − + − −
( ) ( )
2 2
3 8
9 64
73
8.54
= − +
= +
=
≈
5. 2 2
( 3 0) (4 0)d = − − + −
2 2
3 4
9 16
25
5
= +
= +
=
=
6. ( )
22
(3 0) 4 0d = − + − −
( )
22
3 4
9 16
25
5
= + −
= +
=
=
7. 2 2
[3 ( 2)] [ 4 ( 6)]d = − − + − − −
2 2
5 2
25 4
29
5.39
= +
= +
=
≈
8. 2 2
[2 ( 4)] [ 3 ( 1)]d = − − + − − −
( )
22
6 2
36 4
40
2 10
6.32
= + −
= +
=
=
≈
9. 2 2
(4 0) [1 ( 3)]d = − + − −
2 2
4 4
16 16
32
4 2
5.66
= +
= +
=
=
≈
10. ( ) ( )
2 2
2 2
2
4 0 [3 2 ]
4 [3 2]
16 5
16 25
41
6.40
d = − + − −
= + +
= +
= +
=
≈
11.
2 2
2 2
( .5 3.5) (6.2 8.2)
( 4) ( 2)
16 4
20
2 5
4.47
d = − − + −
= − + −
= +
=
=
≈
12. ( )
( ) ( )
22
2 2
(1.6 2.6) 5.7 1.3
1 7
1 49
50
5 2
7.07
d = − + − −
= − + −
= +
=
=
≈
Section 2.8 Distance and Midpoint Formulas; Circles
Copyright © 2018 Pearson Education, Inc. 297
13.
2 2
2 2
( 5 0) [0 ( 3)]
( 5) ( 3)
5 3
8
2 2
2.83
d = − + − −
= +
= +
=
=
≈
14. ( ) ( )
( )
22
2 2
7 0 0 2
7 2
7 2
9
3
d  = − + − −
 
 = + − 
= +
=
=
15.
2 2
2 2
( 3 3 3) (4 5 5)
( 4 3) (3 5)
16(3) 9(5)
48 45
93
9.64
d = − − + −
= − +
= +
= +
=
≈
16. ( ) ( )
( ) ( )
2 2
2 2
3 2 3 5 6 6
3 3 4 6
9 3 16 6
27 96
123
11.09
d = − − + −
= − +
= ⋅ + ⋅
= +
=
≈
17.
2 2
2 2
1 7 6 1
3 3 5 5
( 2) 1
4 1
5
2.24
d
   
= − + −   
   
= − +
= +
=
≈
18.
2 2
2 2
2 2
3 1 6 1
4 4 7 7
3 1 6 1
4 4 7 7
1 1
2
1.41
d
      
= − − + − −      
      
   
= + + +   
   
= +
=
≈
19.
6 2 8 4 8 12
, , (4,6)
2 2 2 2
+ +   
= =   
   
20.
10 2 4 6 12 10
, , (6,5)
2 2 2 2
+ +   
= =   
   
21.
2 ( 6) 8 ( 2)
,
2 2
8 10
, ( 4, 5)
2 2
− + − − + − 
 
 
− − 
= = − − 
 
22.
( ) ( )4 1 7 3 5 10
, ,
2 2 2 2
5
, 5
2
− + − − + −  − − 
=   
  
− 
= − 
 
23.
3 6 4 ( 8)
,
2 2
3 12 3
, , 6
2 2 2
− + − + − 
 
 
−   
= = −   
   
24.
( )2 8 1 6 10 5 5
, 5,
2 2 2 2 2
− + − − + −   
= = −     
    
25.
( )
7 5 3 11
2 2 2 2
,
2 2
12 8
6 42 2, , 3, 2
2 2 2 2
 −    
+ − + −    
    
 
 
 
− − 
  − 
= = − = − −   
   
 
Chapter 2 Functions and Graphs
298 Copyright © 2018 Pearson Education, Inc.
26. 2 2 7 4 4 3
5 5 15 15 5 15, ,
2 2 2 2
4 1 3 1 2 1
, ,
5 2 15 2 5 10
      − + − + − −           =  
        
   
= − ⋅ ⋅ = −   
   
27.
( )
8 ( 6) 3 5 7 5
,
2 2
2 10 5
, 1,5 5
2 2
 + − +
  
 
 
= =  
 
28.
( )
7 3 3 3 6 ( 2) 10 3 8
, ,
2 2 2 2
5 3, 4
   + − + − −
=      
   
= −
29. 18 2 4 4
,
2 2
3 2 2 0 4 2
, ,0 (2 2,0)
2 2 2
 + − +
  
 
   +
= = =      
   
30.
( )
50 2 6 6 5 2 2 0
, ,
2 2 2 2
6 2
,0 3 2,0
2
   + − + +
=      
   
 
= =  
 
31. 2 2 2
2 2
( 0) ( 0) 7
49
x y
x y
− + − =
+ =
32. 2 2 2
( 0) ( 0) 8x y− + − =
2 2
64x y+ =
33. ( ) ( )
( ) ( )
2 2 2
2 2
3 2 5
3 2 25
x y
x y
− + − =
− + − =
34. ( ) [ ]
22 2
2 ( 1) 4x y− + − − =
( ) ( )
2 2
2 1 16x y− + + =
35. [ ] ( )
( ) ( )
2 2 2
2 2
( 1) 4 2
1 4 4
x y
x y
− − + − =
+ + − =
36. [ ] ( )
2 2 2
( 3) 5 3x y− − + − =
( ) ( )
2 2
3 5 9x y+ + − =
37. [ ] [ ] ( )
( ) ( )
22 2
2 2
( 3) ( 1) 3
3 1 3
x y
x y
− − + − − =
+ + + =
38. [ ] [ ] ( )
22 2
( 5) ( 3) 5x y− − + − − =
( ) ( )
2 2
5 3 5x y+ + + =
39. [ ] ( )
( ) ( )
2 2 2
2 2
( 4) 0 10
4 0 100
x y
x y
− − + − =
+ + − =
40. [ ] ( )
2 2 2
( 2) 0 6x y− − + − =
( )
2 2
2 36x y+ + =
41. 2 2
2 2 2
16
( 0) ( 0)
0, 0, 4;
x y
x y y
h k r
+ =
− + − =
= = =
center = (0, 0); radius = 4
domain: [ ]4,4−
range: [ ]4,4−
42. 2 2
49x y+ =
2 2 2
( 0) ( 0) 7
0, 0, 7;
x y
h k r
− + − =
= = =
center = (0, 0); radius = 7
domain: [ ]7,7−
range: [ ]7,7−
Section 2.8 Distance and Midpoint Formulas; Circles
Copyright © 2018 Pearson Education, Inc. 299
43. ( ) ( )
( ) ( )
2 2
2 2 2
3 1 36
3 1 6
3, 1, 6;
x y
x y
h k r
− + − =
− + − =
= = =
center = (3, 1); radius = 6
domain: [ ]3,9−
range: [ ]5,7−
44. ( ) ( )
2 2
2 3 16x y− + − =
2
2 2
( 2) ( 3) 4
2, 3, 4;
x y
h k r
− + − =
= = =
center = (2, 3); radius = 4
domain: [ ]2,6−
range: [ ]1,7−
45. 2 2
2 2 2
( 3) ( 2) 4
[ ( 3)] ( 2) 2
3, 2, 2
x y
x y
h k r
+ + − =
− − + − =
= − = =
center = (–3, 2); radius = 2
domain: [ ]5, 1− −
range: [ ]0,4
46. ( ) ( )
2 2
1 4 25x y+ + − =
[ ]
2 2 2
( 1) ( 4) 5
1, 4, 5;
x y
h k r
− − + − =
= − = =
center = (–1, 4); radius = 5
domain: [ ]6,4−
range: [ ]1,9−
47. 2 2
2 2 2
( 2) ( 2) 4
[ ( 2)] [ ( 2)] 2
2, 2, 2
x y
x y
h k r
+ + + =
− − + − − =
= − = − =
center = (–2, –2); radius = 2
domain: [ ]4,0−
range: [ ]4,0−
48. ( ) ( )
2 2
4 5 36x y+ + + =
[ ] [ ]
2 2 2
( 4) ( 5) 6
4, 5, 6;
x y
h k r
− − + − − =
= − = − =
center = (–4, –5); radius = 6
domain: [ ]10,2−
range: [ ]11,1−
Chapter 2 Functions and Graphs
300 Copyright © 2018 Pearson Education, Inc.
49. ( )
22
1 1x y+ − =
0, 1, 1;h k r= = =
center = (0, 1); radius = 1
domain: [ ]1,1−
range: [ ]0,2
50. ( )
22
2 4x y+ − =
0, 2, 2;h k r= = =
center = (0,2); radius = 2
domain: [ ]2,2−
range: [ ]0,4
51. ( )
2 2
1 25x y+ + =
1, 0, 5;h k r= − = =
center = (–1,0); radius = 5
domain: [ ]6,4−
range: [ ]5,5−
52. ( )
2 2
2 16x y+ + =
2, 0, 4;h k r= − = =
center = (–2,0); radius = 4
domain: [ ]6,2−
range: [ ]4,4−
53.
( ) ( )
( ) ( )
( ) ( )
[ ] [ ]
2 2
2 2
2 2
2 2
2 2 2
6 2 6 0
6 2 6
6 9 2 1 9 1 6
3 1 4
( 3) 9 ( 1) 2
x y x y
x x y y
x x y y
x y
x
+ + + + =
+ + + = −
+ + + + + = + −
+ + + =
− − + − − =
center = (–3, –1); radius = 2
54. 2 2
8 4 16 0x y x y+ + + + =
( ) ( )2 2
8 4 16x x y y+ + + = −
( ) ( )2 2
8 16 4 4 20 16x x y y+ + + + + = −
( ) ( )
2 2
4 2 4x y+ + + =
[ ] [ ]
2 2 2
( 4) ( 2) 2x y− − + − − =
center = (–4, –2); radius = 2
Section 2.8 Distance and Midpoint Formulas; Circles
Copyright © 2018 Pearson Education, Inc. 301
55.
( ) ( )
( ) ( )
( ) ( )
2 2
2 2
2 2
2 2
2 2 2
10 6 30 0
10 6 30
10 25 6 9 25 9 30
5 3 64
( 5) ( 3) 8
x y x y
x x y y
x x y y
x y
x y
+ − − − =
− + − =
− + + − + = + +
− + − =
− + − =
center = (5, 3); radius = 8
56. 2 2
4 12 9 0x y x y+ − − − =
( ) ( )2 2
4 12 9x x y y− + − =
( ) ( )2 2
4 4 12 36 4 36 9x x y y− + + − + = + +
( ) ( )
2 2
2 6 49x y− + − =
2 2 2
( 2) ( 6) 7x y− + − =
center = (2, 6); radius = 7
57.
( ) ( )
( ) ( )
( ) ( )
[ ]
2 2
2 2
2 2
2 2
2 2 2
8 2 8 0
8 2 8
8 16 2 1 16 1 8
4 1 25
( 4) ( 1) 5
x y x y
x x y y
x x y y
x y
x y
+ + − − =
+ + − =
+ + + − + = + +
+ + − =
− − + − =
center = (–4, 1); radius = 5
58. 2 2
12 6 4 0x y x y+ + − − =
( ) ( )2 2
12 6 4x x y y+ + − =
( ) ( )2 2
12 36 6 9 36 9 4x x y y+ + + − + = + +
[ ] ( )
2 2 2
( 6) 3 7x y− − + − =
center = (–6, 3); radius = 7
59.
( )
( ) ( )
( ) ( )
( ) ( )
2 2
2 2
22
2 2
2 2 2
2 15 0
2 15
2 1 0 1 0 15
1 0 16
1 0 4
x x y
x x y
x x y
x y
x y
− + − =
− + =
− + + − = + +
− + − =
− + − =
center = (1, 0); radius = 4
60. 2 2
6 7 0x y y+ − − =
( )2 2
6 7x y y+ − =
( ) ( )2 2
0 6 9 0 9 7x y y− = − + = + +
( ) ( )
2 2
0 3 16x y− + − =
2 2 2
( 0) ( 3) 4x y− + − =
center = (0, 3); radius = 4
Chapter 2 Functions and Graphs
302 Copyright © 2018 Pearson Education, Inc.
61. 2 2
2 1 0x y x y+ − + + =
( )
2 2
2 2
2
2
2 1
1 1
2 1 1 1
4 4
1 1
1
2 4
x x y y
x x y y
x y
− + + = −
− + + + + = − + +
 
− + + = 
 
center =
1
, 1
2
 
− 
 
; radius =
1
2
62. 2 2 1
0
2
x y x y+ + + − =
2 2
2 2
2 2
1
2
1 1 1 1 1
4 4 2 4 4
1 1
1
2 2
x x y y
x x y y
x y
+ + + =
+ + + + + = + +
   
− + − =   
   
center =
1 1
,
2 2
 
 
 
; radius = 1
63. 2 2
3 2 1 0x y x y+ + − − =
( )
2 2
2 2
2
2
3 2 1
9 9
3 2 1 1 1
4 4
3 17
1
2 4
x x y y
x x y y
x y
+ + − =
+ + + − + = + +
 
+ + − = 
 
center =
3
,1
2
 
− 
 
; radius =
17
2
64. 2 2 9
3 5 0
4
x y x y+ + + + =
2 2
2 2
2 2
9
3 5
4
9 25 9 9 25
3 5
4 4 4 4 4
3 5 25
2 2 4
x x y y
x x y y
x y
+ + + = −
+ + + + + = − + +
   
+ + + =   
   
center =
3 5
,
2 2
 
− − 
 
; radius =
5
2
65. a. Since the line segment passes through the
center, the center is the midpoint of the
segment.
( )
1 2 1 2
,
2 2
3 7 9 11 10 20
, ,
2 2 2 2
5,10
x x y y
M
+ + 
=  
 
+ +   
= =   
   
=
The center is ( )5,10 .
Section 2.8 Distance and Midpoint Formulas; Circles
Copyright © 2018 Pearson Education, Inc. 303
b. The radius is the distance from the center to
one of the points on the circle. Using the
point ( )3,9 , we get:
( ) ( )
2 2
2 2
5 3 10 9
2 1 4 1
5
d = − + −
= + = +
=
The radius is 5 units.
c.
( ) ( ) ( )
( ) ( )
22 2
2 2
5 10 5
5 10 5
x y
x y
− + − =
− + − =
66. a. Since the line segment passes through the
center, the center is the midpoint of the
segment.
( )
1 2 1 2
,
2 2
3 5 6 4 8 10
, ,
2 2 2 2
4,5
x x y y
M
+ + 
=  
 
+ +   
= =   
   
=
The center is ( )4,5 .
b. The radius is the distance from the center to
one of the points on the circle. Using the
point ( )3,6 , we get:
( ) ( )
( )
2 2
22
4 3 5 6
1 1 1 1
2
d = − + −
= + − = +
=
The radius is 2 units.
c.
( ) ( ) ( )
( ) ( )
22 2
2 2
4 5 2
4 5 2
x y
x y
− + − =
− + − =
67.
Intersection points: ( )0, 4− and ( )4,0
Check ( )0, 4− :
( )
22
0 4 16
16 16 true
+ − =
=
( )0 4 4
4 4 true
− − =
=
Check ( )4,0 :
2 2
4 0 16
16 16 true
+ =
=
4 0 4
4 4 true
− =
=
The solution set is ( ) ( ){ }0, 4 , 4,0− .
68.
Intersection points: ( )0, 3− and ( )3,0
Check ( )0, 3− :
( )
22
0 3 9
9 9 true
+ − =
=
( )0 3 3
3 3 true
− − =
=
Check ( )3,0 :
2 2
3 0 9
9 9 true
+ =
=
3 0 3
3 3 true
− =
=
The solution set is ( ) ( ){ }0, 3 , 3,0− .
Chapter 2 Functions and Graphs
304 Copyright © 2018 Pearson Education, Inc.
69.
Intersection points: ( )0, 3− and ( )2, 1−
Check ( )0, 3− :
( ) ( )
( )
2 2
2 2
0 2 3 3 9
2 0 4
4 4
true
− + − + =
− + =
=
3 0 3
3 3 true
− = −
− = −
Check ( )2, 1− :
( ) ( )
2 2
2 2
2 2 1 3 4
0 2 4
4 4
true
− + − + =
+ =
=
1 2 3
1 1 true
− = −
− = −
The solution set is ( ) ( ){ }0, 3 , 2, 1− − .
70.
Intersection points: ( )0, 1− and ( )3,2
Check ( )0, 1− :
( ) ( )
( )
2 2
2 2
0 3 1 1 9
3 0 9
9 9
true
− + − + =
− + =
=
1 0 1
1 1 true
− = −
− = −
Check ( )3,2 :
( ) ( )
2 2
2 2
3 3 2 1 9
0 3 9
9 9
true
− + + =
+ =
=
2 3 1
2 2 true
= −
=
The solution set is ( ) ( ){ }0, 1 , 3,2− .
71. 2 2
(8495 4422) (8720 1241) 0.1
72,524,770 0.1
2693
d
d
d
= − + − ⋅
= ⋅
≈
The distance between Boston and San Francisco is
about 2693 miles.
72. 2 2
(8936 8448) (3542 2625) 0.1
1,079,033 0.1
328
d
d
d
= − + − ⋅
= ⋅
≈
The distance between New Orleans and Houston is
about 328 miles.
73. If we place L.A. at the origin, then we want the
equation of a circle with center at ( )2.4, 2.7− − and
radius 30.
( )( ) ( )( )
( ) ( )
2 2 2
2 2
2.4 2.7 30
2.4 2.7 900
x y
x y
− − + − − =
+ + + =
74. C(0, 68 + 14) = (0, 82)
2 2 2
2 2
( 0) ( 82) 68
( 82) 4624
x y
x y
− + − =
+ − =
75. – 82. Answers will vary.
83.
84.
Section 2.8 Distance and Midpoint Formulas; Circles
Copyright © 2018 Pearson Education, Inc. 305
85.
86. makes sense
87. makes sense
88. does not make sense; Explanations will vary.
Sample explanation: Since 2
4r = − this is not the
equation of a circle.
89. makes sense
90. false; Changes to make the statement true will vary.
A sample change is: The equation would be
2 2
256.x y+ =
91. false; Changes to make the statement true will vary.
A sample change is: The center is at (3, –5).
92. false; Changes to make the statement true will vary.
A sample change is: This is not an equation for a
circle.
93. false; Changes to make the statement true will vary.
A sample change is: Since 2
36r = − this is not the
equation of a circle.
94. The distance for A to B:
( )2 2
2 2
(3 1) [3 1 ]
2 2
4 4
8
2 2
AB d d= − + + − +
= +
= +
=
=
The distance from B to C:
( )
( )
2 2
22
(6 3) [3 6 ]
3 3
9 9
18
3 2
BC d d= − + + − +
= + −
= +
=
=
The distance for A to C:
2 2
2 2
(6 1) [6 (1 )]
5 5
25 25
50
5 2
AC d d= − + + − +
= +
= +
=
=
2 2 3 2 5 2
5 2 5 2
AB BC AC+ =
+ =
=
95. a. is distance from ( , ) to midpoint
1 1 2
d x x
( )
2 2
1 2 1 2
1 1 1
2 2
1 2 1 1 2 1
1
2 2
2 1 2 1
1
2 2 2
2 1 2 1 2 2 1 1
1
2 2
1 2 1 2 1 2 2 1 1
2 2
1 2 1 2 1 2 2 1 1
2 2
2 2
2 2
2 2
2 2
4 4
1
2 2
4
1
2 2
2
x x y y
d x y
x x x y y y
d
x x y y
d
x x x x y y y y
d
d x x x x y y y y
d x x x x y y y y
+ +   
= − + −   
   
+ − + −   
= +   
   
− −   
= +   
   
− + − +
= +
= − + + − +
= − + + − +
( )
1
2 2 2
2 2
2 1 2
2 2 2
2 2
1 2 2 1 2 2
2
2 2
1 2 1 2
2
2 2 2 2
1 1 2 2 1 2 1 2
2
2 2 2
2 1 1 2 2 1 2
is distance from midpoint to ,
2 2
2 2
2 2
2 2
2 2
4 4
1
2 2
4
d x y
x x y y
d x y
x x x y y y
d
x x y y
d
x x x x y y y y
d
d x x x x y y y
+ +   
= − + −   
   
+ − + −   
= +   
   
− −   
= +   
   
− + − +
= +
= − + + −( )2
1 2
2 2 2 2
2 1 1 2 2 1 2 1 2
1 2
1
2 2
2
y
d x x x x y y y y
d d
+
= − + + − +
=
Chapter 2 Functions and Graphs
306 Copyright © 2018 Pearson Education, Inc.
b. ( ) ( )3 1 1 2 2is the distance from , tod x y x y
2 2
3 2 1 2 1
2 2 2 2
3 2 1 2 1 2 2 1 1
1 2 3
( ) ( )
2 2
1 1
because
2 2
d x x y y
d x x x x y y y y
d d d a a a
= − + −
= − + + − +
+ = + =
96. Both circles have center (2, –3). The smaller circle
has radius 5 and the larger circle has radius 6. The
smaller circle is inside of the larger circle. The area
between them is given by
( ) ( )
2 2
6 5π π− 36 25π π= −
11
34.56squareunits.
π=
≈
97. The circle is centered at (0,0). The slope of the radius
with endpoints (0,0) and (3,–4) is
4 0 4
.
3 0 3
m
− −
= − = −
−
The line perpendicular to the
radius has slope
3
.
4
The tangent line has slope
3
4
and
passes through (3,–4), so its equation is:
3
4 ( 3).
4
y x+ = −
98. ( )7 2 5 7 9x x− + = −
7 14 5 7 9
7 9 7 9
9 9
x x
x x
− + = −
− = −
− = −
The original equation is equivalent to the
statement 9 9,− = − which is true for every value
of x.
The equation is an identity, and all real numbers
are solutions. The solution set
{ is a real number}.x x
99.
4 7 4 7 5 2
5 2 5 2 5 2
i i i
i i i
+ + +
= ⋅
− − +
2
2
20 8 35 14
25 10 10 4
34 8 35
25 4
34 27
29
27 34
29 29
i i i
i i i
i
i
i
+ + +
=
+ − −
− +
=
+
+
=
= +
100. 9 4 1 15
8 4 16
2 4
x
x
x
− ≤ − <
− ≤ <
− ≤ <
The solution set is { }2 4 or [ 2, 4).x x− ≤ < −
101. 2
2
2
0 2( 3) 8
2( 3) 8
( 3) 4
3 4
3 2
1, 5
x
x
x
x
x
x
= − − +
− =
− =
− = ±
= ±
=
102. 2
2
2 1 0
2 1 0
x x
x x
− − + =
+ − =
2
2
4
2
( 2) ( 2) 4(1)( 1)
2(1)
2 8
2
2 2 2
2
1 2
b b ac
x
a
x
− ± −
=
− − ± − − −
=
±
=
±
=
= ±
The solution set is {1 2}.±
103. The graph of g is the graph of f shifted 1 unit up and
3 units to the left.
Chapter 2 Review Exercises
Copyright © 2018 Pearson Education, Inc. 307
Chapter 2 Review Exercises
1. function
domain: {2, 3, 5}
range: {7}
2. function
domain: {1, 2, 13}
range: {10, 500, π}
3. not a function
domain: {12, 14}
range: {13, 15, 19}
4. 2 8
2 8
x y
y x
+ =
= − +
Since only one value of y can be obtained for each
value of x, y is a function of x.
5. 2
2
3 14
3 14
x y
y x
+ =
= − +
Since only one value of y can be obtained for each
value of x, y is a function of x.
6. 2
2
2 6
2 6
2 6
x y
y x
y x
+ =
= − +
= ± − +
Since more than one value of y can be obtained from
some values of x, y is not a function of x.
7. f(x) = 5 – 7x
a. f(4) = 5 – 7(4) = –23
b. ( 3) 5 7( 3)
5 7 21
7 16
f x x
x
x
+ = − +
= − −
= − −
c. f(–x) = 5 – 7(–x) = 5 + 7x
8. 2
( ) 3 5 2g x x x= − +
a. 2
(0) 3(0) 5(0) 2 2g = − + =
b. 2
( 2) 3( 2) 5( 2) 2
12 10 2
24
g − = − − − +
= + +
=
c. 2
2
2
( 1) 3( 1) 5( 1) 2
3( 2 1) 5 5 2
3 11 10
g x x x
x x x
x x
− = − − − +
= − + − + +
= − +
d. 2
2
( ) 3( ) 5( ) 2
3 5 2
g x x x
x x
− = − − − +
= + +
9. a. (13) 13 4 9 3g = − = =
b. g(0) = 4 – 0 = 4
c. g(–3) = 4 – (–3) = 7
10. a.
2
( 2) 1 3
( 2) 1
2 1 3
f
− −
− = = = −
− − −
b. f(1) = 12
c.
2
2 1 3
(2) 3
2 1 1
f
−
= = =
−
11. The vertical line test shows that this is not the graph
of a function.
12. The vertical line test shows that this is the graph of a
function.
13. The vertical line test shows that this is the graph of a
function.
14. The vertical line test shows that this is not the graph
of a function.
15. The vertical line test shows that this is not the graph
of a function.
16. The vertical line test shows that this is the graph of a
function.
17. a. domain: [–3, 5)
b. range: [–5, 0]
c. x-intercept: –3
d. y-intercept: –2
e. increasing: ( 2, 0) or (3, 5)−
decreasing: ( 3, 2) or (0, 3)− −
f. f(–2) = –3 and f(3) = –5
Chapter 2 Functions and Graphs
308 Copyright © 2018 Pearson Education, Inc.
18. a. domain: ( , )−∞ ∞
b. range: ( ],3−∞
c. x-intercepts: –2 and 3
d. y-intercept: 3
e. increasing: (–, 0)
decreasing: (0, )∞
f. f(–2) = 0 and f(6) = –3
19. a. domain: ( , )−∞ ∞
b. range: [–2, 2]
c. x-intercept: 0
d. y-intercept: 0
e. increasing: (–2, 2)
constant: ( , 2) or (2, )−∞ − ∞
f. f(–9) = –2 and f(14) = 2
20. a. 0, relative maximum −2
b. −2, 3, relative minimum −3, –5
21. a. 0, relative maximum 3
b. none
22. Test for symmetry with respect to the y-axis.
( )
2
2
2
8
8
8
y x
y x
y x
= +
= − +
= +
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the y-
axis.
Test for symmetry with respect to the x-axis.
2
2
2
8
8
8
y x
y x
y x
= +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( )
2
2
2
2
8
8
8
2
y x
y x
y x
y x
= +
− = − +
− = +
= − −
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
23. Test for symmetry with respect to the y-axis.
( )
2 2
2 2
2 2
17
17
17
x y
x y
x y
+ =
− + =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the y-
axis.
Test for symmetry with respect to the x-axis.
( )
2 2
22
2 2
17
17
17
x y
x y
x y
+ =
+ − =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the x-
axis.
Test for symmetry with respect to the origin.
( ) ( )
2 2
2 2
2 2
17
17
17
x y
x y
x y
+ =
− + − =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the
origin.
24. Test for symmetry with respect to the y-axis.
( )
3 2
3 2
3 2
5
5
5
x y
x y
x y
− =
− − =
− − =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the y-axis.
Test for symmetry with respect to the x-axis.
( )
3 2
23
3 2
5
5
5
x y
x y
x y
− =
− − =
− =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the x-
axis.
Chapter 2 Review Exercises
Copyright © 2018 Pearson Education, Inc. 309
Test for symmetry with respect to the origin.
( ) ( )
3 2
3 2
3 2
5
5
5
x y
x y
x y
− =
− − − =
− − =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
25. The graph is symmetric with respect to the origin.
The function is odd.
26. The graph is not symmetric with respect to the y-axis
or the origin. The function is neither even nor odd.
27. The graph is symmetric with respect to the y-axis.
The function is even.
28. 3
3
3
( ) 5
( ) ( ) 5( )
5
( )
f x x x
f x x x
x x
f x
= −
− = − − −
= − +
= −
The function is odd. The function is symmetric with
respect to the origin.
29. 4 2
4 2
4 2
( ) 2 1
( ) ( ) 2( ) 1
2 1
( )
f x x x
f x x x
x x
f x
= − +
− = − − − +
= − +
=
The function is even. The function is symmetric with
respect to the y-axis.
30. 2
2
2
( ) 2 1
( ) 2( ) 1 ( )
2 1
( )
f x x x
f x x x
x x
f x
= −
− = − − −
= − −
= −
The function is odd. The function is symmetric with
respect to the origin.
31. a.
b. range: {–3, 5}
32. a.
b. range: { }0y y ≤
33.
8( ) 11 (8 11)
8 8 11 8 11
8
8
8
x h x
h
x h x
h
h
+ − − −
+ − − +
=
=
=
34.
( )2 2
2( ) ( ) 10 2 10x h x h x x
h
− + + + + − − + +
( )
( )
2 2 2
2 2 2
2
2 2 10 2 10
2 4 2 10 2 10
4 2
4 2 1
4 2 1
x xh h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
− + + + + + + − −
=
− − − + + + + − −
=
− − +
=
− − +
=
− − +
35. a. Yes, the eagle’s height is a function of time
since the graph passes the vertical line test.
b. Decreasing: (3, 12)
The eagle descended.
c. Constant: (0, 3) or (12, 17)
The eagle’s height held steady during the first 3
seconds and the eagle was on the ground for 5
seconds.
d. Increasing: (17, 30)
The eagle was ascending.
Chapter 2 Functions and Graphs
310 Copyright © 2018 Pearson Education, Inc.
36.
37.
1 2 1 1
;
5 3 2 2
m
− −
= = = −
−
falls
38.
4 ( 2) 2
1;
3 ( 1) 2
m
− − − −
= = =
− − − −
rises
39.
1 1
4 4 0
0;
6 ( 3) 9
m
−
= = =
− −
horizontal
40.
10 5 5
2 ( 2) 0
m
−
= =
− − −
undefined; vertical
41. point-slope form: y – 2 = –6(x + 3)
slope-intercept form: y = –6x – 16
42.
2 6 4
2
1 1 2
m
− −
= = =
− − −
point-slope form: y – 6 = 2(x – 1)
or y – 2 = 2(x + 1)
slope-intercept form: y = 2x + 4
43. 3x + y – 9 = 0
y = –3x + 9
m = –3
point-slope form:
y + 7 = –3(x – 4)
slope-intercept form:
y = –3x + 12 – 7
y = –3x + 5
44. perpendicular to
1
4
3
y x= +
m = –3
point-slope form:
y – 6 = –3(x + 3)
slope-intercept form:
y = –3x – 9 + 6
y = –3x – 3
45. Write 6 4 0x y− − = in slope intercept form.
6 4 0
6 4
6 4
x y
y x
y x
− − =
− = − +
= −
The slope of the perpendicular line is 6, thus the
slope of the desired line is
1
.
6
m = −
( )
1 1
1
6
1
6
1
6
( )
( 1) ( 12)
1 ( 12)
1 2
6 6 12
6 18 0
y y m x x
y x
y x
y x
y x
x y
− = −
− − = − − −
+ = − +
+ = − −
+ = − −
+ + =
46. slope:
2
;
5
y-intercept: –1
47. slope: –4; y-intercept: 5
48. 2 3 6 0
3 2 6
2
2
3
x y
y x
y x
+ + =
= − −
= − −
slope:
2
;
3
− y-intercept: –2
Chapter 2 Review Exercises
Copyright © 2018 Pearson Education, Inc. 311
49. 2 8 0
2 8
4
y
y
y
− =
=
=
slope: 0; y-intercept: 4
50. 2 5 10 0x y− − =
Find x-intercept:
2 5(0) 10 0
2 10 0
2 10
5
x
x
x
x
− − =
− =
=
=
Find y-intercept:
2(0) 5 10 0
5 10 0
5 10
2
y
y
y
y
− − =
− − =
− =
= −
51. 2 10 0x − =
2 10
5
x
x
=
=
52. a. First, find the slope using the points
(2,28.2) and (4,28.6).
28.6 28.2 0.4
0.2
4 2 2
m
−
= = =
−
Then use the slope and one of the points to write
the equation in point-slope form.
( )
( )
( )
1 1
28.2 0.2 2
or
28.6 0.2 4
y y m x x
y x
y x
− = −
− = −
− = −
b. Solve for y to obtain slope-intercept form.
( )28.2 0.2 2
28.2 0.2 0.4
0.2 27.8
( ) 0.2 27.8
y x
y x
y x
f x x
− = −
− = −
= +
= +
c. ( ) 0.2 27.8
(7) 0.2(12) 27.8
30.2
f x x
f
= +
= +
=
The linear function predicts men’s average age
of first marriage will be 30.2 years in 2020.
53. a.
27 21 6
0.2
2010 1980 30
m
−
= = =
−
b. For the period shown, the number of the
percentage of liberal college freshman increased
each year by approximately 0.2. The rate of
change was 0.2% per year.
54.
( )2 2
2 1
2 1
[9 4 9 ] [4 4 5]( ) ( )
10
9 5
f x f x
x x
− − − ⋅−
= =
− −
55.
56.
Chapter 2 Functions and Graphs
312 Copyright © 2018 Pearson Education, Inc.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
Chapter 2 Review Exercises
Copyright © 2018 Pearson Education, Inc. 313
69.
70.
71.
72.
73.
74.
75.
76. domain: ( , )−∞ ∞
77. The denominator is zero when x = 7. The domain is
( ) ( ),7 7,−∞ ∞ .
78. The expressions under each radical must not be
negative.
8 – 2x ≥ 0
–2x ≥ –8
x ≤ 4
domain: ( , 4].−∞
79. The denominator is zero when x = –7 or
x = 3.
domain: ( ) ( ) ( ), 7 7,3 3,−∞ − − ∞ 
80. The expressions under each radical must not be
negative. The denominator is zero when x = 5.
x – 2 ≥ 0
x ≥ 2
domain: [ ) ( )2,5 5,∞
81. The expressions under each radical must not be
negative.
1 0 and 5 0
1 5
x x
x x
− ≥ + ≥
≥ ≥ −
domain: [ )1,∞
82. f(x) = 3x – 1; g(x) = x – 5
(f + g)(x) = 4x – 6
domain: ( , )−∞ ∞
(f – g)(x) = (3x – 1) – (x – 5) = 2x + 4
domain: ( , )−∞ ∞
2
( )( ) (3 1)( 5) 3 16 5fg x x x x x= − − = − +
domain: ( , )−∞ ∞
3 1
( )
5
f x
x
g x
  −
= 
− 
domain: ( ) ( ),5 5,−∞ ∞
Chapter 2 Functions and Graphs
314 Copyright © 2018 Pearson Education, Inc.
83. 2 2
( ) 1; ( ) 1f x x x g x x= + + = −
2
( )( ) 2f g x x x+ = +
domain: ( , )−∞ ∞
2 2
( )( ) ( 1) ( 1) 2f g x x x x x− = + + − − = +
domain: ( , )−∞ ∞
2 2
4 3
2
2
( )( ) ( 1)( 1)
1
1
( )
1
fg x x x x
x x x
f x x
x
g x
= + + −
= + − −
  + +
= 
− 
domain: ( ) ( ) ( ), 1 1,1 1,−∞ − − ∞ 
84. ( ) 7; ( ) 2
( )( ) 7 2
f x x g x x
f g x x x
= + = −
+ = + + −
domain: [2, )∞
( )( ) 7 2f g x x x− = + − −
domain: [2, )∞
2
( )( ) 7 2
5 14
fg x x x
x x
= + ⋅ −
= + −
domain: [2, )∞
7
( )
2
f x
x
g x
  +
= 
− 
domain: (2, )∞
85. 2
( ) 3; ( ) 4 1f x x g x x= + = −
a. 2
2
( )( ) (4 1) 3
16 8 4
f g x x
x x
= − +
= − +

b. 2
2
( )( ) 4( 3) 1
4 11
g f x x
x
= + −
= +

c. 2
( )(3) 16(3) 8(3) 4 124f g = − + =
86. ( ) ;f x x= g(x) = x + 1
a. ( )( ) 1f g x x= +
b. ( )( ) 1g f x x= +
c. ( )(3) 3 1 4 2f g = + = =
87. a.
( )( )
1
11 11
1
1 1 1 2
2 2
f g x f
x
x
xxx
x
x
x x
 
=  
 
 
++   + = = =
− − − 
 

b. 0 1 2 0
1
2
x x
x
≠ − ≠
≠
( )
1 1
,0 0, ,
2 2
   
−∞ ∞   
   
 
88. a. ( )( ) ( 3) 3 1 2f g x f x x x= + = + − = +
b. 2 0
2
x
x
+ ≥
≥ −
[ 2, )− ∞
89. 4 2
( ) ( ) 2 1f x x g x x x= = + −
90. ( ) 3
( ) 7 4f x x g x x= = +
91.
3 1 5
( ) ; ( ) 2
5 2 3
f x x g x x= + = −
3 5 1
( ( )) 2
5 3 2
6 1
5 2
7
10
f g x x
x
x
 
= − + 
 
= − +
= −
5 3 1
( ( )) 2
3 5 2
5
2
6
7
6
g f x x
x
x
 
= + − 
 
= + −
= −
f and g are not inverses of each other.
Chapter 2 Review Exercises
Copyright © 2018 Pearson Education, Inc. 315
92.
2
( ) 2 5 ; ( )
5
x
f x x g x
−
= − =
2
( ( )) 2 5
5
2 (2 )
2 (2 5 ) 5
( ( ))
5 5
x
f g x
x
x
x x
g f x x
− 
= −  
 
= − −
=
− −
= = =
f and g are inverses of each other.
93. a. ( ) 4 3f x x= −
1
4 3
4 3
3
4
3
( )
4
y x
x y
x
y
x
f x−
= −
= −
+
=
+
=
b. 1 3
( ( )) 4 3
4
x
f f x− + 
= − 
 
3 3x
x
= + −
=
1 (4 3) 3 4
( ( ))
4 4
x x
f f x x− − +
= = =
94. a. 3
( ) 8 1f x x= +
3
3
3
3
3
3
3
1
8 1
8 1
1 8
1
8
1
8
1
2
1
( )
2
y x
x y
x y
x
y
x
y
x
y
x
f x−
= +
= +
− =
−
=
−
=
−
=
−
=
b. ( )
3
3
1 1
( ) 8 1
2
x
f f x−
 −
= +  
 
1
8 1
8
1 1
x
x
x
− 
= + 
 
= − +
=
( )
( )33
1
33
8 1 1
( )
2
8
2
2
2
x
f f x
x
x
x
−
+ −
=
=
=
=
95. a.
7
( )
2
x
f x
x
−
=
+
( )
1
7
2
7
2
2 7
2 7
1 2 7
2 7
1
2 7
( ) , 1
1
x
y
x
y
x
y
xy x y
xy y x
y x x
x
y
x
x
f x x
x
−
−
=
+
−
=
+
+ = −
− = − −
− = − −
− −
=
−
− −
= ≠
−
Chapter 2 Functions and Graphs
316 Copyright © 2018 Pearson Education, Inc.
b. ( )
( )
( )
1
2 7
7
1( )
2 7
2
1
2 7 7 1
2 7 2 1
9
9
x
xf f x
x
x
x x
x x
x
x
−
− −
−
−=
− −
+
−
− − − −
=
− − + −
−
=
−
=
( )
( )
( )
1
7
2 7
2
( )
7
1
2
2 14 7 2
7 2
9
9
x
x
f f x
x
x
x x
x x
x
x
−
− 
− − + =
−
−
+
− + − +
=
− − +
−
=
−
=
96. The inverse function exists.
97. The inverse function does not exist since it does not
pass the horizontal line test.
98. The inverse function exists.
99. The inverse function does not exist since it does not
pass the horizontal line test.
100.
101. 2
( ) 1f x x= −
2
2
2
1
1
1
1
1
( ) 1
y x
x y
y x
y x
f x x−
= −
= −
= −
= −
= −
102. ( ) 1f x x= +
2
1 2
1
1
1
( 1)
( ) ( 1) , 1
y x
x y
x y
x y
f x x x−
= +
= +
− =
− =
= − ≥
103. 2 2
2 2
[3 ( 2)] [9 ( 3)]
5 12
25 144
169
13
d = − − + − −
= +
= +
=
=
104. ( )
22
2 2
[ 2 ( 4)] 5 3
2 2
4 4
8
2 2
2.83
d = − − − + −
= +
= +
=
=
≈
105.
( )
( )
2 12 6 4 10 10
, , 5,5
2 2 2 2
+ − + − 
= = −   
  
Chapter 2 Test
Copyright © 2018 Pearson Education, Inc. 317
106.
4 ( 15) 6 2 11 4 11
, , , 2
2 2 2 2 2
+ − − + − − −     
= = −     
     
107. 2 2 2
2 2
3
9
x y
x y
+ =
+ =
108. 2 2 2
2 2
( ( 2)) ( 4) 6
( 2) ( 4) 36
x y
x y
− − + − =
+ + − =
109. center: (0, 0); radius: 1
domain: [ ]1,1−
range: [ ]1,1−
110. center: (–2, 3); radius: 3
domain: [ ]5,1−
range: [ ]0,6
111. 2 2
2 2
2 2
2 2
4 2 4 0
4 2 4
4 4 2 1 4 4 1
( 2) ( 1) 9
x y x y
x x y y
x x y y
x y
+ − + − =
− + + =
− + + + + = + +
− + + =
center: (2, –1); radius: 3
domain: [ ]1,5−
range: [ ]4,2−
Chapter 2 Test
1. (b), (c), and (d) are not functions.
2. a. f(4) – f(–3) = 3 – (–2) = 5
b. domain: (–5, 6]
c. range: [–4, 5]
d. increasing: (–1, 2)
e. decreasing: ( 5, 1) or (2, 6)− −
f. 2, f(2) = 5
g. (–1, –4)
h. x-intercepts: –4, 1, and 5.
i. y-intercept: –3
3. a. –2, 2
b. –1, 1
c. 0
d. even; ( ) ( )f x f x− =
e. no; f fails the horizontal line test
f. (0)f is a relative minimum.
g.
h.
Chapter 2 Functions and Graphs
318 Copyright © 2018 Pearson Education, Inc.
i.
j. 2 1
2 1
( ) ( ) 1 0 1
1 ( 2) 3
f x f x
x x
− − −
= = −
− − −
4.
domain: ( ),−∞ ∞
range: ( ),−∞ ∞
5.
domain: [ ]2,2−
range: [ ]2,2−
6.
domain: ( ),−∞ ∞
range: {4}
7.
domain: ( ),−∞ ∞
range: ( ),−∞ ∞
8.
domain: [ ]5,1−
range: [ ]2,4−
9.
domain: ( ),−∞ ∞
range: { }1,2−
10.
domain: [ ]6,2−
range: [ ]1,7−
11.
domain of f: ( ),−∞ ∞
range of f: [ )0,∞
domain of g: ( ),−∞ ∞
range of g: [ )2,− ∞
Chapter 2 Test
Copyright © 2018 Pearson Education, Inc. 319
12.
domain of f: ( ),−∞ ∞
range of f: [ )0,∞
domain of g: ( ),−∞ ∞
range of g: ( ],4−∞
13.
domain of f: ( ),−∞ ∞
range of f: ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
14.
domain of f: ( ),−∞ ∞
range of f: ( ),−∞ ∞
domain of 1
f −
: ( ),−∞ ∞
range of 1
f −
: ( ),−∞ ∞
15.
domain of f: [ )0,∞
range of f: [ )1,− ∞
domain of 1
f −
: [ )1,− ∞
range of 1
f −
: [ )0,∞
16. 2
( ) 4f x x x= − −
2
2
2
( 1) ( 1) ( 1) 4
2 1 1 4
3 2
f x x x
x x x
x x
− = − − − −
= − + − + −
= − −
17.
( ) ( )f x h f x
h
+ −
( )
( )
2 2
2 2 2
2
( ) ( ) 4 4
2 4 4
2
2 1
2 1
x h x h x x
h
x xh h x h x x
h
xh h h
h
h x h
h
x h
+ − + − − − −
=
+ + − − − − + +
=
+ −
=
+ −
=
= + −
18. ( )2
( )( ) 2 6 4g f x x x x− = − − − −
2
2
2 6 4
3 2
x x x
x x
= − − + +
= − + −
19.
2
4
( )
2 6
f x x
x
g x
  − −
= 
− 
domain: ( ) ( ),3 3,−∞ ∞
20. ( )( )( ) ( )f g x f g x=
2
2
2
(2 6) (2 6) 4
4 24 36 2 6 4
4 26 38
x x
x x x
x x
= − − − −
= − + − + −
= − +
21. ( )( )( ) ( )g f x g f x=
( )2
2
2
2 4 6
2 2 8 6
2 2 14
x x
x x
x x
= − − −
= − − −
= − −
22. ( ) ( )2
( 1) 2 ( 1) ( 1) 4 6g f − = − − − − −
( )
( )
2 1 1 4 6
2 2 6
4 6
10
= + − −
= − −
= − −
= −
Chapter 2 Functions and Graphs
320 Copyright © 2018 Pearson Education, Inc.
23. 2
( ) 4f x x x= − −
2
2
( ) ( ) ( ) 4
4
f x x x
x x
− = − − − −
= + −
f is neither even nor odd.
24. Test for symmetry with respect to the y-axis.
( )
2 3
2 3
2 3
7
7
7
x y
x y
x y
+ =
− + =
+ =
The resulting equation is equivalent to the original.
Thus, the graph is symmetric with respect to the y-
axis.
Test for symmetry with respect to the x-axis.
( )
2 3
32
2 3
7
7
7
x y
x y
x y
+ =
+ − =
− =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the x-axis.
Test for symmetry with respect to the origin.
( ) ( )
2 3
2 3
2 3
7
7
7
x y
x y
x y
+ =
− + − =
− =
The resulting equation is not equivalent to the
original. Thus, the graph is not symmetric with
respect to the origin.
25.
8 1 9
3
1 2 3
m
− − −
= = =
− − −
point-slope form: y – 1 = 3(x – 2)
or y + 8 = 3(x + 1)
slope-intercept form: y = 3x – 5
26.
1
5
4
y x= − + so m = 4
point-slope form: y – 6 = 4(x + 4)
slope-intercept form: y = 4x + 22
27. Write 4 2 5 0x y+ − = in slope intercept form.
4 2 5 0
2 4 5
52
2
x y
y x
y x
+ − =
= − +
= − +
The slope of the parallel line is –2, thus the slope of
the desired line is 2.m = −
( )
1 1( )
( 10) 2 ( 7)
10 2( 7)
10 2 14
2 24 0
y y m x x
y x
y x
y x
x y
− = −
− − = − − −
+ = − +
+ = − −
+ + =
28. a. Find slope:
25.8 24.6 1.2
0.12
20 10 10
m
−
= = =
−
point-slope form:
( )
( )
1 1
24.6 0.12 10
y y m x x
y x
− = −
− = −
b. slope-intercept form:
( )24.6 0.12 10
24.6 0.12 1.2
0.12 23.4
( ) 0.12 23.4
y x
y x
y x
f x x
− = −
− = −
= +
= +
c. ( ) 0.12 23.4
0.12(40) 23.4
28.2
f x x= +
= +
=
According to the model, 28.2% of U.S.
households will be one-person households in
2020.
29.
2 2
3(10) 5 [3(6) 5]
10 6
205 103
4
192
4
48
− − −
−
−
=
=
=
30. g(–1) = 3 – (–1) = 4
(7) 7 3 4 2g = − = =
31. The denominator is zero when x = 1 or
x = –5.
domain: ( ) ( ) ( ), 5 5,1 1,−∞ − − ∞ 
32. The expressions under each radical must not be
negative.
5 0 and 1 0
5 1
x x
x x
+ ≥ − ≥
≥ − ≥
domain: [ )1,∞
Cumulative Review
Copyright © 2018 Pearson Education, Inc. 321
33.
7 7
( )( )
2 2 44
x
f g x
x
x
= =
−−

0, 2 4 0
1
2
x x
x
≠ − ≠
≠
domain: ( )
1 1
,0 0, ,
2 2
   
−∞ ∞   
   
 
34. ( ) ( )7
2 3f x x g x x= = +
35. 2 2
2 1 2 1( ) ( )d x x y y= − + −
( )
( )
22
2 1 2 1
22
2 2
( )
(5 2) 2 ( 2)
3 4
9 16
25
5
d x x y y= − + −
= − + − −
= +
= +
=
=
1 2 1 2 2 5 2 2
, ,
2 2 2 2
7
,0
2
x x y y+ + + − +   
=   
  
 
=  
 
The length is 5 and the midpoint is
( )
7
,0 or 3.5,0
2
 
 
 
.
Cumulative Review Exercises (Chapters 1–2)
1. domain: [ )0,2
range: [ ]0,2
2. ( ) 1f x = at 1
2
and 3
2
.
3. relative maximum: 2
4.
5.
6.
2
2
( 3)( 4) 8
12 8
20 0
( 4)( 5) 0
x x
x x
x x
x x
+ − =
− − =
− − =
+ − =
x + 4 = 0 or x – 5 = 0
x = –4 or x = 5
7. 3(4 1) 4 6( 3)
12 3 4 6 18
18 25
25
18
x x
x x
x
x
− = − −
− = − +
=
=
8.
2 2
2
2
2
2
( ) ( 2)
4 4
0 5 4
0 ( 1)( 4)
x x
x x
x x
x x x
x x
x x
+ =
= −
= −
= − +
= − +
= − −
x – 1 = 0 or x – 4 = 0
x = 1 or x = 4
A check of the solutions shows that x = 1 is an
extraneous solution.
The solution set is {4}.
9. 2/ 3 1/ 3
6 0x x− − =
Let 1/ 3
.u x= Then 2 2/ 3
.u x=
2
6 0
( 2)( 3) 0
u u
u u
− − =
+ − =
1/3 1/3
3 3
–2 or 3
–2 or 3
(–2) or 3
–8 or 27
u u
x x
x x
x x
= =
= =
= =
= =
Chapter 2 Functions and Graphs
322 Copyright © 2018 Pearson Education, Inc.
10. 3 2
2 4
x x
− ≤ +
4 3 4 2
2 4
2 12 8
20
x x
x x
x
   
− ≤ +   
   
− ≤ +
≤
The solution set is ( ,20].−∞
11.
domain: ( ),−∞ ∞
range: ( ),−∞ ∞
12.
domain: [ ]0,4
range: [ ]3,1−
13.
domain of f: ( ),−∞ ∞
range of f: ( ),−∞ ∞
domain of g: ( ),−∞ ∞
range of g: ( ),−∞ ∞
14.
domain of f: [ )3,∞
range of f: [ )2,∞
domain of 1
f −
: [ )2,∞
range of 1
f −
: [ )3,∞
15.
( ) ( )f x h f x
h
+ −
( ) ( )
( )
( )
2 2
2 2 2
2 2 2
2
4 ( ) 4
4 ( 2 ) 4
4 2 4
2
2
2
x h x
h
x xh h x
h
x xh h x
h
xh h
h
h x h
h
x h
− + − −
=
− + + − −
=
− − − − +
=
− −
=
− −
=
= − −
16. ( )( )( ) ( )f g x f g x=
( )
( )
2
2
2
2
2
( )( ) 5
0 4 5
0 4 ( 10 25)
0 4 10 25
0 10 21
0 10 21
0 ( 7)( 3)
f g x f x
x
x x
x x
x x
x x
x x
= +
= − +
= − + +
= − − −
= − − −
= + +
= + +

The value of ( )( )f g x will be 0 when 3x = − or
7.x = −
17.
1 1
,
4 3
y x= − + so m = 4.
point-slope form: y – 5 = 4(x + 2)
slope-intercept form: y = 4x + 13
general form: 4 13 0x y− + =
Cumulative Review
Copyright © 2018 Pearson Education, Inc. 323
18. 0.07 0.09(6000 ) 510
0.07 540 0.09 510
0.02 30
1500
6000 4500
x x
x x
x
x
x
+ − =
+ − =
− = −
=
− =
$1500 was invested at 7% and $4500 was
invested at 9%.
19. 200 0.05 .15
200 0.10
2000
x x
x
x
+ =
=
=
For $2000 in sales, the earnings will be the
same.
20. width = w
length = 2w + 2
2(2w + 2) + 2w = 22
4w + 4 + 2w = 22
6w = 18
w = 3
2w + 2 = 8
The garden is 3 feet by 8 feet.

More Related Content

PPTX
Lean production System - TPS
PDF
tripler volumen 2
PDF
Maze Solver Robot using Arduino
PDF
Dinamica clasica de particulas y sistemas jerry marion español
PPTX
Tư Tưởng Hồ Chí Minh về văn hóa
DOCX
Comentario del soneto de Lope de Vega ``Desmayarse, atreverse, estar furioso,´´.
PPTX
Diabetes Mellitus
PPTX
Hypertension
Lean production System - TPS
tripler volumen 2
Maze Solver Robot using Arduino
Dinamica clasica de particulas y sistemas jerry marion español
Tư Tưởng Hồ Chí Minh về văn hóa
Comentario del soneto de Lope de Vega ``Desmayarse, atreverse, estar furioso,´´.
Diabetes Mellitus
Hypertension

What's hot (20)

PPT
Section 4.1 polynomial functions and models
PDF
Factoring Perfect Square Trinomials
PPT
Ppt on sequences and series by mukul sharma
DOC
Skills In Add Maths
PPT
4.1 implicit differentiation
PPT
Diamond and box factoring student version
PPTX
Quadratic equation slideshare
PPTX
Calculas IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION ppt
PPTX
Sum and product of roots
PDF
6.1 Exponential Functions
PPT
Quadratic Equation and discriminant
PPTX
Integration by partial fraction
PPT
Function Notation.ppt
PPTX
Application of partial derivatives with two variables
PPTX
Simultaneous equations (2)
PPTX
11 graphs of first degree functions x
PDF
35182797 additional-mathematics-form-4-and-5-notes
PPT
Inverse trig functions
PPTX
Factor by grouping
PDF
engineeringmathematics-iv_unit-i
Section 4.1 polynomial functions and models
Factoring Perfect Square Trinomials
Ppt on sequences and series by mukul sharma
Skills In Add Maths
4.1 implicit differentiation
Diamond and box factoring student version
Quadratic equation slideshare
Calculas IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION ppt
Sum and product of roots
6.1 Exponential Functions
Quadratic Equation and discriminant
Integration by partial fraction
Function Notation.ppt
Application of partial derivatives with two variables
Simultaneous equations (2)
11 graphs of first degree functions x
35182797 additional-mathematics-form-4-and-5-notes
Inverse trig functions
Factor by grouping
engineeringmathematics-iv_unit-i
Ad

Similar to College algebra 7th edition by blitzer solution manual (20)

PDF
Chapter1 functions
PDF
Chapter1 functions
PDF
FUNCTIONS L.1.pdf
PPTX
GENERAL MATHEMATICS First lesson for Grade-11. pptx
PDF
AnsChap1.pdf
PDF
Chapter 1 (math 1)
PPT
Introductory maths analysis chapter 02 official
PPT
Chapter2 functionsandgraphs-151003144959-lva1-app6891
PPT
Chapter 2 - Functions and Graphs
PDF
Modul 1 functions
PPT
Functions & graphs
PDF
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
PDF
Gen 170212161209 (1)
PPT
introduction to functions grade 11(General Math)
PPT
Gen. math g11 introduction to functions
PDF
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
PDF
Sol mat haeussler_by_priale
PDF
Solucionario de matemáticas para administación y economia
PDF
31350052 introductory-mathematical-analysis-textbook-solution-manual
PPT
Chapter1 functions
Chapter1 functions
FUNCTIONS L.1.pdf
GENERAL MATHEMATICS First lesson for Grade-11. pptx
AnsChap1.pdf
Chapter 1 (math 1)
Introductory maths analysis chapter 02 official
Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter 2 - Functions and Graphs
Modul 1 functions
Functions & graphs
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Gen 170212161209 (1)
introduction to functions grade 11(General Math)
Gen. math g11 introduction to functions
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Sol mat haeussler_by_priale
Solucionario de matemáticas para administación y economia
31350052 introductory-mathematical-analysis-textbook-solution-manual
Ad

Recently uploaded (20)

PDF
CHALLENGES FACED BY TEACHERS WHEN TEACHING LEARNERS WITH DEVELOPMENTAL DISABI...
PPTX
2025 High Blood Pressure Guideline Slide Set.pptx
PPTX
Theoretical for class.pptxgshdhddhdhdhgd
PPTX
Neurological complocations of systemic disease
PPTX
Cite It Right: A Compact Illustration of APA 7th Edition.pptx
PDF
Horaris_Grups_25-26_Definitiu_15_07_25.pdf
PPTX
ACFE CERTIFICATION TRAINING ON LAW.pptx
PPTX
4. Diagnosis and treatment planning in RPD.pptx
PDF
Compact First Student's Book Cambridge Official
PDF
Unleashing the Potential of the Cultural and creative industries
PPTX
Approach to a child with acute kidney injury
PPTX
MMW-CHAPTER-1-final.pptx major Elementary Education
PPTX
IT infrastructure and emerging technologies
PDF
anganwadi services for the b.sc nursing and GNM
PDF
Chevening Scholarship Application and Interview Preparation Guide
PPTX
Math 2 Quarter 2 Week 1 Matatag Curriculum
PPT
hsl powerpoint resource goyloveh feb 07.ppt
PDF
POM_Unit1_Notes.pdf Introduction to Management #mba #bba #bcom #bballb #class...
PPTX
CHROMIUM & Glucose Tolerance Factor.pptx
PDF
African Communication Research: A review
CHALLENGES FACED BY TEACHERS WHEN TEACHING LEARNERS WITH DEVELOPMENTAL DISABI...
2025 High Blood Pressure Guideline Slide Set.pptx
Theoretical for class.pptxgshdhddhdhdhgd
Neurological complocations of systemic disease
Cite It Right: A Compact Illustration of APA 7th Edition.pptx
Horaris_Grups_25-26_Definitiu_15_07_25.pdf
ACFE CERTIFICATION TRAINING ON LAW.pptx
4. Diagnosis and treatment planning in RPD.pptx
Compact First Student's Book Cambridge Official
Unleashing the Potential of the Cultural and creative industries
Approach to a child with acute kidney injury
MMW-CHAPTER-1-final.pptx major Elementary Education
IT infrastructure and emerging technologies
anganwadi services for the b.sc nursing and GNM
Chevening Scholarship Application and Interview Preparation Guide
Math 2 Quarter 2 Week 1 Matatag Curriculum
hsl powerpoint resource goyloveh feb 07.ppt
POM_Unit1_Notes.pdf Introduction to Management #mba #bba #bcom #bballb #class...
CHROMIUM & Glucose Tolerance Factor.pptx
African Communication Research: A review

College algebra 7th edition by blitzer solution manual

  • 1. Chapter 2 Functions and Graphs Copyright © 2018 Pearson Education, Inc. 201 Section 2.1 Check Point Exercises 1. The domain is the set of all first components: {0, 10, 20, 30, 42}. The range is the set of all second components: {9.1, 6.7, 10.7, 13.2, 21.7}. 2. a. The relation is not a function since the two ordered pairs (5, 6) and (5, 8) have the same first component but different second components. b. The relation is a function since no two ordered pairs have the same first component and different second components. 3. a. 2 6 6 2 x y y x + = = − For each value of x, there is one and only one value for y, so the equation defines y as a function of x. b. 2 2 2 2 2 1 1 1 x y y x y x + = = − = ± − Since there are values of x (all values between – 1 and 1 exclusive) that give more than one value for y (for example, if x = 0, then 2 1 0 1y = ± − = ± ), the equation does not define y as a function of x. 4. a. 2 ( 5) ( 5) 2( 5) 7 25 ( 10) 7 42 f − = − − − + = − − + = b. 2 2 2 ( 4) ( 4) 2( 4) 7 8 16 2 8 7 6 15 f x x x x x x x x + = + − + + = + + − − + = + + c. 2 2 2 ( ) ( ) 2( ) 7 ( 2 ) 7 2 7 f x x x x x x x − = − − − + = − − + = + + 5. x ( ) 2f x x= ( ),x y -2 –4 ( )2, 4− − -1 –2 ( )1, 2− − 0 0 ( )0,0 1 2 ( )1,2 2 4 ( )2,4 x ( ) 2 3g x x= − ( ),x y -2 ( ) 2( 2) 32 7g − − =− = − ( )2, 7− − -1 ( ) 2( 1) 31 5g − −− = = − ( )1, 5− − 0 ( ) 2(0) 30 3g −= = − ( )0, 3− 1 ( ) 2(1) 31 1g −= = − ( )1, 1− 2 ( ) 2(2) 32 1g −= = ( )2,1 The graph of g is the graph of f shifted down 3 units.
  • 2. Chapter 2 Functions and Graphs 202 Copyright © 2018 Pearson Education, Inc. 6. The graph (a) passes the vertical line test and is therefore is a function. The graph (b) fails the vertical line test and is therefore not a function. The graph (c) passes the vertical line test and is therefore is a function. The graph (d) fails the vertical line test and is therefore not a function. 7. a. (5) 400f = b. 9x = , (9) 100f = c. The minimum T cell count in the asymptomatic stage is approximately 425. 8. a. domain: { } [ ]2 1 or 2,1 .x x− ≤ ≤ − range: { } [ ]0 3 or 0,3 .y y≤ ≤ b. domain: { } ( ]2 1 or 2,1 .x x− < ≤ − range: { } [ )1 2 or 1,2 .y y− ≤ < − c. domain: { } [ )3 0 or 3,0 .x x− ≤ < − range: { }3, 2, 1 .y y = − − − Concept and Vocabulary Check 2.1 1. relation; domain; range 2. function 3. f; x 4. true 5. false 6. x; 6x + 7. ordered pairs 8. more than once; function 9. [0,3) ; domain 10. [1, )∞ ; range 11. 0; 0; zeros 12. false Exercise Set 2.1 1. The relation is a function since no two ordered pairs have the same first component and different second components. The domain is {1, 3, 5} and the range is {2, 4, 5}. 2. The relation is a function because no two ordered pairs have the same first component and different second components The domain is {4, 6, 8} and the range is {5, 7, 8}. 3. The relation is not a function since the two ordered pairs (3, 4) and (3, 5) have the same first component but different second components (the same could be said for the ordered pairs (4, 4) and (4, 5)). The domain is {3, 4} and the range is {4, 5}. 4. The relation is not a function since the two ordered pairs (5, 6) and (5, 7) have the same first component but different second components (the same could be said for the ordered pairs (6, 6) and (6, 7)). The domain is {5, 6} and the range is {6, 7}. 5. The relation is a function because no two ordered pairs have the same first component and different second components The domain is {3, 4, 5, 7} and the range is {–2, 1, 9}. 6. The relation is a function because no two ordered pairs have the same first component and different second components The domain is {–2, –1, 5, 10} and the range is {1, 4, 6}. 7. The relation is a function since there are no same first components with different second components. The domain is {–3, –2, –1, 0} and the range is {–3, –2, – 1, 0}. 8. The relation is a function since there are no ordered pairs that have the same first component but different second components. The domain is {–7, –5, –3, 0} and the range is {–7, –5, –3, 0}. 9. The relation is not a function since there are ordered pairs with the same first component and different second components. The domain is {1} and the range is {4, 5, 6}. 10. The relation is a function since there are no two ordered pairs that have the same first component and different second components. The domain is {4, 5, 6} and the range is {1}.
  • 3. Section 2.1 Basics of Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 203 11. 16 16 x y y x + = = − Since only one value of y can be obtained for each value of x, y is a function of x. 12. 25 25 x y y x + = = − Since only one value of y can be obtained for each value of x, y is a function of x. 13. 2 2 16 16 x y y x + = = − Since only one value of y can be obtained for each value of x, y is a function of x. 14. 2 2 25 25 x y y x + = = − Since only one value of y can be obtained for each value of x, y is a function of x. 15. 2 2 2 2 2 16 16 16 x y y x y x + = = − = ± − If x = 0, 4.y = ± Since two values, y = 4 and y = – 4, can be obtained for one value of x, y is not a function of x. 16. 2 2 2 2 2 25 25 25 If 0, 5. x y y x y x x y + = = − = ± − = = ± Since two values, y = 5 and y = –5, can be obtained for one value of x, y is not a function of x. 17. 2 x y y x = = ± If x = 1, 1.y = ± Since two values, y = 1 and y = –1, can be obtained for x = 1, y is not a function of x. 18. 4 2 4 2 If 1, then 2. x y y x x x y = = ± = ± = = ± Since two values, y = 2 and y = –2, can be obtained for x = 1, y is not a function of x. 19. 4y x= + Since only one value of y can be obtained for each value of x, y is a function of x. 20. 4y x= − + Since only one value of y can be obtained for each value of x, y is a function of x. 21. 3 3 3 8 8 8 x y y x y x + = = − = − Since only one value of y can be obtained for each value of x, y is a function of x. 22. 3 3 3 27 27 27 x y y x y x + = = − = − Since only one value of y can be obtained for each value of x, y is a function of x. 23. 2 1xy y+ = ( )2 1 1 2 y x y x + = = + Since only one value of y can be obtained for each value of x, y is a function of x. 24. 5 1xy y− = ( )5 1 1 5 y x y x − = = − Since only one value of y can be obtained for each value of x, y is a function of x. 25. 2x y− = 2 2 y x y x − = − + = − Since only one value of y can be obtained for each value of x, y is a function of x. 26. 5x y− = 5 5 y x y x − = − + = − Since only one value of y can be obtained for each value of x, y is a function of x.
  • 4. Chapter 2 Functions and Graphs 204 Copyright © 2018 Pearson Education, Inc. 27. a. f(6) = 4(6) + 5 = 29 b. f(x + 1) = 4(x + 1) + 5 = 4x + 9 c. f(–x) = 4(–x) + 5 = – 4x + 5 28. a. f(4) = 3(4) + 7 = 19 b. f(x + 1) = 3(x + 1) + 7 = 3x + 10 c. f(–x) = 3(–x) + 7 = –3x + 7 29. a. 2 ( 1) ( 1) 2( 1) 3 1 2 3 2 g − = − + − + = − + = b. 2 2 2 ( 5) ( 5) 2( 5) 3 10 25 2 10 3 12 38 g x x x x x x x x + = + + + + = + + + + + = + + c. 2 2 ( ) ( ) 2( ) 3 2 3 g x x x x x − = − + − + = − + 30. a. 2 ( 1) ( 1) 10( 1) 3 1 10 3 8 g − = − − − − = + − = b. 2 2 2 ( 2) ( 2) 10(8 2) 3 4 4 10 20 3 6 19 g x x x x x x x + = + − + − = + + − − − = − − c. 2 2 ( ) ( ) 10( ) 3 10 3 g x x x x x − = − − − − = + − 31. a. 4 2 (2) 2 2 1 16 4 1 13 h = − + = − + = b. 4 2 ( 1) ( 1) ( 1) 1 1 1 1 1 h − = − − − + = − + = c. 4 2 4 2 ( ) ( ) ( ) 1 1h x x x x x− = − − − + = − + d. 4 2 4 2 (3 ) (3 ) (3 ) 1 81 9 1 h a a a a a = − + = − + 32. a. 3 (3) 3 3 1 25h = − + = b. 3 ( 2) ( 2) ( 2) 1 8 2 1 5 h − = − − − + = − + + = − c. 3 3 ( ) ( ) ( ) 1 1h x x x x x− = − − − + = − + + d. 3 3 (3 ) (3 ) (3 ) 1 27 3 1 h a a a a a = − + = − + 33. a. ( 6) 6 6 3 0 3 3f − = − + + = + = b. (10) 10 6 3 16 3 4 3 7 f = + + = + = + = c. ( 6) 6 6 3 3f x x x− = − + + = + 34. a. (16) 25 16 6 9 6 3 6 3f = − − = − = − = − b. ( 24) 25 ( 24) 6 49 6 7 6 1 f − = − − − = − = − = c. (25 2 ) 25 (25 2 ) 6 2 6 f x x x − = − − − = − 35. a. 2 2 4(2) 1 15 (2) 42 f − = = b. 2 2 4( 2) 1 15 ( 2) 4( 2) f − − − = = − c. 2 2 2 2 4( ) 1 4 1 ( ) ( ) x x f x x x − − − − = = − 36. a. 3 3 4(2) 1 33 (2) 82 f + = = b. 3 3 4( 2) 1 31 31 ( 2) 8 8( 2) f − + − − = = = −− c. 3 3 3 3 4( ) 1 4 1 ( ) ( ) x x f x x x − + − + − = = − − 3 3 4 1 or x x −
  • 5. Section 2.1 Basics of Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 205 37. a. 6 (6) 1 6 f = = b. 6 6 ( 6) 1 6 6 f − − − = = = − − c. 2 2 2 22 ( ) 1 r r f r rr = = = 38. a. 5 3 8 (5) 1 5 3 8 f + = = = + b. 5 3 2 2 ( 5) 1 5 3 2 2 f − + − − = = = = − − + − − c. 9 3 ( 9 ) 9 3 x f x x − − + − − = − − + 6 1, if 6 1,if 66 x x xx − − < − = =  − > −− −  39. x ( )f x x= ( ),x y −2 ( )2 2f − = − ( )2, 2− − −1 ( )1 1f − = − ( )1, 1− − 0 ( )0 0f = ( )0,0 1 ( )1 1f = ( )1,1 2 ( )2 2f = ( )2,2 x ( ) 3g x x= + ( ),x y −2 ( )2 2 3 1g − = − + = ( )2,1− −1 ( )1 1 3 2g − = − + = ( )1,2− 0 ( )0 0 3 3g = + = ( )0,3 1 ( )1 1 3 4g = + = ( )1,4 2 ( )2 2 3 5g = + = ( )2,5 The graph of g is the graph of f shifted up 3 units. 40. x ( )f x x= ( ),x y −2 ( )2 2f − = − ( )2, 2− − −1 ( )1 1f − = − ( )1, 1− − 0 ( )0 0f = ( )0,0 1 ( )1 1f = ( )1,1 2 ( )2 2f = ( )2,2 x ( ) 4g x x= − ( ),x y −2 ( )2 2 4 6g − = − − = − ( )2, 6− − −1 ( )1 1 4 5g − = − − = − ( )1, 5− − 0 ( )0 0 4 4g = − = − ( )0, 4− 1 ( )1 1 4 3g = − = − ( )1, 3− 2 ( )2 2 4 2g = − = − ( )2, 2− The graph of g is the graph of f shifted down 4 units. 41. x ( ) 2f x x= − ( ),x y –2 ( ) ( )2 2 2 4f − = − − = ( )2,4− –1 ( ) ( )1 2 1 2f − = − − = ( )1,2− 0 ( ) ( )0 2 0 0f = − = ( )0,0 1 ( ) ( )1 2 1 2f = − = − ( )1, 2− 2 ( ) ( )2 2 2 4f = − = − ( )2, 4− x ( ) 2 1g x x= − − ( ),x y –2 ( ) ( )2 2 1 32g − = − − =− ( )2,3− –1 ( ) ( )1 2 1 11g − = − − =− ( )1,1− 0 ( ) ( )0 2 1 10g = − − = − ( )0, 1− 1 ( ) ( )1 2 1 31g = − − = − ( )1, 3− 2 ( ) ( )2 2 2 1 5g = − − = − ( )2, 5−
  • 6. Chapter 2 Functions and Graphs 206 Copyright © 2018 Pearson Education, Inc. The graph of g is the graph of f shifted down 1 unit. 43. x ( ) 2 f x x= ( ),x y −2 ( ) ( ) 2 2 2 4f − = − = ( )2,4− −1 ( ) ( ) 2 1 1 1f − = − = ( )1,1− 0 ( ) ( ) 2 0 0 0f = = ( )0,0 1 ( ) ( ) 2 1 1 1f = = ( )1,1 2 ( ) ( ) 2 2 2 4f = = ( )2,4 x ( ) 2 1g x x= + ( ),x y −2 ( ) ( ) 2 2 2 1 5g − = − + = ( )2,5− −1 ( ) ( ) 2 1 11 2g − = +− = ( )1,2− 0 ( ) ( ) 2 0 0 1 1g = + = ( )0,1 1 ( ) ( ) 2 1 1 1 2g = =+ ( )1,2 2 ( ) ( ) 2 2 2 1 5g = =+ ( )2,5 The graph of g is the graph of f shifted up 1 unit. 44. x ( ) 2 f x x= ( ),x y −2 ( ) ( ) 2 2 2 4f − = − = ( )2,4− −1 ( ) ( ) 2 1 1 1f − = − = ( )1,1− 0 ( ) ( ) 2 0 0 0f = = ( )0,0 1 ( ) ( ) 2 1 1 1f = = ( )1,1 2 ( ) ( ) 2 2 2 4f = = ( )2,4 x ( ) 2 2g x x= − ( ),x y −2 ( ) ( ) 2 2 2 2 2g − = − − = ( )2,2− −1 ( ) ( ) 2 1 1 2 1g − = − − = − ( )1, 1− − 0 ( ) ( ) 2 0 0 2 2g = − = − ( )0, 2− 1 ( ) ( ) 2 1 1 2 1g = − = − ( )1, 1− 2 ( ) ( ) 2 2 2 2 2g = − = ( )2,2 The graph of g is the graph of f shifted down 2 units. 42. x ( ) 2f x x= − ( ),x y –2 ( ) ( )2 2 2 4f − = − − = ( )2,4− –1 ( ) ( )1 2 1 2f − = − − = ( )1,2− 0 ( ) ( )0 2 0 0f = − = ( )0,0 1 ( ) ( )1 2 1 2f = − = − ( )1, 2− 2 ( ) ( )2 2 2 4f = − = − ( )2, 4− x ( ) 2 3g x x= − + ( ),x y –2 ( ) ( )2 2 3 72g − = − + =− ( )2,7− –1 ( ) ( )1 2 3 51g − = − + =− ( )1,5− 0 ( ) ( )0 2 3 30g = − + = ( )0,3 1 ( ) ( )1 2 3 11g = − + = ( )1,1 2 ( ) ( )2 2 2 3 1g = − + = − ( )2, 1− The graph of g is the graph of f shifted up 3 units.
  • 7. Section 2.1 Basics of Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 207 45. x ( )f x x= ( ),x y 2− ( )2 2 2f − = − = ( )2,2− 1− ( )1 1 1f − = − = ( )1,1− 0 ( )0 0 0f = = ( )0,0 1 ( )1 1 1f = = ( )1,1 2 ( )2 2 2f = = ( )2,2 x ( ) 2g x x= − ( ),x y 2− ( )2 2 2 0g − = − − = ( )2,0− 1− ( )1 1 2 1g − = − − = − ( )1, 1− − 0 ( )0 0 2 2g = − = − ( )0, 2− 1 ( )1 1 2 1g = − = − ( )1, 1− 2 ( )2 2 2 0g = − = ( )2,0 The graph of g is the graph of f shifted down 2 units. 46. x ( )f x x= ( ),x y 2− ( )2 2 2f − = − = ( )2,2− 1− ( )1 1 1f − = − = ( )1,1− 0 ( )0 0 0f = = ( )0,0 1 ( )1 1 1f = = ( )1,1 2 ( )2 2 2f = = ( )2,2 x ( ) 1g x x= + ( ),x y 2− ( )2 2 1 3g − = − + = ( )2,3− 1− ( )1 1 1 2g − = − + = ( )1,2− 0 ( )0 0 1 1g = + = ( )0,1 1 ( )1 1 1 2g = + = ( )1,2 2 ( )2 2 1 3g = + = ( )2,3 The graph of g is the graph of f shifted up 1 unit. 47. x ( ) 3 f x x= ( ),x y 2− ( ) ( ) 3 2 2 8f − = − = − ( )2, 8− − 1− ( ) ( ) 3 1 1 1f − = − = − ( )1, 1− − 0 ( ) ( ) 3 0 0 0f = = ( )0,0 1 ( ) ( ) 3 1 1 1f = = ( )1,1 2 ( ) ( ) 3 2 2 8f = = ( )2,8 x ( ) 3 2g x x= + ( ),x y 2− ( ) ( ) 3 2 2 2 6g − = − + = − ( )2, 6− − 1− ( ) ( ) 3 1 1 2 1g − = − + = ( )1,1− 0 ( ) ( ) 3 0 0 2 2g = + = ( )0,2 1 ( ) ( ) 3 1 1 2 3g = + = ( )1,3 2 ( ) ( ) 3 2 2 2 10g = + = ( )2,10 The graph of g is the graph of f shifted up 2 units.
  • 8. Chapter 2 Functions and Graphs 208 Copyright © 2018 Pearson Education, Inc. 48. x ( ) 3 f x x= ( ),x y 2− ( ) ( ) 3 2 2 8f − = − = − ( )2, 8− − 1− ( ) ( ) 3 1 1 1f − = − = − ( )1, 1− − 0 ( ) ( ) 3 0 0 0f = = ( )0,0 1 ( ) ( ) 3 1 1 1f = = ( )1,1 2 ( ) ( ) 3 2 2 8f = = ( )2,8 x ( ) 3 1g x x= − ( ),x y 2− ( ) ( ) 3 2 2 1 9g − = − − = − ( )2, 9− − 1− ( ) ( ) 3 1 1 1 2g − = − − = − ( )1, 2− − 0 ( ) ( ) 3 0 0 1 1g = − = − ( )0, 1− 1 ( ) ( ) 3 1 1 1 0g = − = ( )1,0 2 ( ) ( ) 3 2 2 1 7g = − = ( )2,7 The graph of g is the graph of f shifted down 1 unit. 49. x ( ) 3f x = ( ),x y 2− ( )2 3f − = ( )2,3− 1− ( )1 3f − = ( )1,3− 0 ( )0 3f = ( )0,3 1 ( )1 3f = ( )1,3 2 ( )2 3f = ( )2,3 x ( ) 5g x = ( ),x y 2− ( )2 5g − = ( )2,5− 1− ( )1 5g − = ( )1,5− 0 ( )0 5g = ( )0,5 1 ( )1 5g = ( )1,5 2 ( )2 5g = ( )2,5 The graph of g is the graph of f shifted up 2 units. 50. x ( ) 1f x = − ( ),x y 2− ( )2 1f − = − ( )2, 1− − 1− ( )1 1f − = − ( )1, 1− − 0 ( )0 1f = − ( )0, 1− 1 ( )1 1f = − ( )1, 1− 2 ( )2 1f = − ( )2, 1− x ( ) 4g x = ( ),x y 2− ( )2 4g − = ( )2,4− 1− ( )1 4g − = ( )1,4− 0 ( )0 4g = ( )0,4 1 ( )1 4g = ( )1,4 2 ( )2 4g = ( )2,4 The graph of g is the graph of f shifted up 5 units.
  • 9. Section 2.1 Basics of Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 209 51. x ( )f x x= ( ),x y 0 ( )0 0 0f = = ( )0,0 1 ( )1 1 1f = = ( )1,1 4 ( )4 4 2f = = ( )4,2 9 ( )9 9 3f = = ( )9,3 x ( ) 1g x x= − ( ),x y 0 ( )0 0 1 1g = − = − ( )0, 1− 1 ( )1 1 1 0g = − = ( )1,0 4 ( )4 4 1 1g = − = ( )4,1 9 ( )9 9 1 2g = − = ( )9,2 The graph of g is the graph of f shifted down 1 unit. 52. x ( )f x x= ( ),x y 0 ( )0 0 0f = = ( )0,0 1 ( )1 1 1f = = ( )1,1 4 ( )4 4 2f = = ( )4,2 9 ( )9 9 3f = = ( )9,3 x ( ) 2g x x= + ( ),x y 0 ( )0 0 2 2g = + = ( )0,2 1 ( )1 1 2 3g = + = ( )1,3 4 ( )4 4 2 4g = + = ( )4,4 9 ( )9 9 2 5g = + = ( )9, 5 The graph of g is the graph of f shifted up 2 units. 53. x ( )f x x= ( ),x y 0 ( )0 0 0f = = ( )0,0 1 ( )1 1 1f = = ( )1,1 4 ( )4 4 2f = = ( )4,2 9 ( )9 9 3f = = ( )9,3 x ( ) 1g x x= − ( ),x y 1 ( )1 1 1 0g = − = ( )1,0 2 ( )2 2 1 1g = − = ( )2,1 5 ( )5 5 1 2g = − = ( )5,2 10 ( )10 10 1 3g = − = ( )10,3 The graph of g is the graph of f shifted right 1 unit. 54. x ( )f x x= ( ),x y 0 ( )0 0 0f = = ( )0,0 1 ( )1 1 1f = = ( )1,1 4 ( )4 4 2f = = ( )4,2 9 ( )9 9 3f = = ( )9,3 x ( ) 2g x x= + ( ),x y –2 ( )2 2 2 0g − = − + = ( )2,0− –1 ( )1 1 2 1g − = − + = ( )1,1− 2 ( )2 2 2 2g = + = ( )2,2 7 ( )7 7 2 3g = + = ( )7,3 The graph of g is the graph of f shifted left 2 units.
  • 10. Chapter 2 Functions and Graphs 210 Copyright © 2018 Pearson Education, Inc. 55. function 56. function 57. function 58. not a function 59. not a function 60. not a function 61. function 62. not a function 63. function 64. function 65. ( )2 4f − = − 66. (2) 4f = − 67. ( )4 4f = 68. ( 4) 4f − = 69. ( )3 0f − = 70. ( 1) 0f − = 71. ( )4 2g − = 72. ( )2 2g = − 73. ( )10 2g − = 74. (10) 2g = − 75. When ( )2, 1.x g x= − = 76. When 1, ( ) 1.x g x= = − 77. a. domain: ( , )−∞ ∞ b. range: [ 4, )− ∞ c. x-intercepts: –3 and 1 d. y-intercept: –3 e. ( 2) 3 and (2) 5f f− = − = 78. a. domain: (–∞, ∞) b. range: (–∞, 4] c. x-intercepts: –3 and 1 d. y-intercept: 3 e. ( 2) 3 and (2) 5f f− = = − 79. a. domain: ( , )−∞ ∞ b. range: [1, )∞ c. x-intercept: none d. y-intercept: 1 e. ( 1) 2 and (3) 4f f− = = 80. a. domain: (–∞, ∞) b. range: [0, ∞) c. x-intercept: –1 d. y-intercept: 1 e. f(–4) = 3 and f(3) = 4 81. a. domain: [0, 5) b. range: [–1, 5) c. x-intercept: 2 d. y-intercept: –1 e. f(3) = 1 82. a. domain: (–6, 0] b. range: [–3, 4) c. x-intercept: –3.75 d. y-intercept: –3 e. f(–5) = 2 83. a. domain: [0, )∞ b. range: [1, )∞ c. x-intercept: none d. y-intercept: 1 e. f(4) = 3
  • 11. Section 2.1 Basics of Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 211 84. a. domain: [–1, ∞) b. range: [0, ∞) c. x-intercept: –1 d. y-intercept: 1 e. f(3) = 2 85. a. domain: [–2, 6] b. range: [–2, 6] c. x-intercept: 4 d. y-intercept: 4 e. f(–1) = 5 86. a. domain: [–3, 2] b. range: [–5, 5] c. x-intercept: 1 2 − d. y-intercept: 1 e. f(–2) = –3 87. a. domain: ( , )−∞ ∞ b. range: ( , 2]−∞ − c. x-intercept: none d. y-intercept: –2 e. f(–4) = –5 and f(4) = –2 88. a. domain: (–∞, ∞) b. range: [0, ∞) c. x-intercept: { }0x x ≤ d. y-intercept: 0 e. f(–2) = 0 and f(2) = 4 89. a. domain: ( , )−∞ ∞ b. range: (0, )∞ c. x-intercept: none d. y-intercept: 1.5 e. f(4) = 6 90. a. domain: ( ,1) (1, )−∞ ∞ b. range: ( ,0) (0, )−∞ ∞ c. x-intercept: none d. y-intercept: 1− e. f(2) = 1 91. a. domain: {–5, –2, 0, 1, 3} b. range: {2} c. x-intercept: none d. y-intercept: 2 e. ( 5) (3) 2 2 4f f− + = + = 92. a. domain: {–5, –2, 0, 1, 4} b. range: {–2} c. x-intercept: none d. y-intercept: –2 e. ( 5) (4) 2 ( 2) 4f f− + = − + − = − 93. ( ) ( ) ( )( ) ( ) ( ) ( ) 2 1 3 1 5 3 5 2 1 2 2 2 4 4 2 4 10 g f g f = − = − = − = − = − − − + = + + = 94. ( ) ( ) ( )( ) ( ) ( ) ( ) 2 1 3 1 5 3 5 8 1 8 8 8 4 64 8 4 76 g f g f − = − − = − − = − − = − = − − − + = + + = 95. ( ) ( ) ( ) ( ) 2 3 1 6 6 6 4 3 1 36 6 6 4 4 36 1 4 2 36 4 34 4 38 − − − − + ÷ − ⋅ = + − + ÷ − ⋅ = − + − ⋅ = − + − = − + − = − 96. ( ) ( ) 2 4 1 3 3 3 6 4 1 9 3 3 6 3 9 1 6 3 9 6 6 6 0 − − − − − + − ÷ ⋅− = − + − + − ÷ ⋅− = − − + − ⋅− = − + = − + = 97. ( ) ( ) ( ) ( ) 3 3 3 3 3 5 ( 5) 5 5 2 2 f x f x x x x x x x x x x x − − = − + − − − + − = − − − − − + = − −
  • 12. Chapter 2 Functions and Graphs 212 Copyright © 2018 Pearson Education, Inc. 98. ( ) ( ) ( ) ( ) ( )2 2 2 2 3 7 3 7 3 7 3 7 6 f x f x x x x x x x x x x − − = − − − + − − + = + + − + − = 99. a. {(Iceland, 9.7), (Finland, 9.6), (New Zealand, 9.6), (Denmark, 9.5)} b. Yes, the relation is a function because each country in the domain corresponds to exactly one corruption rating in the range. c. {(9.7, Iceland), (9.6, Finland), (9.6, New Zealand), (9.5, Denmark)} d. No, the relation is not a function because 9.6 in the domain corresponds to two countries in the range, Finland and New Zealand. 100. a. {(Bangladesh, 1.7), (Chad, 1.7), (Haiti, 1.8), (Myanmar, 1.8)} b. Yes, the relation is a function because each country in the domain corresponds to exactly one corruption rating in the range. c. {(1.7, Bangladesh), (1.7, Chad), (1.8, Haiti), (1.8, Myanmar)} d. No, the relation is not a function because 1.7 in the domain corresponds to two countries in the range, Bangladesh and Chad. 101. a. (70) 83f = which means the chance that a 60- year old will survive to age 70 is 83%. b. (70) 76g = which means the chance that a 60- year old will survive to age 70 is 76%. c. Function f is the better model. 102. a. (90) 25f = which means the chance that a 60- year old will survive to age 90 is 25%. b. (90) 10g = which means the chance that a 60- year old will survive to age 90 is 10%. c. Function f is the better model. 103. a. 2 (30) 0.01(30) (30) 60 81G = − + + = In 2010, the wage gap was 81%. This is represented as (30,81) on the graph. b. (30)G underestimates the actual data shown by the bar graph by 2%. 104. a. 2 (10) 0.01(10) (10) 60 69G = − + + = In 1990, the wage gap was 69%. This is represented as (10,69) on the graph. b. (10)G underestimates the actual data shown by the bar graph by 2%. 105. ( ) 100,000 100C x x= + (90) 100,000 100(90) $109,000C = + = It will cost $109,000 to produce 90 bicycles. 106. ( ) 22,500 3200V x x= − (3) 22,500 3200(3) $12,900V = − = After 3 years, the car will be worth $12,900. 107. ( ) ( ) 40 40 30 40 40 30 30 30 30 80 40 60 60 120 60 2 T x x x T = + + = + + = + = = If you travel 30 mph going and 60 mph returning, your total trip will take 2 hours. 108. ( ) 0.10 0.60(50 )S x x x= + − (30) 0.10(30) 0.60(50 30) 15S = + − = When 30 mL of the 10% mixture is mixed with 20 mL of the 60% mixture, there will be 15 mL of sodium-iodine in the vaccine. 109. – 117. Answers will vary. 118. makes sense 119. does not make sense; Explanations will vary. Sample explanation: The parentheses used in function notation, such as ( ),f x do not imply multiplication.
  • 13. Section 2.1 Basics of Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 213 120. does not make sense; Explanations will vary. Sample explanation: The domain is the number of years worked for the company. 121. does not make sense; Explanations will vary. Sample explanation: This would not be a function because some elements in the domain would correspond to more than one age in the range. 122. false; Changes to make the statement true will vary. A sample change is: The domain is [ 4,4].− 123. false; Changes to make the statement true will vary. A sample change is: The range is [ )2,2 .− 124. true 125. false; Changes to make the statement true will vary. A sample change is: (0) 0.8f = 126. ( ) 3( ) 7 3 3 7 ( ) 3 7 f a h a h a h f a a + = + + = + + = + ( ) ( ) ( ) ( ) 3 3 7 3 7 3 3 7 3 7 3 3 f a h f a h a h a h a h a h h h + − + + − + = + + − − = = = 127. Answers will vary. An example is {(1,1),(2,1)} 128. It is given that ( ) ( ) ( )f x y f x f y+ = + and (1) 3f = . To find (2)f , rewrite 2 as 1 + 1. (2) (1 1) (1) (1) 3 3 6 f f f f= + = + = + = Similarly: (3) (2 1) (2) (1) 6 3 9 f f f f= + = + = + = (4) (3 1) (3) (1) 9 3 12 f f f f= + = + = + = While ( ) ( ) ( )f x y f x f y+ = + is true for this function, it is not true for all functions. It is not true for ( ) 2 f x x= , for example. 129. ( )1 3 4 2 1 3 12 2 3 13 2 13 13 x x x x x x x x − + − = − + − = − = − = − = The solution set is {13}. 130. ( ) 3 4 5 5 2 3 4 10 10 10 5 5 2 2 6 5 20 50 3 14 50 3 36 12 x x x x x x x x x − − − = − −    − =        − − + = − + = − = = − The solution set is {–12}. 131. Let x = the number of deaths by snakes, in thousands, in 2014 Let x + 661 = the number of deaths by mosquitoes, in thousands, in 2014 Let x + 106 = the number of deaths by snails, in thousands, in 2014 ( ) ( )661 106 1049 661 106 1049 3 767 1049 3 282 94 x x x x x x x x x + + + + = + + + + = + = = = 94, thousand deaths by snakes 661 755, thousand deaths by mosquitoes 106 200, thousand deaths by snails x x x = + = + = 132. ( ) 20 0.40( 60) (100) 20 0.40(100 60) 20 0.40(40) 20 16 36 C t t C = + − = + − = + = + = For 100 calling minutes, the monthly cost is $36. 133. 134. 2 2 2 2 2 2 2 2 2 2 2 2 2( ) 3( ) 5 (2 3 5) 2( 2 ) 3 3 5 2 3 5 2 4 2 3 3 5 2 3 5 2 2 4 2 3 3 3 5 5 4 2 3 x h x h x x x xh h x h x x x xh h x h x x x x xh h x x h xh h h + + + + − + + = + + + + + − − − = + + + + + − − − = − + + + − + + − = + +
  • 14. Chapter 2 Functions and Graphs 214 Copyright © 2018 Pearson Education, Inc. Section 2.2 Check Point Exercises 1. The function is increasing on the interval ( , 1),−∞ − decreasing on the interval ( 1,1),− and increasing on the interval (1, ).∞ 2. Test for symmetry with respect to the y-axis. ( ) 2 2 2 1 1 1 y x y x y x = − = − − = − The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. 2 2 2 1 1 1 y x y x y x = − − = − = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) 2 2 2 2 1 1 1 1 y x y x y x y x = − − = − − − = − = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 3. Test for symmetry with respect to the y-axis. ( ) 5 3 35 5 3 y x y x y x = = − = − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 5 3 5 3 5 3 5 3 y x y x y x y x = − = − = = − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) 5 3 5 3 5 3 5 3 y x y x y x y x = − = − − = − = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the origin. 4. a. The graph passes the vertical line test and is therefore the graph of a function. The graph is symmetric with respect to the y-axis. Therefore, the graph is that of an even function. b. The graph passes the vertical line test and is therefore the graph of a function. The graph is neither symmetric with respect to the y-axis nor the origin. Therefore, the graph is that of a function which is neither even nor odd. c. The graph passes the vertical line test and is therefore the graph of a function. The graph is symmetric with respect to the origin. Therefore, the graph is that of an odd function. 5. a. 2 2 ( ) ( ) 6 6 ( )f x x x f x− = − + = + = The function is even. The graph is symmetric with respect to the y-axis. b. 3 3 ( ) 7( ) ( ) 7 ( )g x x x x x f x− = − − − = − + = − The function is odd. The graph is symmetric with respect to the origin. c. 5 5 ( ) ( ) 1 1h x x x− = − + = − + The function is neither even nor odd. The graph is neither symmetric to the y-axis nor the origin. 6. 20 if 0 60 ( ) 20 0.40( 60) if 60 t C t t t ≤ ≤ =  + − > a. Since 0 40 60≤ ≤ , (40) 20C = With 40 calling minutes, the cost is $20. This is represented by ( )40,20 . b. Since 80 60> , (80) 20 0.40(80 60) 28C = + − = With 80 calling minutes, the cost is $28. This is represented by ( )80,28 .
  • 15. Section 2.2 More on Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 215 7. 8. a. 2 ( ) 2 5f x x x= − + + 2 2 2 2 2 ( ) 2( ) ( ) 5 2( 2 ) 5 2 4 2 5 f x h x h x h x xh h x h x xh h x h + = − + + + + = − + + + + + = − − − + + + b. ( ) ( )f x h f x h + − ( ) ( ) 2 2 2 2 2 2 2 2 4 2 5 2 5 2 4 2 5 2 5 4 2 4 2 1 4 2 1, 0 x xh h x h x x h x xh h x h x x h xh h h h h x h h x h h − − − + + + − − + + = − − − + + + + − − = − − + = − − + = = − − + ≠ Concept and Vocabulary Check 2.2 1. 2( )f x< ; 2( )f x> ; 2( )f x= 2. maximum; minimum 3. y-axis 4. x-axis 5. origin 6. ( )f x ; y-axis 7. ( )f x− ; origin 8. piecewise 9. less than or equal to x; 2; 3− ; 0 10. difference quotient; x h+ ; ( )f x ; h; h 11. false 12. false Exercise Set 2.2 1. a. increasing: ( 1, )− ∞ b. decreasing: ( , 1)−∞ − c. constant: none 2. a. increasing: (–∞, –1) b. decreasing: (–1, ∞) c. constant: none 3. a. increasing: (0, )∞ b. decreasing: none c. constant: none 4. a. increasing: (–1, ∞) b. decreasing: none c. constant: none 5. a. increasing: none b. decreasing: (–2, 6) c. constant: none 6. a. increasing: (–3, 2) b. decreasing: none c. constant: none 7. a. increasing: ( , 1)−∞ − b. decreasing: none c. constant: ( 1, )− ∞ 8. a. increasing: (0, ∞) b. decreasing: none c. constant: (–∞, 0) 9. a. increasing: ( , 0) or (1.5, 3)−∞ b. decreasing: (0,1.5) or (3, )∞ c. constant: none
  • 16. Chapter 2 Functions and Graphs 216 Copyright © 2018 Pearson Education, Inc. 10. a. increasing: ( 5, 4) or ( 2,0) or (2,4)− − − b. decreasing: ( 4, 2) or (0,2) or (4,5)− − c. constant: none 11. a. increasing: (–2, 4) b. decreasing: none c. constant: ( , 2) or (4, )−∞ − ∞ 12. a. increasing: none b. decreasing: (–4, 2) c. constant: ( , 4) or (2, )−∞ − ∞ 13. a. x = 0, relative maximum = 4 b. x = −3, 3, relative minimum = 0 14. a. x = 0, relative maximum = 2 b. x = −3, 3, relative minimum = –1 15. a. x = −2, relative maximum = 21 b. x = 1, relative minimum = −6 16. a. x =1, relative maximum = 30 b. x = 4, relative minimum = 3 17. Test for symmetry with respect to the y-axis. ( ) 2 2 2 6 6 6 y x y x y x = + = − + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. 2 2 2 6 6 6 y x y x y x = + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) 2 2 2 2 6 6 6 6 y x y x y x y x = + − = − + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 18. Test for symmetry with respect to the y-axis. ( ) 2 2 2 2 2 2 y x y x y x = − = − − = − The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. 2 2 2 2 2 2 y x y x y x = − − = − = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) 2 2 2 2 2 2 2 2 y x y x y x y x = − − = − − − = − = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 19. Test for symmetry with respect to the y-axis. 2 2 2 6 6 6 x y x y x y = + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 2 2 2 6 6 6 x y x y x y = + = − + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x-axis.
  • 17. Section 2.2 More on Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 217 Test for symmetry with respect to the origin. ( ) 2 2 2 2 6 6 6 6 x y x y x y x y = + − = − + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 20. Test for symmetry with respect to the y-axis. 2 2 2 2 2 2 x y x y x y = − − = − = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 2 2 2 2 2 2 x y x y x y = − = − − = − The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) 2 2 2 2 2 2 2 2 x y x y x y x y = − − = − − − = − = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 21. Test for symmetry with respect to the y-axis. ( ) 2 2 22 2 2 6 6 6 y x y x y x = + = − + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 2 2 2 2 2 2 6 6 6 y x y x y x = + − = + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) 2 2 2 2 2 6 6 6 y x y x y x = + − = − + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the origin. 22. Test for symmetry with respect to the y-axis. ( ) 2 2 22 2 2 2 2 2 y x y x y x = − = − − = − The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 2 2 2 2 2 2 2 2 2 y x y x y x = − − = − = − The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) 2 2 2 2 2 2 2 2 y x y x y x = − − = − − = − The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the origin. 23. Test for symmetry with respect to the y-axis. ( ) 2 3 2 3 2 3 y x y x y x = + = − + = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. 2 3 2 3 2 3 y x y x y x = + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin.
  • 18. Chapter 2 Functions and Graphs 218 Copyright © 2018 Pearson Education, Inc. ( ) 2 3 2 3 2 3 y x y x y x = + − = − + = − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 24. Test for symmetry with respect to the y-axis. ( ) 2 5 2 5 2 5 y x y x y x = + = − + = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. 2 5 2 5 2 5 y x y x y x = + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) 2 5 2 5 2 5 y x y x y x = + − = − + = − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 25. Test for symmetry with respect to the y-axis. ( ) 2 3 2 3 2 3 2 2 2 x y x y x y − = − − = − = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y- axis. Test for symmetry with respect to the x-axis. ( ) 2 3 32 2 3 2 2 2 x y x y x y − = − − = + = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) 2 3 2 3 2 3 2 2 2 x y x y x y − = − − − = + = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 26. Test for symmetry with respect to the y-axis. ( ) 3 2 3 2 3 2 5 5 5 x y x y x y − = − − = − − = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 3 2 23 3 2 5 5 5 x y x y x y − = − − = − = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x- axis. Test for symmetry with respect to the origin. ( ) ( ) 3 2 3 2 3 2 5 5 5 x y x y x y − = − − − = − − = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 27. Test for symmetry with respect to the y-axis. ( ) 2 2 2 2 2 2 100 100 100 x y x y x y + = − + = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y- axis. Test for symmetry with respect to the x-axis. ( ) 2 2 22 2 2 100 100 100 x y x y x y + = + − = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x- axis.
  • 19. Section 2.2 More on Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 219 Test for symmetry with respect to the origin. ( ) ( ) 2 2 2 2 2 2 100 100 100 x y x y x y + = − + − = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the origin. 28. Test for symmetry with respect to the y-axis. ( ) 2 2 2 2 2 2 49 49 49 x y x y x y + = − + = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y- axis. Test for symmetry with respect to the x-axis. ( ) 2 2 22 2 2 49 49 49 x y x y x y + = + − = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) 2 2 2 2 2 2 49 49 49 x y x y x y + = − + − = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the origin. 29. Test for symmetry with respect to the y-axis. ( ) ( ) 2 2 2 2 2 2 3 1 3 1 3 1 x y xy x y x y x y xy + = − + − = − = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) ( ) 2 2 22 2 2 3 1 3 1 3 1 x y xy x y x y x y xy + = − + − = − = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) ( )( ) 2 2 2 2 2 2 3 1 3 1 3 1 x y xy x y x y x y xy + = − − + − − = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the origin. 30. Test for symmetry with respect to the y-axis. ( ) ( ) 2 2 2 2 2 2 5 2 5 2 5 2 x y xy x y x y x y xy + = − + − = − = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) ( ) 2 2 22 2 2 5 2 5 2 5 2 x y xy x y x y x y xy + = − + − = − = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) ( )( ) 2 2 2 2 2 2 5 2 5 2 5 2 x y xy x y x y x y xy + = − − + − − = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the origin. 31. Test for symmetry with respect to the y-axis. ( ) 4 3 34 4 3 6 6 6 y x y x y x = + = − + = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 4 3 4 3 4 3 6 6 6 y x y x y x = + − = + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x-axis.
  • 20. Chapter 2 Functions and Graphs 220 Copyright © 2018 Pearson Education, Inc. Test for symmetry with respect to the origin. ( ) ( ) 4 3 4 3 4 3 6 6 6 y x y x y x = + − = − + = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 32. Test for symmetry with respect to the y-axis. ( ) 5 4 45 5 4 2 2 2 y x y x y x = + = − + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y- axis. Test for symmetry with respect to the x-axis. ( ) 5 4 5 4 5 4 5 4 2 2 2 2 y x y x y x y x = + − = + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) 4 3 4 3 4 3 6 6 6 y x y x y x = + − = − + = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 33. The graph is symmetric with respect to the y-axis. The function is even. 34. The graph is symmetric with respect to the origin. The function is odd. 35. The graph is symmetric with respect to the origin. The function is odd. 36. The graph is not symmetric with respect to the y-axis or the origin. The function is neither even nor odd. 37. 3 3 3 3 ( ) ( ) ( ) ( ) ( ) ( ) f x x x f x x x f x x x x x = + − = − + − − = − − = − + ( ) ( ),f x f x− = − odd function 38. 3 3 3 3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), odd function f x x x f x x x f x x x x x f x f x = − − = − − − − = − + = − − − = − 39. 2 2 ( ) ( ) ( ) ( ) g x x x g x x x = + − = − + − 2 ( ) ,g x x x− = − neither 40. 2 2 2 ( ) ( ) ( ) ( ) ( ) , neither g x x x g x x x g x x x = − − = − − − − = + 41. 2 4 2 4 2 4 ( ) ( ) ( ) ( ) ( ) h x x x h x x x h x x x = − − = − − − − = − ( ) ( ),h x h x− = even function 42. 2 4 2 4 2 4 ( ) 2 ( ) 2( ) ( ) ( ) 2 ( ) ( ), even function h x x x h x x x h x x x h x h x = + − = − + − − = + − = 43. 2 4 2 4 2 4 ( ) 1 ( ) ( ) ( ) 1 ( ) 1 f x x x f x x x f x x x = − + − = − − − + − = − + ( ) ( ),f x f x− = even function 44. 2 4 2 4 2 4 ( ) 2 1 ( ) 2( ) ( ) 1 ( ) 2 1 ( ) ( ), even function f x x x f x x x f x x x f x f x = + + − = − + − + − = + + − = 45. 6 2 6 2 6 2 1 ( ) 3 5 1 ( ) ( ) 3( ) 5 1 ( ) 3 5 f x x x f x x x f x x x = − − = − − − − = − ( ) ( )f x f x− = , even function
  • 21. Section 2.2 More on Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 221 46. 3 5 3 5 3 5 3 5 ( ) 2 6 ( ) 2( ) 6( ) ( ) 2 6 ( ) (2 6 ) ( ) ( ), odd function f x x x f x x x f x x x f x x x f x f x = − − = − − − − = − + − = − − − = − 47. ( ) 2 2 2 2 ( ) 1 ( ) 1 ( ) ( ) 1 1 f x x x f x x x f x x x x x = − − = − − − − = − − = − − f(–x) = – f(x), odd function 48. ( ) 2 2 1f x x x= − ( ) ( ) ( ) 2 2 1f x x x− = − − − ( ) 2 2 1f x x x− = − f(–x) = f(x), even function 49. a. domain: ( ),−∞ ∞ b. range: [ )4,− ∞ c. x-intercepts: 1, 7 d. y-intercept: 4 e. ( )4,∞ f. ( )0,4 g. ( ),0−∞ h. 4x = i. 4y = − j. ( 3) 4f − = k. (2) 2f = − and (6) 2f = − l. neither ; ( )f x x− ≠ , ( )f x x− ≠ − 50. a. domain: ( ),−∞ ∞ b. range: ( ],4−∞ c. x-intercepts: –4, 4 d. y-intercept: 1 e. ( ), 2−∞ − or ( )0,3 f. ( )2,0− or ( )3,∞ g. ( ], 4−∞ − or [ )4,∞ h. 2x = − and 3x = i. ( 2) 4f − = and (3) 2f = j. ( 2) 4f − = k. 4x = − and 4x = l. neither ; ( )f x x− ≠ , ( )f x x− ≠ − 51. a. domain: ( ],3−∞ b. range: ( ],4−∞ c. x-intercepts: –3, 3 d. (0) 3f = e. ( ),1−∞ f. ( )1,3 g. ( ], 3−∞ − h. (1) 4f = i. 1x = j. positive; ( 1) 2f − = + 52. a. domain: ( ],6−∞ b. range: ( ],1−∞ c. zeros of f: –3, 3 d. (0) 1f = e. ( ), 2−∞ − f. ( )2,6 g. ( )2,2−
  • 22. Chapter 2 Functions and Graphs 222 Copyright © 2018 Pearson Education, Inc. h. ( )3,3− i. 5x = − and 5x = j. negative; (4) 1f = − k. neither l. no; f(2) is not greater than the function values to the immediate left. 53. a. f(–2) = 3(–2) + 5 = –1 b. f(0) = 4(0) + 7 = 7 c. f(3) = 4(3) + 7 = 19 54. a. f(–3) = 6(–3) – 1 = –19 b. f(0) = 7(0) + 3 = 3 c. f(4) = 7(4) + 3 = 31 55. a. g(0) = 0 + 3 = 3 b. g(–6) = –(–6 + 3) = –(–3) = 3 c. g(–3) = –3 + 3 = 0 56. a. g(0) = 0 + 5 = 5 b. g(–6) = –(–6 + 5) = –(–1) = 1 c. g(–5) = –5 + 5 = 0 57. a. 2 5 9 25 9 16 (5) 8 5 3 2 2 h − − = = = = − b. 2 0 9 9 (0) 3 0 3 3 h − − = = = − − c. h(3) = 6 58. a. 2 7 25 49 25 24 (7) 12 7 5 2 2 h − − = = = = − b. 2 0 25 25 (0) 5 0 5 5 h − − = = = − − c. h(5) = 10 59. a. b. range: [ )0,∞ 60. a. b. range: ( ],0−∞ 61. a. b. range: ( ],0 {2}−∞ ∪ 62. a. b. range: ( ],0 {3}−∞ ∪ 63. a. b. range: ( , )−∞ ∞
  • 23. Section 2.2 More on Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 223 64. a. b. range: ( , )−∞ ∞ 65. a. b. range: { 3,3}− 66. a. b. range: { 4,4}− 67. a. b. range: [ )0,∞ 68. a. b. range: ( ] [ ),0 3,−∞ ∪ ∞ 69. a. b. range: [ )0,∞ 70. a. b. range: [ )1,− ∞ 71. ( ) ( )f x h f x h + − 4( ) 4 4 4 4 4 4 x h x h x h x h h h + − = + − = = =
  • 24. Chapter 2 Functions and Graphs 224 Copyright © 2018 Pearson Education, Inc. 72. ( ) ( )f x h f x h + − 7( ) 7 7 7 7 7 7 x h x h x h x h h h + − = + − = = = 73. ( ) ( )f x h f x h + − 3( ) 7 (3 7) 3 3 7 3 7 3 3 x h x h x h x h h h + + − + = + + − − = = = 74. ( ) ( )f x h f x h + − 6( ) 1 (6 1) 6 6 1 6 1 6 6 x h x h x h x h h h + + − + = + + − − = = = 75. ( ) ( )f x h f x h + − ( ) ( ) 2 2 2 2 2 2 2 2 2 2 x h x h x xh h x h xh h h h x h h x h + − = + + − = + = + = = + 76. ( ) ( )f x h f x h + − ( ) 2 2 2 2 2 2 2 2 2 2( ) 2 2( 2 ) 2 2 4 2 2 4 2 4 2 4 2 x h x h x xh h x h x xh h x h xh h h h x h h x h + − = + + − = + + − = + = + = = + 77. ( ) ( )f x h f x h + − 2 2 2 2 2 2 ( ) 4( ) 3 ( 4 3) 2 4 4 3 4 3 2 4 (2 4) 2 4 x h x h x x h x xh h x h x x h xh h h h h x h h x h + − + + − − + = + + − − + − + − = + − = + − = = + − 78. ( ) ( )f x h f x h + − ( ) 2 2 2 2 2 2 ( ) 5( ) 8 ( 5 8) 2 5 5 8 5 8 2 5 2 5 2 5 x h x h x x h x xh h x h x x h xh h h h h x h h x h + − + + − − + = + + − − + − + − = + − = + − = = + −
  • 25. Section 2.2 More on Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 225 79. ( ) ( )f x h f x h + − ( ) ( ) ( ) 2 2 2 2 2 2 2 1 (2 1) 2 4 2 1 2 1 4 2 4 2 1 4 2 1 x h x h x x h x xh h x h x x h xh h h h h x h h x h + + + − − + − = + + + + − − − + = + + = + + = = + + 80. ( ) ( )f x h f x h + − ( ) ( ) ( ) 2 2 2 2 2 2 3 5 (3 5) 3 6 3 5 3 5 6 3 6 3 1 6 3 1 x h x h x x h x xh h x h x x h xh h h h h x h h x h + + + + − + + = + + + + + − − − = + + = + + = = + + 81. ( ) ( )f x h f x h + − ( ) ( ) ( ) 2 2 2 2 2 2 2 4 ( 2 4) 2 2 2 4 2 4 2 2 2 2 2 2 x h x h x x h x xh h x h x x h xh h h h h x h h x h − + + + + − − + + = − − − + + + + − − = − − + = − − + = = − − + 82. ( ) ( )f x h f x h + − ( ) ( ) ( ) 2 2 2 2 2 2 3 1 ( 3 1) 2 3 3 1 3 1 2 3 2 3 2 3 x h x h x x h x xh h x h x x h xh h h h h x h h x h − + − + + − − − + = − − − − − + + + − = − − − = − − − = = − − − 83. ( ) ( )f x h f x h + − ( ) ( ) ( ) 2 2 2 2 2 2 2 5 7 ( 2 5 7) 2 4 2 5 5 7 2 5 7 4 2 5 4 2 5 4 2 5 x h x h x x h x xh h x h x x h xh h h h h x h h x h − + + + + − − + + = − − − + + + + − − = − − + = − − + = = − − + 84. ( ) ( )f x h f x h + − ( ) ( ) ( ) 2 2 2 2 2 2 3 2 1 ( 3 2 1) 3 6 3 2 2 1 3 2 1 6 3 2 6 3 2 6 3 2 x h x h x x h x xh h x h x x h xh h h h h x h h x h − + + + − − − + − = − − − + + − + − + = − − + = − − + = = − − +
  • 26. Chapter 2 Functions and Graphs 226 Copyright © 2018 Pearson Education, Inc. 85. ( ) ( )f x h f x h + − ( ) ( ) ( ) 2 2 2 2 2 2 2 3 ( 2 3) 2 4 2 3 2 3 4 2 4 2 1 4 2 1 x h x h x x h x xh h x h x x h xh h h h h x h h x h − + − + + − − − + = − − − − − + + + − = − − − = − − − = = − − − 86. ( ) ( )f x h f x h + − ( ) ( ) ( ) 2 2 2 2 2 2 3 1 ( 3 1) 3 6 3 1 3 1 6 3 6 3 1 6 3 1 x h x h x x h x xh h x h x x h xh h h h h x h h x h − + + + − − − + − = − − − + + − + − + = − − + = − − + = = − − + 87. ( ) ( ) 6 6 0 0 f x h f x h h h + − − = = = 88. ( ) ( ) 7 7 0 0 f x h f x h h h + − − = = = 89. ( ) ( )f x h f x h + − ( ) 1 1 ( ) ( ) ( ) ( ) 1 ( ) 1 ( ) x h x h x hx x x h x x h h x x h x x h h h x x h h h x x h h x x h − += − + + + + = − − + = − + = − = ⋅ + − = + 90. ( ) ( )f x h f x h + − ( ) 1 1 2( ) 2 2 ( ) 2 ( ) 2 ( ) 1 2 ( ) 1 2 x h x h x x h x x h x x h h h x x h h h x x h h x x h − + = + − + + = − + = − = ⋅ + − = + 91. ( ) ( )f x h f x h + − ( ) ( ) 1 x h x h x h x x h x h x h x x h x h x h x h h x h x x h x + − = + − + + = ⋅ + + + − = + + = + + = + + 92. ( ) ( )f x h f x h + − ( ) ( ) ( ) 1 1 1 1 1 1 1 1 1 ( 1) 1 1 1 1 1 1 1 1 1 1 1 x h x h x h x x h x h x h x x h x h x h x x h x h x h x h h x h x x h x + − − − = + − − − + − + − = ⋅ + − + − + − − − = + − + − + − − + = + − + − = + − + − = + − + −
  • 27. Section 2.2 More on Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 227 93. [ ] 2 ( 1.5) ( 0.9) ( ) ( 3) (1) ( )f f f f f fπ π− + − − + − ÷ ⋅ − [ ] ( ) ( ) 2 1 0 4 2 2 3 1 16 1 3 1 16 3 18 = + − − + ÷ − ⋅ = − + − ⋅ = − − = − 94. [ ] 2 ( 2.5) (1.9) ( ) ( 3) (1) ( )f f f f f fπ π− − − − + − ÷ ⋅ [ ] [ ] ( ) ( ) ( )( ) 2 2 ( 2.5) (1.9) ( ) ( 3) (1) ( ) 2 ( 2) 3 2 2 4 4 9 1 4 2 9 4 3 f f f f f fπ π− − − − + − ÷ ⋅ = − − − + ÷ − ⋅ − = − + − − = − + = − 95. 30 0.30( 120) 30 0.3 36 0.3 6t t t+ − = + − = − 96. 40 0.30( 200) 40 0.3 60 0.3 20t t t+ − = + − = − 97. 50 if 0 400 ( ) 50 0.30( 400) if 400 t C t t t ≤ ≤ =  + − > 98. 60 if 0 450 ( ) 60 0.35( 450) if 450 t C t t t ≤ ≤ =  + − > 99. increasing: (25, 55); decreasing: (55, 75) 100. increasing: (25, 65); decreasing: (65, 75) 101. The percent body fat in women reaches a maximum at age 55. This maximum is 38%. 102. The percent body fat in men reaches a maximum at age 65. This maximum is 26%. 103. domain: [25, 75]; range: [34, 38] 104. domain: [25, 75]; range: [23, 26] 105. This model describes percent body fat in men. 106. This model describes percent body fat in women. 107. (20,000) 850 0.15(20,000 8500) 2575 T = + − = A single taxpayer with taxable income of $20,000 owes $2575. 108. (50,000) 4750 0.25(50,000 34,500) 8625 T = + − = A single taxpayer with taxable income of $50,000 owes $8625. 109. 42,449+ 0.33( 174,400)x − 110. 110,016.50+ 0.35( ( 379,150)x x− − 111. (3) 0.93f = The cost of mailing a first-class letter weighing 3 ounces is $0.93. 112. (3.5) 1.05f = The cost of mailing a first-class letter weighing 3.5 ounces is $1.05. 113. The cost to mail a letter weighing 1.5 ounces is $0.65.
  • 28. Chapter 2 Functions and Graphs 228 Copyright © 2018 Pearson Education, Inc. 114. The cost to mail a letter weighing 1.8 ounces is $0.65. 115. 116. – 124. Answers will vary. 125. The number of doctor visits decreases during childhood and then increases as you get older. The minimum is (20.29, 3.99), which means that the minimum number of doctor visits, about 4, occurs at around age 20. 126. Increasing: ( ,1) or (3, )−∞ ∞ Decreasing: (1, 3) 127. Increasing: (–2, 0) or (2, ∞) Decreasing: (–∞, –2) or (0, 2) 128. Increasing: (2, )∞ Decreasing: ( , 2)−∞ − Constant: (–2, 2) 129. Increasing: (1, ∞) Decreasing: (–∞, 1) 130. Increasing: (0, )∞ Decreasing: ( , 0)−∞ 131. Increasing: (–∞, 0) Decreasing: (0, ∞)
  • 29. Section 2.2 More on Functions and Their Graphs Copyright © 2018 Pearson Education, Inc. 229 132. a. b. c. Increasing: (0, ∞) Decreasing: (–∞, 0) d. ( ) n f x x= is increasing from (–∞, ∞) when n is odd. e. 133. does not make sense; Explanations will vary. Sample explanation: It’s possible the graph is not defined at a. 134. makes sense 135. makes sense 136. makes sense 137. answers will vary 138. answers will vary 139. a. h is even if both f and g are even or if both f and g are odd. f and g are both even: (– ) ( ) (– ) ( ) (– ) ( ) f x f x h x h x g x g x = = = f and g are both odd: (– ) – ( ) ( ) (– ) ( ) (– ) – ( ) ( ) f x f x f x h x h x g x g x g x = = = = b. h is odd if f is odd and g is even or if f is even and g is odd. f is odd and g is even: (– ) – ( ) ( ) (– ) – – ( ) (– ) ( ) ( ) f x f x f x h x h x g x g x g x = = = = f is even and g is odd: (– ) ( ) ( ) (– ) – – ( ) (– ) – ( ) ( ) f x f x f x h x h x g x g x g x = = = = 140. Let x = the amount invested at 5%. Let 80,000 – x = the amount invested at 7%. 0.05 0.07(80,000 ) 5200 0.05 5600 0.07 5200 0.02 5600 5200 0.02 400 20,000 80,000 60,000 x x x x x x x x + − = + − = − + = − = − = − = $20,000 was invested at 5% and $60,000 was invested at 7%. 141. C A Ar= + ( )1 1 C A Ar C A r C A r = + = + = +
  • 30. Chapter 2 Functions and Graphs 230 Copyright © 2018 Pearson Education, Inc. 142. 2 5 7 3 0 5, 7, 3 x x a b c − + = = = − = 2 2 4 2 ( 7) ( 7) 4(5)(3) 2(5) 7 49 60 10 7 11 10 7 11 10 7 11 10 10 b b ac x a x x x i x x i − ± − = − − ± − − = ± − = ± − = ± = = ± The solution set is 7 11 7 11 , . 10 10 10 10 i    + −     143. 2 1 2 1 4 1 3 3 2 ( 3) 1 y y x x − − = = = − − − − 144. When 0 :y = 4 3 6 0 4 3(0) 6 0 4 6 0 4 6 3 2 x y x x x x − − = − − = − = = = The point is 3 ,0 . 2       When 0 :x = 4 3 6 0 4(0) 3 6 0 3 6 0 3 6 2 x y y y y x − − = − − = − − = − = = − The point is ( )0, 2 .− 145. 3 2 4 0 2 3 4 3 4 2 or 3 2 2 x y y x x y y x + − = = − + − + = = − + Section 2.3 Check Point Exercises 1. a. 2 4 6 6 4 ( 3) 1 m − − − = = = − − − − b. 5 ( 2) 7 7 1 4 5 5 m − − = = = − − − − 2. Point-slope form: 1 1( ) ( 5) 6( 2) 5 6( 2) y y m x x y x y x − = − − − = − + = − Slope-intercept form: 5 6( 2) 5 6 12 6 17 y x y x y x + = − + = − = − 3. 6 ( 1) 5 5 1 ( 2) 1 m − − − − = = = − − − − , so the slope is –5. Using the point (–2, –1), we get the following point- slope equation: 1 1( ) ( 1) 5[ ( 2)] 1 5( 2) y y m x x y x y x − = − − − = − − − + = − + Using the point (–1, –6), we get the following point- slope equation: 1 1( ) ( 6) 5[ ( 1)] 6 5( 1) y y m x x y x y x − = − − − = − − − + = − + Solve the equation for y: 1 5( 2) 1 5 10 5 11. y x y x y x + = − + + = − − = − − 4. The slope m is 3 5 and the y-intercept is 1, so one point on the line is (0, 1). We can find a second point on the line by using the slope 3 Rise 5 Run :m = = starting at the point (0, 1), move 3 units up and 5 units to the right, to obtain the point (5, 4).
  • 31. Section 2.3 Linear Functions and Slope Copyright © 2018 Pearson Education, Inc. 231 5. 3y = is a horizontal line. 6. All ordered pairs that are solutions of 3x = − have a value of x that is always –3. Any value can be used for y. 7. 3 6 12 0 6 3 12 3 12 6 6 1 2 2 x y y x y x y x + − = = − + − = + = − + The slope is 1 2 − and the y-intercept is 2. 8. Find the x-intercept: 3 2 6 0 3 2(0) 6 0 3 6 0 3 6 2 x y x x x x − − = − − = − = = = Find the y-intercept: 3 2 6 0 3(0) 2 6 0 2 6 0 2 6 3 x y y y y y − − = − − = − − = − = = − 9. First find the slope. Change in 57.64 57.04 0.6 0.016 Change in 354 317 37 y m x − = = = ≈ − Use the point-slope form and then find slope- intercept form. 1 1( ) 57.04 0.016( 317) 57.04 0.016 5.072 0.016 51.968 ( ) 0.016 52.0 y y m x x y x y x y x f x x − = − − = − − = − = + = + Find the temperature at a concentration of 600 parts per million. ( ) 0.016 52.0 (600) 0.016(600) 52.0 61.6 f x x f = + = + = The temperature at a concentration of 600 parts per million would be 61.6 F.° Concept and Vocabulary Check 2.3 1. scatter plot; regression 2. 2 1 2 1 y y x x − − 3. positive 4. negative 5. zero 6. undefined 7. 1 1( )y y m x x− = −
  • 32. Chapter 2 Functions and Graphs 232 Copyright © 2018 Pearson Education, Inc. 8. y mx b= + ; slope; y-intercept 9. (0,3) ; 2; 5 10. horizontal 11. vertical 12. general Exercise Set 2.3 1. 10 7 3 ; 8 4 4 m − = = − rises 2. 4 1 3 3; 3 2 1 m − = = = − rises 3. 2 1 1 ; 2 ( 2) 4 m − = = − − rises 4. 4 3 1 ; 2 ( 1) 3 m − = = − − rises 5. 2 ( 2) 0 0; 3 4 1 m − − = = = − − horizontal 6. 1 ( 1) 0 0; 3 4 1 m − − − = = = − − horizontal 7. 1 4 5 5; 1 ( 2) 1 m − − − = = = − − − − falls 8. 2 ( 4) 2 1; 4 6 2 m − − − = = = − − − falls 9. 2 3 5 5 5 0 m − − − = = − undefined; vertical 10. 5 ( 4) 9 3 3 0 m − − = = − undefined; vertical 11. 1 12, 3, 5;m x y= = = point-slope form: y – 5 = 2(x – 3); slope-intercept form: 5 2 6 2 1 y x y x − = − = − 12. point-slope form: y – 3 = 4(x – 1); 1 14, 1, 3;m x y= = = slope-intercept form: y = 4x – 1 13. 1 16, 2, 5;m x y= = − = point-slope form: y – 5 = 6(x + 2); slope-intercept form: 5 6 12 6 17 y x y x − = + = + 14. point-slope form: y + 1 = 8(x – 4); 1 18, 4, 1;m x y= = = − slope-intercept form: y = 8x – 33 15. 1 13, 2, 3;m x y= − = − = − point-slope form: y + 3 = –3(x + 2); slope-intercept form: 3 3 6 3 9 y x y x + = − − = − − 16. point-slope form: y + 2 = –5(x + 4); 1 15, 4, 2;m x y= − = − = − slope-intercept form: y = –5x – 22 17. 1 14, 4, 0;m x y= − = − = point-slope form: y – 0 = –4(x + 4); slope-intercept form: 4( 4) 4 16 y x y x = − + = − − 18. point-slope form: y + 3 = –2(x – 0) 1 12, 0, 3;m x y= − = = − slope-intercept form: y = –2x – 3 19. 1 1 1 1, , 2; 2 m x y − = − = = − point-slope form: 1 2 1 ; 2 y x   + = − +    slope-intercept form: 1 2 2 5 2 y x y x + = − − = − − 20. point-slope form: 1 1( 4); 4 y x+ = − + 1 1 1 1, 4, ; 4 m x y= − = − = − slope-intercept form: 17 4 y x= − − 21. 1 1 1 , 0, 0; 2 m x y= = = point-slope form: 1 0 ( 0); 2 y x− = − slope-intercept form: 1 2 y x=
  • 33. Section 2.3 Linear Functions and Slope Copyright © 2018 Pearson Education, Inc. 233 22. point-slope form: 1 0 ( 0); 3 y x− = − 1 1 1 , 0, 0; 3 m x y= = = slope-intercept form: 1 3 y x= 23. 1 1 2 , 6, 2; 3 m x y= − = = − point-slope form: 2 2 ( 6); 3 y x+ = − − slope-intercept form: 2 2 4 3 2 2 3 y x y x + = − + = − + 24. point-slope form: 3 4 ( 10); 5 y x+ = − − 1 1 3 , 10, 4; 5 m x y= − = = − slope-intercept form: 3 2 5 y x= − + 25. 10 2 8 2 5 1 4 m − = = = − ; point-slope form: y – 2 = 2(x – 1) using 1 1( , ) (1, 2)x y = , or y – 10 = 2(x – 5) using 1 1( , ) (5, 10)x y = ; slope-intercept form: 2 2 2or 10 2 10, 2 y x y x y x − = − − = − = 26. 15 5 10 2 8 3 5 m − = = = − ; point-slope form: y – 5 = 2(x – 3) using ( ) ( )1 1, 3,5x y = ,or y – 15 = 2(x – 8) using ( ) ( )1 1, 8,15x y = ; slope-intercept form: y = 2x – 1 27. 3 0 3 1 0 ( 3) 3 m − = = = − − ; point-slope form: y – 0 = 1(x + 3) using 1 1( , ) ( 3, 0)x y = − , or y – 3 = 1(x – 0) using 1 1( , ) (0, 3)x y = ; slope-intercept form: y = x + 3 28. 2 0 2 1 0 ( 2) 2 m − = = = − − ; point-slope form: y – 0 = 1(x + 2) using ( ) ( )1 1, 2,0x y = − , or y – 2 = 1(x – 0) using ( ) ( )1 1, 0,2x y = ; slope-intercept form: y = x + 2 29. 4 ( 1) 1 2 ( 3) 5 m − − 5 = = = − − ; point-slope form: y + 1 = 1(x + 3) using 1 1( , ) ( 3, 1)x y = − − , or y – 4 = 1(x – 2) using 1 1( , ) (2, 4)x y = ; slope-intercept form: 1 3or 4 2 2 y x y x y x + = + − = − = + 30. 1 ( 4) 3 1 1 ( 2) 3 m − − − = = = − − ; point-slope form: y + 4 = 1(x + 2) using ( ) ( )1 1, 2, 4x y = − − , or y + 1 = 1(x – 1) using ( ) ( )1 1, 1, 1x y = − slope-intercept form: y = x – 2 31. 6 ( 2) 8 4 3 ( 3) 6 3 m − − = = = − − ; point-slope form: 4 2 ( 3) 3 y x+ = + using 1 1( , ) ( 3, 2)x y = − − , or 4 6 ( 3) 3 y x− = − using 1 1( , ) (3, 6)x y = ; slope-intercept form: 4 2 4or 3 4 6 4, 3 4 2 3 y x y x y x + = + − = − = + 32. 2 6 8 4 3 ( 3) 6 3 m − − − = = = − − − ; point-slope form: 4 6 ( 3) 3 y x− = − + using ( ) ( )1 1, 3,6x y = − , or 4 2 ( 3) 3 y x+ = − − using ( ) ( )1 1, 3, 2x y = − ; slope-intercept form: 4 2 3 y x= − +
  • 34. Chapter 2 Functions and Graphs 234 Copyright © 2018 Pearson Education, Inc. 33. 1 ( 1) 0 0 4 ( 3) 7 m − − − = = = − − ; point-slope form: y + 1 = 0(x + 3) using 1 1( , ) ( 3, 1)x y = − − , or y + 1 = 0(x – 4) using 1 1( , ) (4, 1)x y = − ; slope-intercept form: 1 0,so 1 y y + = = − 34. 5 ( 5) 0 0 6 ( 2) 8 m − − − = = = − − ; point-slope form: y + 5 = 0(x + 2) using ( ) ( )1 1, 2, 5x y = − − , or y + 5 = 0(x – 6) using ( ) ( )1 1, 6, 5x y = − ; slope-intercept form: 5 0, so 5 y y + = = − 35. 0 4 4 1 2 2 4 m − − = = = − − − ; point-slope form: y – 4 = 1(x – 2) using 1 1( , ) (2, 4)x y = , or y – 0 = 1(x + 2) using 1 1( , ) ( 2, 0)x y = − ; slope-intercept form: 9 2,or 2 y x y x − = − = + 36. 0 ( 3) 3 3 1 1 2 2 m − − = = = − − − − point-slope form: 3 3 ( 1) 2 y x+ = − − using ( ) ( )1 1, 1, 3x y = − , or 3 0 ( 1) 2 y x− = − + using ( ) ( )1 1, 1,0x y = − ; slope-intercept form: 3 3 3 , or 2 2 3 3 2 2 y x y x + = − + = − − 37. ( )1 1 2 2 4 0 4 8 0 m − = = = − − ; point-slope form: y – 4 = 8(x – 0) using 1 1( , ) (0, 4)x y = , or ( )1 2 0 8y x− = + using ( )1 1 1 2 ( , ) , 0x y = − ; or ( )1 2 0 8y x− = + slope-intercept form: 8 4y x= + 38. 2 0 2 1 0 4 4 2 m − − − = = = − − ; point-slope form: 1 0 ( 4) 2 y x− = − using ( ) ( )1 1, 4,0x y = , or 1 2 ( 0) 2 y x+ = − using ( ) ( )1 1, 0, 2x y = − ; slope-intercept form: 1 2 2 y x= − 39. m = 2; b = 1 40. m = 3; b = 2 41. m = –2; b = 1 42. m = –3; b = 2
  • 35. Section 2.3 Linear Functions and Slope Copyright © 2018 Pearson Education, Inc. 235 43. 3 ; 4 m = b = –2 44. 3 ; 3 4 m b= = − 45. 3 ; 5 m = − b = 7 46. 2 ; 6 5 m b= − = 47. 1 ; 0 2 m b= − = 48. 1 ; 0 3 m b= − = 49. 50. 51. 52. 53.
  • 36. Chapter 2 Functions and Graphs 236 Copyright © 2018 Pearson Education, Inc. 54. 55. 56. 57. 3 18 0x − = 3 18 6 x x = = 58. 3 12 0x + = 3 12 4 x x = − = − 59. a. 3 5 0 5 3 3 5 x y y x y x + − = − = − = − + b. m = –3; b = 5 c. 60. a. 4 6 0 6 4 4 6 x y y x y x + − = − = − = − + b. 4; 6m b= − = c. 61. a. 2 3 18 0x y+ − = 2 18 3 3 2 18 2 18 3 3 2 6 3 x y y x y x y x − = − − = − = − − − = − + b. 2 ; 3 m = − b = 6 c. 62. a. 4 6 12 0x y+ + = 4 12 6 6 4 12 4 12 6 6 2 2 3 x y y x y x y x + = − − = + = + − − = − −
  • 37. Section 2.3 Linear Functions and Slope Copyright © 2018 Pearson Education, Inc. 237 b. 2 ; 3 m = − b = –2 c. 63. a. 8 4 12 0 8 12 4 4 8 12 8 12 4 4 2 3 x y x y y x y x y x − − = − = = − = − = − b. m = 2; b = –3 c. 64. a. 6 5 20 0x y− − = 6 20 5 5 6 20 6 20 5 5 6 4 5 x y y x y x y x − = = − = − = − b. 6 ; 4 5 m b= = − c. 65. a. 3 9 0y − = 3 9 3 y y = = b. 0; 3m b= = c. 66. a. 4 28 0y + = 4 28 7 y y = − = − b. 0; 7m b= = − c. 67. Find the x-intercept: 6 2 12 0 6 2(0) 12 0 6 12 0 6 12 2 x y x x x x − − = − − = − = = = Find the y-intercept: 6 2 12 0 6(0) 2 12 0 2 12 0 2 12 6 x y y y y y − − = − − = − − = − = = −
  • 38. Chapter 2 Functions and Graphs 238 Copyright © 2018 Pearson Education, Inc. 68. Find the x-intercept: 6 9 18 0 6 9(0) 18 0 6 18 0 6 18 3 x y x x x x − − = − − = − = = = Find the y-intercept: 6 9 18 0 6(0) 9 18 0 9 18 0 9 18 2 x y y y y y − − = − − = − − = − = = − 69. Find the x-intercept: 2 3 6 0 2 3(0) 6 0 2 6 0 2 6 3 x y x x x x + + = + + = + = = − = − Find the y-intercept: 2 3 6 0 2(0) 3 6 0 3 6 0 3 6 2 x y y y y y + + = + + = + = = − = − 70. Find the x-intercept: 3 5 15 0 3 5(0) 15 0 3 15 0 3 15 5 x y x x x x + + = + + = + = = − = − Find the y-intercept: 3 5 15 0 3(0) 5 15 0 5 15 0 5 15 3 x y y y y y + + = + + = + = = − = − 71. Find the x-intercept: 8 2 12 0 8 2(0) 12 0 8 12 0 8 12 8 12 8 8 3 2 x y x x x x x − + = − + = + = = − − = − = Find the y-intercept: 8 2 12 0 8(0) 2 12 0 2 12 0 2 12 6 x y y y y y − + = − + = − + = − = − = −
  • 39. Section 2.3 Linear Functions and Slope Copyright © 2018 Pearson Education, Inc. 239 72. Find the x-intercept: 6 3 15 0 6 3(0) 15 0 6 15 0 6 15 6 15 6 6 5 2 x y x x x x x − + = − + = + = = − − = = − Find the y-intercept: 6 3 15 0 6(0) 3 15 0 3 15 0 3 15 5 x y y y y y − + = − + = − + = − = − = 73. 0 0 a a a m b b b − − = = = − − Since a and b are both positive, a b − is negative. Therefore, the line falls. 74. ( ) 0 0 b b b m a a a − − − = = = − − − Since a and b are both positive, b a − is negative. Therefore, the line falls. 75. ( ) 0 b c b c m a a + − = = − The slope is undefined. The line is vertical. 76. ( ) ( ) a c c a m a a b b + − = = − − Since a and b are both positive, a b is positive. Therefore, the line rises. 77. Ax By C By Ax C A C y x B B + = = − + = − + The slope is A B − and the y − intercept is . C B 78. Ax By C Ax C By A C x y B B = − + = + = The slope is A B and the y − intercept is . C B 79. 4 3 1 3 4 3 2 6 4 2 2 y y y y y − − = − − − = − = − = − − = 80. ( ) ( ) 1 4 3 4 2 1 4 3 4 2 1 4 3 6 6 3 4 6 12 3 18 3 6 y y y y y y y − − = − − − − = + − − = = − − = − − = − − = 81. ( ) ( ) ( ) 3 4 6 4 3 6 3 3 4 2 x f x f x x f x x − = − = − + = −
  • 40. Chapter 2 Functions and Graphs 240 Copyright © 2018 Pearson Education, Inc. 82. ( ) ( ) ( ) 6 5 20 5 6 20 6 4 5 x f x f x x f x x − = − = − + = − 83. Using the slope-intercept form for the equation of a line: ( )1 2 3 1 6 5 b b b − = − + − = − + = 84. ( ) 3 6 2 2 6 3 3 b b b − = − + − = − + − = 85. 1 3 2 4, , ,m m m m 86. 2 1 4 3, , ,b b b b 87. a. First, find the slope using ( )20,38.9 and ( )30,47.8 . 47.8 38.9 8.9 0.89 30 20 10 m − = = = − Then use the slope and one of the points to write the equation in point-slope form. ( ) ( ) ( ) 1 1 47.8 0.89 30 or 38.9 0.89 20 y y m x x y x y x − = − − = − − = − b. ( ) ( ) 47.8 0.89 30 47.8 0.89 26.7 0.89 21.1 0.89 21.1 y x y x y x f x x − = − − = − = + = + c. ( )40 0.89(40) 21.1 56.7f = + = The linear function predicts the percentage of never married American females, ages 25 – 29, to be 56.7% in 2020. 88. a. First, find the slope using ( )20,51.7 and ( )30,62.6 . 51.7 62.6 10.9 1.09 20 30 10 m − − = = = − − Then use the slope and one of the points to write the equation in point-slope form. ( ) ( ) ( ) 1 1 62.6 1.09 30 or 51.7 1.09 20 y y m x x y x y x − = − − = − − = − b. ( ) ( ) 62.6 1.09 30 62.6 1.09 32.7 1.09 29.9 1.09 29.9 y x y x y x f x x − = − − = − = + = + c. ( )35 1.09(35) 29.9 68.05f = + = The linear function predicts the percentage of never married American males, ages 25 – 29, to be 68.05% in 2015. 89. a. b. Change in 74.3 70.0 0.215 Change in 40 20 y m x − = = = − 1 1( ) 70.0 0.215( 20) 70.0 0.215 4.3 0.215 65.7 ( ) 0.215 65.7 y y m x x y x y x y x E x x − = − − = − − = − = + = + c. ( ) 0.215 65.7 (60) 0.215(60) 65.7 78.6 E x x E = + = + = The life expectancy of American men born in 2020 is expected to be 78.6.
  • 41. Section 2.3 Linear Functions and Slope Copyright © 2018 Pearson Education, Inc. 241 90. a. b. Change in 79.7 74.7 0.17 Change in 40 10 y m x − = = ≈ − 1 1( ) 74.7 0.17( 10) 74.7 0.17 1.7 0.17 73 ( ) 0.17 73 y y m x x y x y x y x E x x − = − − = − − = − = + = + c. ( ) 0.17 73 (60) 0.17(60) 73 83.2 E x x E = + = + = The life expectancy of American women born in 2020 is expected to be 83.2. 91. (10, 230) (60, 110) Points may vary. 110 230 120 2.4 60 10 50 230 2.4( 10) 230 2.4 24 2.4 254 m y x y x y x − = = − = − − − = − − − = − + = − + Answers will vary for predictions. 92. – 99. Answers will vary. 100. Two points are (0,4) and (10,24). 24 4 20 2. 10 0 10 m − = = = − 101. Two points are (0, 6) and (10, –24). 24 6 30 3. 10 0 10 m − − − = = = − − Check: : 3 6y mx b y x= + = − + . 102. Two points are (0,–5) and (10,–10). 10 ( 5) 5 1 . 10 0 10 2 m − − − − = = = − − 103. Two points are (0, –2) and (10, 5.5). 5.5 ( 2) 7.5 3 0.75 or . 10 0 10 4 m − − = = = − Check: 3 : 2 4 y mx b y x= + = − . 104. a. Enter data from table. b.
  • 42. Chapter 2 Functions and Graphs 242 Copyright © 2018 Pearson Education, Inc. c. 22.96876741a = − 260.5633751b = 0.8428126855r = − d. 105. does not make sense; Explanations will vary. Sample explanation: Linear functions never change from increasing to decreasing. 106. does not make sense; Explanations will vary. Sample explanation: Since college cost are going up, this function has a positive slope. 107. does not make sense; Explanations will vary. Sample explanation: The slope of line’s whose equations are in this form can be determined in several ways. One such way is to rewrite the equation in slope-intercept form. 108. makes sense 109. false; Changes to make the statement true will vary. A sample change is: It is possible for m to equal b. 110. false; Changes to make the statement true will vary. A sample change is: Slope-intercept form is y mx b= + . Vertical lines have equations of the form x a= . Equations of this form have undefined slope and cannot be written in slope-intercept form. 111. true 112. false; Changes to make the statement true will vary. A sample change is: The graph of 7x = is a vertical line through the point (7, 0). 113. We are given that the interceptx − is 2− and the intercept is 4y − . We can use the points ( ) ( )2,0 and 0,4− to find the slope. ( ) 4 0 4 4 2 0 2 0 2 2 m − = = = = − − + Using the slope and one of the intercepts, we can write the line in point-slope form. ( ) ( )( ) ( ) 1 1 0 2 2 2 2 2 4 2 4 y y m x x y x y x y x x y − = − − = − − = + = + − + = Find the x– and y–coefficients for the equation of the line with right-hand-side equal to 12. Multiply both sides of 2 4x y− + = by 3 to obtain 12 on the right- hand-side. ( ) ( ) 2 4 3 2 3 4 6 3 12 x y x y x y − + = − + = − + = Therefore, the coefficient of x is –6 and the coefficient of y is 3. 114. We are given that the intercept is 6y − − and the slope is 1 . 2 So the equation of the line is 1 6. 2 y x= − We can put this equation in the form ax by c+ = to find the missing coefficients. ( ) 1 6 2 1 6 2 1 2 2 6 2 2 12 2 12 y x y x y x y x x y = − − = −   − = −    − = − − = Therefore, the coefficient of x is 1 and the coefficient of y is 2.− 115. Answers will vary. 116. Let (25, 40) and (125, 280) be ordered pairs (M, E) where M is degrees Madonna and E is degrees Elvis. Then 280 40 240 2.4 125 25 100 m − = = = − . Using ( ) ( )1 1, 25,40x y = , point-slope form tells us that E – 40 = 2.4 (M – 25) or E = 2.4 M – 20. 117. Answers will vary.
  • 43. Section 2.4 More on Slope Copyright © 2018 Pearson Education, Inc. 243 118. Let x = the number of years after 1994. 714 17 289 17 425 25 x x x − = − = − = Violent crime incidents will decrease to 289 per 100,000 people 25 years after 1994, or 2019. 119. 3 2 1 4 3 3 2 12 12 1 4 3 x x x x + − ≥ + + −    ≥ +        3( 3) 4( 2) 12 3 9 4 8 12 3 9 4 4 5 5 x x x x x x x x + ≥ − + + ≥ − + + ≥ + ≥ ≤ The solution set is { } ( ]5 or ,5 .x x ≤ −∞ 120. 3 2 6 9 15x + − < 3 2 6 24 3 2 6 24 3 3 2 6 8 8 2 6 8 14 2 2 7 1 x x x x x x + < + < + < − < + < − < < − < < The solution set is { } ( )7 1 or 7,1x x− < < − . 121. Since the slope is the same as the slope of 2 1,y x= + then 2.m = ( ) ( )( ) ( ) 1 1 1 2 3 1 2 3 1 2 6 2 7 y y m x x y x y x y x y x − = − − = − − − = + − = + = + 122. Since the slope is the negative reciprocal of 1 , 4 − then 4.m = ( ) ( ) 1 1 ( 5) 4 3 5 4 12 4 17 0 4 17 0 y y m x x y x y x x y x y − = − − − = − + = − − + + = − − = 123. 2 1 2 1 2 2 ( ) ( ) (4) (1) 4 1 4 1 4 1 15 3 5 f x f x f f x x − − = − − − = − = = Section 2.4 Check Point Exercises 1. The slope of the line 3 1y x= + is 3. ( ) 1 1( ) 5 3 ( 2) 5 3( 2) point-slope 5 3 6 3 11 slope-intercept y y m x x y x y x y x y x − = − − = − − − = + − = + = + 2. a. Write the equation in slope-intercept form: 3 12 0 3 12 1 4 3 x y y x y x + − = = − + = − + The slope of this line is 1 3 − thus the slope of any line perpendicular to this line is 3. b. Use 3m = and the point (–2, –6) to write the equation. ( ) 1 1( ) ( 6) 3 ( 2) 6 3( 2) 6 3 6 3 0 3 0 general form y y m x x y x y x y x x y x y − = − − − = − − + = + + = + − + = − =
  • 44. Chapter 2 Functions and Graphs 244 Copyright © 2018 Pearson Education, Inc. 3. Change in 15 11.2 3.8 0.29 Change in 2013 2000 13 y m x − = = = ≈ − The slope indicates that the number of U.S. men living alone increased at a rate of 0.29 million each year. The rate of change is 0.29 million men per year. 4. a. 3 3 2 1 2 1 ( ) ( ) 1 0 1 1 0 f x f x x x − − = = − − b. 3 3 2 1 2 1 ( ) ( ) 2 1 8 1 7 2 1 1 f x f x x x − − − = = = − − c. 3 3 2 1 2 1 ( ) ( ) 0 ( 2) 8 4 0 ( 2) 2 f x f x x x − − − = = = − − − 5. 2 1 2 1 ( ) ( ) (3) (1) 3 1 0.05 0.03 3 1 0.01 f x f x f f x x − − = − − − = − = The average rate of change in the drug's concentration between 1 hour and 3 hours is 0.01 mg per 100 mL per hour. Concept and Vocabulary Check 2.4 1. the same 2. 1− 3. 1 3 − ; 3 4. 2− ; 1 2 5. y; x 6. 2 1 2 1 ( ) ( )f x f x x x − − Exercise Set 2.4 1. Since L is parallel to 2 ,y x= we know it will have slope 2.m = We are given that it passes through ( )4,2 . We use the slope and point to write the equation in point-slope form. ( ) ( ) 1 1 2 2 4 y y m x x y x − = − − = − Solve for y to obtain slope-intercept form. ( )2 2 4 2 2 8 2 6 y x y x y x − = − − = − = − In function notation, the equation of the line is ( ) 2 6.f x x= − 2. L will have slope 2m = − . Using the point and the slope, we have ( )4 2 3 .y x− = − − Solve for y to obtain slope-intercept form. ( ) 4 2 6 2 10 2 10 y x y x f x x − = − + = − + = − + 3. Since L is perpendicular to 2 ,y x= we know it will have slope 1 . 2 m = − We are given that it passes through (2,4). We use the slope and point to write the equation in point-slope form. ( ) ( ) 1 1 1 4 2 2 y y m x x y x − = − − = − − Solve for y to obtain slope-intercept form. ( ) 1 4 2 2 1 4 1 2 1 5 2 y x y x y x − = − − − = − + = − + In function notation, the equation of the line is ( ) 1 5. 2 f x x= − +
  • 45. Section 2.4 More on Slope Copyright © 2018 Pearson Education, Inc. 245 4. L will have slope 1 . 2 m = The line passes through (–1, 2). Use the slope and point to write the equation in point-slope form. ( )( ) ( ) 1 2 1 2 1 2 1 2 y x y x − = − − − = + Solve for y to obtain slope-intercept form. 1 1 2 2 2 1 1 2 2 2 y x y x − = + = + + ( ) 1 5 2 2 1 5 2 2 y x f x x = + = + 5. m = –4 since the line is parallel to 1 14 3; 8, 10;y x x y= − + = − = − point-slope form: y + 10 = –4(x + 8) slope-intercept form: y + 10 = –4x – 32 y = –4x – 42 6. m = –5 since the line is parallel to 5 4y x= − + ; 1 12, 7x y= − = − ; point-slope form: y + 7 = –5(x + 2) slope-intercept form: 7 5 10 5 17 y x y x + = − − = − − 7. m = –5 since the line is perpendicular to 1 1 1 6; 2, 3; 5 y x x y= + = = − point-slope form: y + 3 = –5(x – 2) slope-intercept form: 3 5 10 5 7 y x y x + = − + = − + 8. 3m = − since the line is perpendicular to 1 7 3 y x= + ; 1 14, 2x y= − = ; point-slope form: 2 3( 4)y x− = − + slope-intercept form: 2 3 12 3 10 y x y x − = − − = − − 9. 2 3 7 0 3 2 7 2 7 3 3 x y y x y x − − = − = − + = − The slope of the given line is 2 2 , so 3 3 m = since the lines are parallel. point-slope form: 2 2 ( 2) 3 y x− = + general form: 2 3 10 0x y− + = 10. 3 2 0 2 3 5 3 5 2 2 x y y x y x − − = − = − + = − The slope of the given line is 3 2 , so 3 2 m = since the lines are parallel. point-slope form: 3 3 ( 1) 2 y x− = + general form: 3 2 9 0x y− + = 11. 2 3 0 2 3 1 3 2 2 x y y x y x − − = − = − + = − The slope of the given line is 1 2 , so m = –2 since the lines are perpendicular. point-slope form: ( )7 –2 4y x+ = − general form: 2 1 0x y+ − = 12. 7 12 0 7 12 1 12 7 7 x y y x y x + − = = − + − = + The slope of the given line is 1 7 − , so m = 7 since the lines are perpendicular. point-slope form: y + 9 = 7(x – 5) general form: 7 44 0x y− − = 13. 15 0 15 3 5 0 5 − = = − 14. 24 0 24 6 4 0 4 − = = −
  • 46. Chapter 2 Functions and Graphs 246 Copyright © 2018 Pearson Education, Inc. 15. 2 2 5 2 5 (3 2 3) 25 10 (9 6) 5 3 2 20 2 10 + ⋅ − + ⋅ + − + = − = = 16. ( ) ( )2 2 6 2 6 (3 2 3) 36 12 9 6 21 7 6 3 3 3 − − − ⋅ − − − = = = − 17. 9 4 3 2 1 9 4 5 5 − − = = − 18. 16 9 4 3 1 16 9 7 7 − − = = − 19. Since the line is perpendicular to 6x = which is a vertical line, we know the graph of f is a horizontal line with 0 slope. The graph of f passes through ( )1,5− , so the equation of f is ( ) 5.f x = 20. Since the line is perpendicular to 4x = − which is a vertical line, we know the graph of f is a horizontal line with 0 slope. The graph of f passes through ( )2,6− , so the equation of f is ( ) 6.f x = 21. First we need to find the equation of the line with x − intercept of 2 and y − intercept of 4.− This line will pass through ( )2,0 and ( )0, 4 .− We use these points to find the slope. 4 0 4 2 0 2 2 m − − − = = = − − Since the graph of f is perpendicular to this line, it will have slope 1 . 2 m = − Use the point ( )6,4− and the slope 1 2 − to find the equation of the line. ( ) ( )( ) ( ) ( ) 1 1 1 4 6 2 1 4 6 2 1 4 3 2 1 1 2 1 1 2 y y m x x y x y x y x y x f x x − = − − = − − − − = − + − = − − = − + = − + 22. First we need to find the equation of the line with x − intercept of 3 and y − intercept of 9.− This line will pass through ( )3,0 and ( )0, 9 .− We use these points to find the slope. 9 0 9 3 0 3 3 m − − − = = = − − Since the graph of f is perpendicular to this line, it will have slope 1 . 3 m = − Use the point ( )5,6− and the slope 1 3 − to find the equation of the line. ( ) ( )( ) ( ) ( ) 1 1 1 6 5 3 1 6 5 3 1 5 6 3 3 1 13 3 3 1 13 3 3 y y m x x y x y x y x y x f x x − = − − = − − − − = − + − = − − = − + = − +
  • 47. Section 2.4 More on Slope Copyright © 2018 Pearson Education, Inc. 247 23. First put the equation 3 2 4 0x y− − = in slope- intercept form. 3 2 4 0 2 3 4 3 2 2 x y y x y x − − = − = − + = − The equation of f will have slope 2 3 − since it is perpendicular to the line above and the same y − intercept 2.− So the equation of f is ( ) 2 2. 3 f x x= − − 24. First put the equation 4 6 0x y− − = in slope-intercept form. 4 6 0 4 6 4 6 x y y x y x − − = − = − + = − The equation of f will have slope 1 4 − since it is perpendicular to the line above and the same y − intercept 6.− So the equation of f is ( ) 1 6. 4 f x x= − − 25. ( ) 0.25 22p x x= − + 26. ( ) 0.22 3p x x= + 27. 1163 617 546 137 1998 1994 4 m − = = ≈ − There was an average increase of approximately 137 discharges per year. 28. 623 1273 650 130 2006 2001 5 m − − = = ≈ − − There was an average decrease of approximately 130 discharges per year. 29. a. 3 2 ( ) 1.1 35 264 557f x x x x= − + + 3 2 (0) 1.1(0) 35(0) 264(0) 557 557f = − + + = 3 2 (4) 1.1(4) 35(4) 264(4) 557 1123.4f = − + + = 1123.4 557 142 4 0 m − = ≈ − b. This overestimates by 5 discharges per year. 30. a. 3 2 ( ) 1.1 35 264 557f x x x x= − + + 3 2 (0) 1.1(7) 35(7) 264(7) 557 1067.3f = − + + = 3 2 (12) 1.1(12) 35(12) 264(12) 557 585.8f = − + + = 585.8 1067.3 96 12 7 m − = ≈ − − b. This underestimates the decrease by 34 discharges per year. 31. – 36. Answers will vary. 37. 1 1 3 3 2 y x y x = + = − − a. The lines are perpendicular because their slopes are negative reciprocals of each other. This is verified because product of their slopes is –1. b. The lines do not appear to be perpendicular. c. The lines appear to be perpendicular. The calculator screen is rectangular and does not have the same width and height. This causes the scale of the x–axis to differ from the scale on the y–axis despite using the same scale in the window settings. In part (b), this causes the lines not to appear perpendicular when indeed they are. The zoom square feature compensates for this and in part (c), the lines appear to be perpendicular. 38. does not make sense; Explanations will vary. Sample explanation: Perpendicular lines have slopes with opposite signs.
  • 48. Chapter 2 Functions and Graphs 248 Copyright © 2018 Pearson Education, Inc. 39. makes sense 40. does not make sense; Explanations will vary. Sample explanation: Slopes can be used for segments of the graph. 41. makes sense 42. Write 0Ax By C+ + = in slope-intercept form. 0Ax By C By Ax C By Ax C B B B A C y x B B + + = = − − − = − = − − The slope of the given line is A B − . The slope of any line perpendicular to 0Ax By C+ + = is B A . 43. The slope of the line containing ( )1, 3− and ( )2,4− has slope ( )4 3 4 3 7 7 2 1 3 3 3 m − − + = = = = − − − − − Solve 2 0Ax y+ − = for y to obtain slope-intercept form. 2 0 2 Ax y y Ax + − = = − + So the slope of this line is .A− This line is perpendicular to the line above so its slope is 3 . 7 Therefore, 3 7 A− = so 3 . 7 A = − 44. 24 3( 2) 5( 12)x x+ + = − 24 3 6 5 60 3 30 5 60 90 2 45 x x x x x x + + = − + = − = = The solution set is {45}. 45. Let x = the television’s price before the reduction. 0.30 980 0.70 980 980 0.70 1400 x x x x x − = = = = Before the reduction the television’s price was $1400. 46. 2/3 1/3 2 5 3 0x x− − = Let 1/3 t x= . 2 2 5 3 0 (2 1)( 3) 0 t t t t − − = + − = 2 1 0 or 3 0 2 = 1 1 = 3 2 t t t t t + = − = − − = 1/3 1/3 3 3 1 3 2 1 3 2 1 27 8 x x x x x x = − =   = − =    = − = The solution set is 1 , 27 8   −    . 47. a. b. c. The graph in part (b) is the graph in part (a) shifted down 4 units. 48. a.
  • 49. Mid-Chapter 2 Check Point Copyright © 2018 Pearson Education, Inc. 249 b. c. The graph in part (b) is the graph in part (a) shifted to the right 2 units. 49. a. b. c. The graph in part (b) is the graph in part (a) reflected across the y-axis. Mid-Chapter 2 Check Point 1. The relation is not a function. The domain is {1,2}. The range is { 6,4,6}.− 2. The relation is a function. The domain is {0,2,3}. The range is {1,4}. 3. The relation is a function. The domain is { | 2 2}.x x− ≤ < The range is { | 0 3}.y y≤ ≤ 4. The relation is not a function. The domain is { | 3 4}.x x− < ≤ The range is { | 1 2}.y y− ≤ ≤ 5. The relation is not a function. The domain is { 2, 1,0,1,2}.− − The range is { 2, 1,1,3}.− − 6. The relation is a function. The domain is { | 1}.x x ≤ The range is { | 1}.y y ≥ − 7. 2 5x y+ = 2 5y x= − + For each value of x, there is one and only one value for y, so the equation defines y as a function of x. 8. 2 5x y+ = 2 5 5 y x y x = − = ± − Since there are values of x that give more than one value for y (for example, if x = 4, then 5 4 1y = ± − = ± ), the equation does not define y as a function of x. 9. No vertical line intersects the graph in more than one point. Each value of x corresponds to exactly one value of y. 10. Domain: ( ),−∞ ∞ 11. Range: ( ],4−∞ 12. x-intercepts: –6 and 2 13. y-intercept: 3 14. increasing: (–∞, –2) 15. decreasing: (–2, ∞) 16. 2x = − 17. ( 2) 4f − = 18. ( 4) 3f − = 19. ( 7) 2f − = − and (3) 2f = − 20. ( 6) 0f − = and (2) 0f = 21. ( )6,2− 22. (100)f is negative.
  • 50. Chapter 2 Functions and Graphs 250 Copyright © 2018 Pearson Education, Inc. 23. neither; ( )f x x− ≠ and ( )f x x− ≠ − 24. 2 1 2 1 ( ) ( ) (4) ( 4) 5 3 1 4 ( 4) 4 4 f x f x f f x x − − − − − = = = − − − − + 25. Test for symmetry with respect to the y-axis. 2 2 2 1 1 1 x y x y x y = + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 2 2 2 1 1 1 x y x y x y = + = − + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x- axis. Test for symmetry with respect to the origin. ( ) 2 2 2 2 1 1 1 1 x y x y x y x y = + − = − + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 26. Test for symmetry with respect to the y-axis. ( ) 3 3 3 1 1 1 y x y x y x = − = − − = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. 3 3 3 1 1 1 y x y x y x = − − = − = − + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) 3 3 3 3 1 1 1 1 y x y x y x y x = − − = − − − = − − = + The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 27. 28. 29. 30. 31.
  • 51. Mid-Chapter 2 Check Point Copyright © 2018 Pearson Education, Inc. 251 32. 33. 34. 35. 36. 5 3y x= − 3 5 y x= − 37. 5 20y = 4y = 38. 39. a. 2 2 ( ) 2( ) 5 2 5 f x x x x x − = − − − − = − − − neither; ( )f x x− ≠ and ( )f x x− ≠ − b. ( ) ( )f x h f x h + − ( ) 2 2 2 2 2 2 2( ) ( ) 5 ( 2 5) 2 4 2 5 2 5 4 2 4 2 1 4 2 1 x h x h x x h x xh h x h x x h xh h h h h x h h x h − + + + − − − + − = − − − + + − + − + = − − + = − − + = = − − + 40. 30 if 0 200 ( ) 30 0.40( 200) if 200 t C x t t ≤ ≤ =  + − > a. (150) 30C = b. (250) 30 0.40(250 200) 50C = + − = 41. 1 1( )y y m x x− = − ( )3 2 ( 4) 3 2( 4) 3 2 8 2 5 ( ) 2 5 y x y x y x y x f x x − = − − − − = − + − = − − = − − = − − 42. Change in 1 ( 5) 6 2 Change in 2 ( 1) 3 y m x − − = = = = − − 1 1( )y y m x x− = − ( )1 2 2 1 2 4 2 3 ( ) 2 3 y x y x y x f x x − = − − = − = − = −
  • 52. Chapter 2 Functions and Graphs 252 Copyright © 2018 Pearson Education, Inc. 43. 3 5 0x y− − = 3 5 3 5 y x y x − = − + = − The slope of the given line is 3, and the lines are parallel, so 3.m = 1 1( ) ( 4) 3( 3) 4 3 9 3 13 ( ) 3 13 y y m x x y x y x y x f x x − = − − − = − + = − = − = − 44. 2 5 10 0x y− − = 5 2 10 5 2 10 5 5 5 2 2 5 y x y x y x − = − + − − = + − − − = − The slope of the given line is 2 5 , and the lines are perpendicular, so 5 . 2 m = − ( ) 1 1( ) 5 ( 3) ( 4) 2 5 3 10 2 5 13 2 5 ( ) 13 2 y y m x x y x y x y x f x x − = − − − = − − − + = − − = − − = − − 45. 1 Change in 0 ( 4) 4 Change in 7 2 5 y m x − − = = = − 2 Change in 6 2 4 Change in 1 ( 4) 5 y m x − = = = − − The slope of the lines are equal thus the lines are parallel. 46. a. Change in 42 26 16 0.16 Change in 180 80 100 y m x − = = = = − b. For each minute of brisk walking, the percentage of patients with depression in remission increased by 0.16%. The rate of change is 0.16% per minute of brisk walking. 47. 2 1 2 1 ( ) ( ) (2) ( 1) 2 ( 1) f x f x f f x x − − − = − − − ( ) ( )2 2 3(2) 2 3( 1) ( 1) 2 1 2 − − − − − = + = Section 2.5 Check Point Exercises 1. Shift up vertically 3 units. 2. Shift to the right 4 units. 3. Shift to the right 1 unit and down 2 units. 4. Reflect about the x-axis.
  • 53. Section 2.5 Transformations of Functions Copyright © 2018 Pearson Education, Inc. 253 5. Reflect about the y-axis. 6. Vertically stretch the graph of ( )f x x= . 7. a. Horizontally shrink the graph of ( )y f x= . b. Horizontally stretch the graph of ( )y f x= . 8. The graph of ( )y f x= is shifted 1 unit left, shrunk by a factor of 1 , 3 reflected about the x-axis, then shifted down 2 units. 9. The graph of 2 ( )f x x= is shifted 1 unit right, stretched by a factor of 2, then shifted up 3 units. Concept and Vocabulary Check 2.5 1. vertical; down 2. horizontal; to the right 3. x-axis 4. y-axis 5. vertical; y 6. horizontal; x 7. false Exercise Set 2.5 1. 2.
  • 54. Chapter 2 Functions and Graphs 254 Copyright © 2018 Pearson Education, Inc. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
  • 55. Section 2.5 Transformations of Functions Copyright © 2018 Pearson Education, Inc. 255 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.
  • 56. Chapter 2 Functions and Graphs 256 Copyright © 2018 Pearson Education, Inc. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.
  • 57. Section 2.5 Transformations of Functions Copyright © 2018 Pearson Education, Inc. 257 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.
  • 58. Chapter 2 Functions and Graphs 258 Copyright © 2018 Pearson Education, Inc. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53.
  • 59. Section 2.5 Transformations of Functions Copyright © 2018 Pearson Education, Inc. 259 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65.
  • 60. Chapter 2 Functions and Graphs 260 Copyright © 2018 Pearson Education, Inc. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.
  • 61. Section 2.5 Transformations of Functions Copyright © 2018 Pearson Education, Inc. 261 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91.
  • 62. Chapter 2 Functions and Graphs 262 Copyright © 2018 Pearson Education, Inc. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103.
  • 63. Section 2.5 Transformations of Functions Copyright © 2018 Pearson Education, Inc. 263 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115.
  • 64. Chapter 2 Functions and Graphs 264 Copyright © 2018 Pearson Education, Inc. 116. 117. 118. 119. 120. 121. 122. 123. 2y x= − 124. 3 2y x= − + 125. 2 ( 1) 4y x= + − 126. 2 1y x= − + 127. a. First, vertically stretch the graph of ( )f x x= by the factor 2.9; then shift the result up 20.1 units. b. ( ) 2.9 20.1f x x= + (48) 2.9 48 20.1 40.2f = + ≈ The model describes the actual data very well. c. 2 1 2 1 ( ) ( )f x f x x x − − ( ) ( ) (10) (0) 10 0 2.9 10 20.1 2.9 0 20.1 10 0 29.27 20.1 10 0.9 f f− = − + − + = − − = ≈ 0.9 inches per month d. 2 1 2 1 ( ) ( )f x f x x x − − ( ) ( ) (60) (50) 60 50 2.9 60 20.1 2.9 50 20.1 60 50 42.5633 40.6061 10 0.2 f f− = − + − + = − − = ≈ This rate of change is lower than the rate of change in part (c). The relative leveling off of the curve shows this difference.
  • 65. Section 2.5 Transformations of Functions Copyright © 2018 Pearson Education, Inc. 265 128. a. First, vertically stretch the graph of ( )f x x= by the factor 3.1; then shift the result up 19 units. b. ( ) 3.1 19f x x= + (48) 3.1 48 19 40.5f = + ≈ The model describes the actual data very well. c. 2 1 2 1 ( ) ( )f x f x x x − − ( ) ( ) (10) (0) 10 0 3.1 10 19 3.1 0 19 10 0 28.8031 19 10 1.0 f f− = − + − + = − − = ≈ 1.0 inches per month d. 2 1 2 1 ( ) ( )f x f x x x − − ( ) ( ) (60) (50) 60 50 3.1 60 19 3.1 50 19 60 50 43.0125 40.9203 10 0.2 f f− = − + − + = − − = ≈ This rate of change is lower than the rate of change in part (c). The relative leveling off of the curve shows this difference. 129. – 134. Answers will vary. 135. a. b. 136. a. b. 137. makes sense 138. makes sense 139. does not make sense; Explanations will vary. Sample explanation: The reprogram should be ( 1).y f t= + 140. does not make sense; Explanations will vary. Sample explanation: The reprogram should be ( 1).y f t= − 141. false; Changes to make the statement true will vary. A sample change is: The graph of g is a translation of f three units to the left and three units upward. 142. false; Changes to make the statement true will vary. A sample change is: The graph of f is a reflection of the graph of y x= in the x-axis, while the graph of g is a reflection of the graph of y x= in the y-axis. 143. false; Changes to make the statement true will vary. A sample change is: The stretch will be 5 units and the downward shift will be 10 units.
  • 66. Chapter 2 Functions and Graphs 266 Copyright © 2018 Pearson Education, Inc. 144. true 145. 2 ( ) ( 4)g x x= − + 146. ( ) – – 5 1g x x= + 147. ( ) 2 2g x x= − − + 148. 21 ( ) 16 – 1 4 g x x= − − 149. (–a, b) 150. (a, 2b) 151. (a + 3, b) 152. (a, b – 3) 153. Let x = the width of the rectangle. Let x + 13 = the length of the rectangle. 2 2 2( 13) 2 82 2 26 2 82 4 26 82 4 56 56 4 14 13 27 l w P x x x x x x x x x + = + + = + + = + = = = = + = The dimensions of the rectangle are 14 yards by 27 yards. 154. 10 4x x+ − = ( ) ( ) 2 2 2 2 10 4 10 4 10 8 16 0 7 6 0 ( 6)( 1) x x x x x x x x x x x + = + + = + + = + + = + + = + + 6 0 or 1 0 6 1 x x x x + = + = = − = − –6 does not check and must be rejected. The solution set is { }1 .− 155. 2 (3 7 )(5 2 ) 15 6 35 14 15 6 35 14( 1) 15 6 35 14 29 29 i i i i i i i i i i − + = + − − = + − − − = + − + = − 156. 2 2 2 3 2 2 3 2 2 3 2 (2 1)( 2) 2 ( 2) 1( 2) 2 2 4 2 2 2 4 2 2 5 2 x x x x x x x x x x x x x x x x x x x x x − + − = + − − + − = + − − − + = + − − − + = + − + 157. ( ) ( ) 2 2 2 2 2 ( ) 2 ( ) 6 3 4 2(3 4) 6 9 24 16 6 8 6 9 24 6 16 8 6 9 30 30 f x f x x x x x x x x x x x − + = − − − + = − + − + + = − − + + + = − + 158. 2 2 2 3 3 31 x x x xx x x = = −− − Section 2.6 Check Point Exercises 1. a. The function 2 ( ) 3 17f x x x= + − contains neither division nor an even root. The domain of f is the set of all real numbers or ( ),−∞ ∞ . b. The denominator equals zero when x = 7 or x = –7. These values must be excluded from the domain. domain of g = ( ) ( ) ( ), 7 7,7 7, .−∞ − − ∞  c. Since ( ) 9 27h x x= − contains an even root; the quantity under the radical must be greater than or equal to 0. 9 27 0 9 27 3 x x x − ≥ ≥ ≥ Thus, the domain of h is { 3}x x ≥ , or the interval [ )3, .∞
  • 67. Section 2.6 Combinations of Functions; Composite Functions Copyright © 2018 Pearson Education, Inc. 267 d. Since the denominator of ( )j x contains an even root; the quantity under the radical must be greater than or equal to 0. But that quantity must also not be 0 (because we cannot have division by 0). Thus, 24 3x− must be strictly greater than 0. 24 3 0 3 24 8 x x x − > − > − < Thus, the domain of j is { 8}x x < , or the interval ( ,8).−∞ 2. a. ( )2 2 2 ( )( ) ( ) ( ) 5 1 5 1 6 f g x f x g x x x x x x x + = + = − + − = − + − = − + − domain: ( , )−∞ ∞ b. ( )2 2 2 ( )( ) ( ) ( ) 5 1 5 1 4 f g x f x g x x x x x x x − = − = − − − = − − + = − + − domain: ( , )−∞ ∞ c. ( )( ) ( ) ( ) 2 2 2 3 2 3 2 ( )( ) 5 1 1 5 1 5 5 5 5 fg x x x x x x x x x x x x = − − = − − − = − − + = − − + domain: ( , )−∞ ∞ d. 2 ( ) ( ) ( ) 5 , 1 1 f f x x g g x x x x   =    − = ≠ ± − domain: ( , 1) ( 1,1) (1, )−∞ − − ∞  3. a. ( )( ) ( ) ( ) 3 1 f g x f x g x x x + = + = − + + b. domain of f: 3 0 3 [3, ) x x − ≥ ≥ ∞ domain of g: 1 0 1 [ 1, ) x x + ≥ ≥ − − ∞ The domain of f + g is the set of all real numbers that are common to the domain of f and the domain of g. Thus, the domain of f + g is [3, ∞). 4. a. ( )( ) ( ) ( ) 2 2 2 2 2 ( 2.6 49 3994) ( 0.6 7 2412) 2.6 49 3994 0.6 7 2412 3.2 56 6406 B D x B x D x x x x x x x x x x x + = + = − + + + − + + = − + + − + + = − + + b. ( )( ) ( )( ) 2 2 3.2 56 6406 5 3.2(3) 56(3) 6406 6545.2 B D x x x B D + = − + + + = − + + = The number of births and deaths in the U.S. in 2003 was 6545.2 thousand. c. ( )( )B D x+ overestimates the actual number of births and deaths in 2003 by 7.2 thousand. 5. a. ( ) ( )( ) ( )f g x f g x= ( )2 2 2 5 2 1 6 10 5 5 6 10 5 1 x x x x x x = − − + = − − + = − + b. ( ) ( )( ) ( )g f x g f x= ( ) ( ) 2 2 2 2 2 5 6 5 6 1 2(25 60 36) 5 6 1 50 120 72 5 6 1 50 115 65 x x x x x x x x x x = + − + − = + + − − − = + + − − − = + + c. ( ) 2 ( ) 10 5 1f g x x x= − + ( ) 2 ( 1) 10( 1) 5( 1) 1 10 5 1 16 f g − = − − − + = + + =  6. a. 4 4 ( )( ) 1 1 22 x f g x x x = = ++  b. domain: 1 0, 2 x x x   ≠ ≠ −    or ( ) 1 1 , ,0 0, 2 2     −∞ − − ∞          7. ( ) 2 where ( ) ; ( ) 5h x f g f x x g x x= = = +
  • 68. Chapter 2 Functions and Graphs 268 Copyright © 2018 Pearson Education, Inc. Concept and Vocabulary Check 2.6 1. zero 2. negative 3. ( ) ( )f x g x+ 4. ( ) ( )f x g x− 5. ( ) ( )f x g x⋅ 6. ( ) ( ) f x g x ; ( )g x 7. ( , )−∞ ∞ 8. (2, )∞ 9. (0,3) ; (3, )∞ 10. composition; ( )( )f g x 11. f; ( )g x 12. composition; ( )( )g f x 13. g; ( )f x 14. false 15. false 16. 2 Exercise Set 2.6 1. The function contains neither division nor an even root. The domain ( ),= −∞ ∞ 2. The function contains neither division nor an even root. The domain ( ),= −∞ ∞ 3. The denominator equals zero when 4.x = This value must be excluded from the domain. domain: ( ) ( ),4 4, .−∞ ∞ 4. The denominator equals zero when 5.x = − This value must be excluded from the domain. domain: ( ) ( ), 5 5, .−∞ − − ∞ 5. The function contains neither division nor an even root. The domain ( ),= −∞ ∞ 6. The function contains neither division nor an even root. The domain ( ),= −∞ ∞ 7. The values that make the denominator equal zero must be excluded from the domain. domain: ( ) ( ) ( ), 3 3,5 5,−∞ − − ∞  8. The values that make the denominator equal zero must be excluded from the domain. domain: ( ) ( ) ( ), 4 4,3 3,−∞ − − ∞  9. The values that make the denominators equal zero must be excluded from the domain. domain: ( ) ( ) ( ), 7 7,9 9,−∞ − − ∞  10. The values that make the denominators equal zero must be excluded from the domain. domain: ( ) ( ) ( ), 8 8,10 10,−∞ − − ∞  11. The first denominator cannot equal zero. The values that make the second denominator equal zero must be excluded from the domain. domain: ( ) ( ) ( ), 1 1,1 1,−∞ − − ∞  12. The first denominator cannot equal zero. The values that make the second denominator equal zero must be excluded from the domain. domain: ( ) ( ) ( ), 2 2,2 2,−∞ − − ∞  13. Exclude x for 0x = . Exclude x for 3 1 0 x − = . ( ) 3 1 0 3 1 0 3 0 3 3 x x x x x x x − =   − =    − = − = − = domain: ( ) ( ) ( ),0 0,3 3,−∞ ∞ 
  • 69. Section 2.6 Combinations of Functions; Composite Functions Copyright © 2018 Pearson Education, Inc. 269 14. Exclude x for 0x = . Exclude x for 4 1 0 x − = . ( ) 4 1 0 4 1 0 4 0 4 4 x x x x x x x − =   − =    − = − = − = domain: ( ) ( ) ( ),0 0,4 4,−∞ ∞  15. Exclude x for 1 0x − = . 1 0 1 x x − = = Exclude x for 4 2 0 1x − = − . ( ) ( )( ) ( ) 4 2 0 1 4 1 2 1 0 1 4 2 1 0 4 2 2 0 2 6 0 2 6 3 x x x x x x x x x − = −   − − = − −  − − = − + = − + = − = − = domain: ( ) ( ) ( ),1 1,3 3,−∞ ∞  16. Exclude x for 2 0x − = . 2 0 2 x x − = = Exclude x for 4 3 0 2x − = − . ( ) ( )( ) ( ) 4 3 0 2 4 2 3 2 0 2 4 3 2 0 4 3 6 0 3 10 0 3 10 10 3 x x x x x x x x x − = −   − − = − −  − − = − + = − + = − = − = domain: ( ) 10 10 ,2 2, , 3 3     −∞ ∞          17. The expression under the radical must not be negative. 3 0 3 x x − ≥ ≥ domain: [ )3,∞ 18. The expression under the radical must not be negative. 2 0 2 x x + ≥ ≥ − domain: [ )2,− ∞ 19. The expression under the radical must be positive. 3 0 3 x x − > > domain: ( )3,∞ 20. The expression under the radical must be positive. 2 0 2 x x + > > − domain: ( )2,− ∞ 21. The expression under the radical must not be negative. 5 35 0 5 35 7 x x x + ≥ ≥ − ≥ − domain: [ )7,− ∞ 22. The expression under the radical must not be negative. 7 70 0 7 70 10 x x x − ≥ ≥ ≥ domain: [ )10,∞ 23. The expression under the radical must not be negative. 24 2 0 2 24 2 24 2 2 12 x x x x − ≥ − ≥ − − − ≤ − − ≤ domain: ( ],12−∞
  • 70. Chapter 2 Functions and Graphs 270 Copyright © 2018 Pearson Education, Inc. 24. The expression under the radical must not be negative. 84 6 0 6 84 6 84 6 6 14 x x x x − ≥ − ≥ − − − ≤ − − ≤ domain: ( ],14−∞ 25. The expressions under the radicals must not be negative. 2 0 2 x x − ≥ ≥ and 3 0 3 x x + ≥ ≥ − To make both inequalities true, 2x ≥ . domain: [ )2,∞ 26. The expressions under the radicals must not be negative. 3 0 3 x x − ≥ ≥ and 4 0 4 x x + ≥ ≥ − To make both inequalities true, 3x ≥ . domain: [ )3,∞ 27. The expression under the radical must not be negative. 2 0 2 x x − ≥ ≥ The denominator equals zero when 5.x = domain: [ ) ( )2,5 5, .∞ 28. The expression under the radical must not be negative. 3 0 3 x x − ≥ ≥ The denominator equals zero when 6.x = domain: [ ) ( )3,6 6, .∞ 29. Find the values that make the denominator equal zero and must be excluded from the domain. ( ) ( ) ( )( ) 3 2 2 2 5 4 20 5 4 5 5 4 ( 5)( 2)( 2) x x x x x x x x x x x − − + = − − − = − − = − + − –2, 2, and 5 must be excluded. domain: ( ) ( ) ( ) ( ), 2 2,2 2,5 5,−∞ − − ∞   30. Find the values that make the denominator equal zero and must be excluded from the domain. ( ) ( ) ( )( ) 3 2 2 2 2 9 18 2 9 2 2 9 ( 2)( 3)( 3) x x x x x x x x x x x − − + = − − − = − − = − + − –3, 2, and 3 must be excluded. domain: ( ) ( ) ( ) ( ), 3 3,2 2,3 3,−∞ − − ∞   31. (f + g)(x) = 3x + 2 domain: ( , )−∞ ∞ (f – g)(x) = f(x) – g(x) = (2x + 3) – (x – 1) = x + 4 domain: ( , )−∞ ∞ 2 ( )( ) ( ) ( ) (2 3) ( 1) 2 3 fg x f x g x x x x x = ⋅ = + ⋅ − = + − domain: ( , )−∞ ∞ ( ) 2 3 ( ) ( ) 1 f f x x x g g x x   + = =  −  domain: ( ) ( ),1 1,−∞ ∞ 32. (f + g)(x) = 4x – 2 domain: (–∞, ∞) (f – g)(x) = (3x – 4) – (x + 2) = 2x – 6 domain: (–∞, ∞) (fg)(x) = (3x – 4)(x + 2) = 3x2 + 2x – 8 domain: (–∞, ∞) 3 4 ( ) 2 f x x g x   − =  +  domain: ( ) ( ), 2 2,−∞ − − ∞ 33. 2 ( )( ) 3 5f g x x x+ = + − domain: ( , )−∞ ∞ 2 ( )( ) 3 5f g x x x− = − + − domain: ( , )−∞ ∞ 2 3 2 ( )( ) ( 5)(3 ) 3 15fg x x x x x= − = − domain: ( , )−∞ ∞ 2 5 ( ) 3 f x x g x   − =    domain: ( ) ( ),0 0,−∞ ∞
  • 71. Section 2.6 Combinations of Functions; Composite Functions Copyright © 2018 Pearson Education, Inc. 271 34. 2 ( )( ) 5 – 6f g x x x+ = + domain: (–∞, ∞) 2 ( )( ) –5 – 6f g x x x− = + domain: (–∞, ∞) 2 3 2 ( )( ) ( – 6)(5 ) 5 – 30fg x x x x x= = domain: (–∞, ∞) 2 6 ( ) 5 f x x g x   − =    domain: ( ) ( ),0 0,−∞ ∞ 35. 2 ( )( ) 2 – 2f g x x+ = domain: (–∞, ∞) 2 ( – )( ) 2 – 2 – 4f g x x x= domain: (–∞, ∞) 2 3 2 ( )( ) (2 – – 3)( 1) 2 – 4 – 3 fg x x x x x x x = + = + domain: (–∞, ∞) 2 2 – – 3 ( ) 1 (2 – 3)( 1) 2 – 3 ( 1) f x x x g x x x x x   =  +  + = = + domain: ( ) ( ), 1 1,−∞ − − ∞ 36. 2 ( )( ) 6 – 2f g x x+ = domain: (–∞, ∞) 2 ( )( ) 6 2f g x x x− = − domain: (–∞, ∞) 2 3 2 ( )( ) (6 1)( 1) 6 7 1fg x x x x x x= − − − = − + domain: (–∞, ∞) 2 6 1 ( ) 1 f x x x g x   − − =  −  domain: ( ) ( ),1 1,−∞ ∞ 37. 2 2 ( )( ) (3 ) ( 2 15)f g x x x x+ = − + + − 2 12x= − domain: (–∞, ∞) 2 2 2 ( )( ) (3 ) ( 2 15) 2 2 18 f g x x x x x x − = − − + − = − − + domain: (–∞, ∞) 2 2 4 3 2 ( )( ) (3 )( 2 15) 2 18 6 45 fg x x x x x x x x = − + − = − − + + − domain: (–∞, ∞) 2 2 3 ( ) 2 15 f x x g x x   − =  + −  domain: ( ) ( ) ( ), 5 5,3 3,−∞ − − ∞  38. 2 2 ( )( ) (5 ) ( 4 12)f g x x x x+ = − + + − 4 7x= − domain: (–∞, ∞) 2 2 2 ( )( ) (5 ) ( 4 12) 2 4 17 f g x x x x x x − = − − + − = − − + domain: (–∞, ∞) 2 2 4 3 2 ( )( ) (5 )( 4 12) 4 17 20 60 fg x x x x x x x x = − + − = − − + + − domain: (–∞, ∞) 2 2 5 ( ) 4 12 f x x g x x   − =  + −  domain: ( ) ( ) ( ), 6 6,2 2,−∞ − − ∞  39. ( )( ) 4f g x x x+ = + − domain: [0, )∞ ( )( ) 4f g x x x− = − + domain: [0, )∞ ( )( ) ( 4)fg x x x= − domain: [0, )∞ ( ) 4 f x x g x   =  −  domain: [ ) ( )0,4 4,∞ 40. ( )( ) 5f g x x x+ = + − domain: [0, )∞ ( )( ) 5f g x x x− = − + domain: [0, )∞ ( )( ) ( 5)fg x x x= − domain: [0, )∞ ( ) 5 f x x g x   =  −  domain: [ ) ( )0,5 5,∞
  • 72. Chapter 2 Functions and Graphs 272 Copyright © 2018 Pearson Education, Inc. 41. 1 1 2 2 2 ( )( ) 2 2 x f g x x x x x + + = + + = + = domain: ( ) ( ),0 0,−∞ ∞ 1 1 ( )( ) 2 2f g x x x − = + − = domain: ( ) ( ),0 0,−∞ ∞ 2 2 1 1 2 1 2 1 ( )( ) 2 x fg x x x x x x +  = + ⋅ = + =    domain: ( ) ( ),0 0,−∞ ∞ 1 1 2 1 ( ) 2 2 1x x f x x x g x +    = = + ⋅ = +       domain: ( ) ( ),0 0,−∞ ∞ 42. 1 1 ( )( ) 6 6f g x x x + = − + = domain: ( ) ( ),0 0,−∞ ∞ 1 1 2 6 2 ( )( ) 6 – 6 x f g x x x x x − − = − = − = domain: ( ) ( ),0 0,−∞ ∞ 2 2 1 1 6 1 6 1 ( )( ) 6 x fg x x x x x x −  = − ⋅ = − =    domain: ( ) ( ),0 0,−∞ ∞ 1 1 6 1 ( ) 6 6 1x x f x x x g x −    = = − ⋅ = −       domain: ( ) ( ),0 0,−∞ ∞ 43. ( )( ) ( ) ( )f g x f x g x+ = + 2 2 2 5 1 4 2 9 9 9 1 9 x x x x x x + − = + − − − = − domain: ( ) ( ) ( ), 3 3,3 3,−∞ − − ∞  2 2 2 ( )( ) ( ) ( ) 5 1 4 2 9 9 3 9 1 3 f g x f x g x x x x x x x x − = − + − = − − − + = − = − domain: ( ) ( ) ( ), 3 3,3 3,−∞ − − ∞  ( ) 2 2 22 ( )( ) ( ) ( ) 5 1 4 2 9 9 (5 1)(4 2) 9 fg x f x g x x x x x x x x = ⋅ + − = ⋅ − − + − = − domain: ( ) ( ) ( ), 3 3,3 3,−∞ − − ∞  2 2 2 2 5 1 9( ) 4 2 9 5 1 9 4 29 5 1 4 2 x f xx xg x x x xx x x +   −=  −  − + − = ⋅ −− + = − The domain must exclude –3, 3, and any values that make 4 2 0.x − = 4 2 0 4 2 1 2 x x x − = = = domain: ( ) ( ) ( ) ( )1 1 2 2 , 3 3, ,3 3,−∞ − − ∞  
  • 73. Section 2.6 Combinations of Functions; Composite Functions Copyright © 2018 Pearson Education, Inc. 273 44. ( )( ) ( ) ( )f g x f x g x+ = + 2 2 2 3 1 2 4 25 25 5 3 25 x x x x x x + − = + − − − = − domain: ( ) ( ) ( ), 5 5,5 5,−∞ − − ∞  2 2 2 ( )( ) ( ) ( ) 3 1 2 4 25 25 5 25 1 5 f g x f x g x x x x x x x x − = − + − = − − − + = − = − domain: ( ) ( ) ( ), 5 5,5 5,−∞ − − ∞  ( ) 2 2 22 ( )( ) ( ) ( ) 3 1 2 4 25 25 (3 1)(2 4) 25 fg x f x g x x x x x x x x = ⋅ + − = ⋅ − − + − = − domain: ( ) ( ) ( ), 5 5,5 5,−∞ − − ∞  2 2 2 2 3 1 25( ) 2 4 25 3 1 25 2 425 3 1 2 4 x f xx xg x x x xx x x +   −=  −  − + − = ⋅ −− + = − The domain must exclude –5, 5, and any values that make 2 4 0.x − = 2 4 0 2 4 2 x x x − = = = domain: ( ) ( ) ( ) ( ), 5 5,2 2,5 5,−∞ − − ∞   45. ( )( ) ( ) ( )f g x f x g x+ = + 2 2 8 6 2 3 8 ( 3) 6( 2) ( 2)( 3) ( 2)( 3) 8 24 6 12 ( 2)( 3) ( 2)( 3) 8 30 12 ( 2)( 3) x x x x x x x x x x x x x x x x x x x x x = + − + + − = + − + − + + − = + − + − + + − = − + domain: ( ) ( ) ( ), 3 3,2 2,−∞ − − ∞  ( )( ) ( ) ( )f g x f x g x+ = − 2 2 8 6 2 3 8 ( 3) 6( 2) ( 2)( 3) ( 2)( 3) 8 24 6 12 ( 2)( 3) ( 2)( 3) 8 18 12 ( 2)( 3) x x x x x x x x x x x x x x x x x x x x x = − − + + − = − − + − + + − = − − + − + + + = − + domain: ( ) ( ) ( ), 3 3,2 2,−∞ − − ∞  ( )( ) ( ) ( ) 8 6 2 3 48 ( 2)( 3) fg x f x g x x x x x x x = ⋅ = ⋅ − + = − + domain: ( ) ( ) ( ), 3 3,2 2,−∞ − − ∞  8 2( ) 6 3 8 3 2 6 4 ( 3) 3( 2) x f xx g x x x x x x x   −=    + + = ⋅ − + = − The domain must exclude –3, 2, and any values that make 3( 2) 0.x − = 3( 2) 0 3 6 0 3 6 2 x x x x − = − = = = domain: ( ) ( ) ( ), 3 3,2 2,−∞ − − ∞ 
  • 74. Chapter 2 Functions and Graphs 274 Copyright © 2018 Pearson Education, Inc. 46. ( )( ) ( ) ( )f g x f x g x+ = + 2 2 9 7 4 8 9 ( 8) 7( 4) ( 4)( 8) ( 4)( 8) 9 72 7 28 ( 4)( 8) ( 4)( 8) 9 79 28 ( 4)( 8) x x x x x x x x x x x x x x x x x x x x x = + − + + − = + − + − + + − = + − + − + + − = − + domain: ( ) ( ) ( ), 8 8,4 4,−∞ − − ∞  ( )( ) ( ) ( )f g x f x g x+ = − 2 2 9 7 4 8 9 ( 8) 7( 4) ( 4)( 8) ( 4)( 8) 9 72 7 28 ( 4)( 8) ( 4)( 8) 9 65 28 ( 4)( 8) x x x x x x x x x x x x x x x x x x x x x = − − + + − = − − + − + + − = − − + − + + + = − + domain: ( ) ( ) ( ), 8 8,4 4,−∞ − − ∞  ( )( ) ( ) ( ) 9 7 4 8 63 ( 4)( 8) fg x f x g x x x x x x x = ⋅ = ⋅ − + = − + domain: ( ) ( ) ( ), 8 8,4 4,−∞ − − ∞  9 4( ) 7 8 9 8 4 7 9 ( 8) 7( 4) x f xx g x x x x x x x   −=    + + = ⋅ − + = − The domain must exclude –8, 4, and any values that make 7( 4) 0.x − = 7( 4) 0 7 28 0 7 28 4 x x x x − = − = = = domain: ( ) ( ) ( ), 8 8,4 4,−∞ − − ∞  47. ( )( ) 4 1f g x x x+ = + + − domain: [1, )∞ ( )( ) 4 1f g x x x− = + − − domain: [1, )∞ 2 ( )( ) 4 1 3 4fg x x x x x= + ⋅ − = + − domain: [1, )∞ 4 ( ) 1 f x x g x   + =  −  domain: (1, )∞ 48. ( )( ) 6 3f g x x x+ = + + − domain: [3, ∞) ( )( ) 6 3f g x x x− = + − − domain: [3, ∞) 2 ( )( ) 6 3 3 18fg x x x x x= + ⋅ − = + − domain: [3, ∞) 6 ( ) 3 f x x g x   + =  −  domain: (3, ∞) 49. ( )( ) 2 2f g x x x+ = − + − domain: {2} ( )( ) 2 2f g x x x− = − − − domain: {2} 2 ( )( ) 2 2 4 4fg x x x x x= − ⋅ − = − + − domain: {2} 2 ( ) 2 f x x g x   − =  −  domain: ∅ 50. ( )( ) 5 5f g x x x+ = − + − domain: {5} ( )( ) 5 5f g x x x− = − − − domain: {5} 2 ( )( ) 5 5 10 25fg x x x x x= − ⋅ − = − + − domain: {5} 5 ( ) 5 f x x g x   − =  −  domain: ∅
  • 75. Section 2.6 Combinations of Functions; Composite Functions Copyright © 2018 Pearson Education, Inc. 275 51. f(x) = 2x; g(x) = x + 7 a. ( )( ) 2( 7) 2 14f g x x x= + = + b. ( )( ) 2 7g f x x= + c. ( )(2) 2(2) 14 18f g = + = 52. f(x) = 3x; g(x) = x – 5 a. ( )( ) 3( 5) 3 15f g x x x= − = − b. ( )( ) 3 – 5g f x x= c. ( )(2) 3(2) 15 9f g = − = − 53. f(x) = x + 4; g(x) = 2x + 1 a. ( )( ) (2 1) 4 2 5f g x x x= + + = + b. ( )( ) 2( 4) 1 2 9g f x x x= + + = + c. ( )(2) 2(2) 5 9f g = + = 54. f(x) = 5x + 2 ; g(x) = 3x – 4 a. ( )( ) 5(3 4) 2 15 18f g x x x= − + = − b. ( )( ) 3(5 2) 4 15 2g f x x x= + − = + c. ( )(2) 15(2) 18 12f g = − = 55. f(x) = 4x – 3; 2 ( ) 5 2g x x= − a. 2 2 ( )( ) 4(5 2) 3 20 11 f g x x x = − − = −  b. 2 2 2 ( )( ) 5(4 3) 2 5(16 24 9) 2 80 120 43 g f x x x x x x = − − = − + − = − +  c. 2 ( )(2) 20(2) 11 69f g = − = 56. 2 ( ) 7 1; ( ) 2 – 9f x x g x x= + = a. 2 2 ( )( ) 7(2 9) 1 14 62f g x x x= − + = − b. 2 2 2 ( )( ) 2(7 1) 9 2(49 14 1) 9 98 28 7 g f x x x x x x = + − = + + − = + −  c. 2 ( )(2) 14(2) 62 6f g = − = − 57. 2 2 ( ) 2; ( ) 2f x x g x x= + = − a. 2 2 4 2 4 2 ( )( ) ( 2) 2 4 4 2 4 6 f g x x x x x x = − + = − + + = − +  b. 2 2 4 2 4 2 ( )( ) ( 2) 2 4 4 2 4 2 g f x x x x x x = + − = + + − = + +  c. 4 2 ( )(2) 2 4(2) 6 6f g = − + = 58. 2 2 ( ) 1; ( ) 3f x x g x x= + = − a. 2 2 4 2 4 2 ( )( ) ( 3) 1 6 9 1 6 10 f g x x x x x x = − + = − + + = − +  b. 2 2 4 2 4 2 ( )( ) ( 1) 3 2 1 3 2 2 g f x x x x x x = + − = + + − = + −  c. 4 2 ( )(2) 2 6(2) 10 2f g = − + = 59. 2 ( ) 4 ; ( ) 2 5f x x g x x x= − = + + a. ( )2 2 2 ( )( ) 4 2 5 4 2 5 2 1 f g x x x x x x x = − + + = − − − = − − −  b. ( ) ( ) 2 2 2 2 ( )( ) 2 4 4 5 2(16 8 ) 4 5 32 16 2 4 5 2 17 41 g f x x x x x x x x x x x = − + − + = − + + − + = − + + − + = − +  c. 2 ( )(2) 2(2) 2 1 11f g = − − − = −
  • 76. Chapter 2 Functions and Graphs 276 Copyright © 2018 Pearson Education, Inc. 60. 2 ( ) 5 2; ( ) 4 1f x x g x x x= − = − + − a. ( )2 2 2 ( )( ) 5 4 1 2 5 20 5 2 5 20 7 f g x x x x x x x = − + − − = − + − − = − + −  b. ( ) ( ) 2 2 2 2 ( )( ) 5 2 4 5 2 1 (25 20 4) 20 8 1 25 20 4 20 8 1 25 40 13 g f x x x x x x x x x x x = − − + − − = − − + + − − = − + − + − − = − + −  c. 2 ( )(2) 5(2) 20(2) 7 13f g = − + − = 61. ( ) ;f x x= g(x) = x – 1 a. ( )( ) 1f g x x= − b. ( )( ) 1g f x x= − c. ( )(2) 2 1 1 1f g = − = = 62. ( ) ; ( ) 2f x x g x x= = + a. ( )( ) 2f g x x= + b. ( )( ) 2g f x x= + c. ( )(2) 2 2 4 2f g = + = = 63. f(x) = 2x – 3; 3 ( ) 2 x g x + = a. 3 ( )( ) 2 3 2 3 3 x f g x x x +  = −    = + − =  b. (2 3) 3 2 ( )( ) 2 2 x x g f x x − + = = = c. ( )(2) 2f g = 64. 3 ( ) 6 3; ( ) 6 x f x x g x + = − = a. 3 ( )( ) 6 3 3 3 6 x f g x x x +  = − = + − =     b. 6 3 3 6 ( )( ) 6 6 x x g f x x − + = = = c. ( )(2) 2f g = 65. 1 1 ( ) ; ( )f x g x x x = = a. 1 1 ( )( ) x f g x x= = b. 1 1 ( )( ) x g f x x= = c. ( )(2) 2f g = 66. 2 2 ( ) ; ( )f x g x x x = = a. 2 2 ( )( ) x f g x x= = b. 2 2 ( )( ) x g f x x= = c. ( )(2) 2f g = 67. a. 1 2 ( )( ) , 0 1 3 f g x f x x x   = = ≠    +  ( ) 2( ) 1 3 2 1 3 x x x x x =   +    = + b. We must exclude 0 because it is excluded from g. We must exclude 1 3 − because it causes the denominator of f g to be 0. domain: ( ) 1 1 , ,0 0, . 3 3     −∞ − − ∞         
  • 77. Section 2.6 Combinations of Functions; Composite Functions Copyright © 2018 Pearson Education, Inc. 277 68. a. 1 5 5 ( ) 1 1 44 x f g x f x x x   = = =  +  +  b. We must exclude 0 because it is excluded from g. We must exclude 1 4 − because it causes the denominator of f g to be 0. domain: ( ) 1 1 , ,0 0, . 4 4     −∞ − − ∞          69. a. 4 4 ( )( ) 4 1 xf g x f x x   = =    +  ( ) 4 ( ) 4 1 4 , 4 4 x x x x x x      =   +    = ≠ − + b. We must exclude 0 because it is excluded from g. We must exclude 4− because it causes the denominator of f g to be 0. domain: ( ) ( ) ( ), 4 4,0 0, .−∞ − − ∞  70. a. ( ) 6 6 6 6 6 55 xf g x f x x x   = = =  +  +  b. We must exclude 0 because it is excluded from g. We must exclude 6 5 − because it causes the denominator of f g to be 0. domain: ( ) 6 6 , ,0 0, . 5 5     −∞ − − ∞          71. a. ( ) ( )2 2f g x f x x= − = − b. The expression under the radical in f g must not be negative. 2 0 2 x x − ≥ ≥ domain: [ )2, .∞ 72. a. ( ) ( )3 3f g x f x x= − = − b. The expression under the radical in f g must not be negative. 3 0 3 x x − ≥ ≥ domain: [ )3, .∞ 73. a. ( )( ) ( 1 )f g x f x= − ( ) 2 1 4 1 4 5 x x x = − + = − + = − b. The domain of f g must exclude any values that are excluded from g. 1 0 1 1 x x x − ≥ − ≥ − ≤ domain: (−•, 1]., 1]. 74. a. ( )( ) ( 2 )f g x f x= − ( ) 2 2 1 2 1 3 x x x = − + = − + = − b. The domain of f g must exclude any values that are excluded from g. 2 0 2 2 x x x − ≥ − ≥ − ≤ domain: (−•, 2]., 2]. 75. ( )4 ( ) 3 1f x x g x x= = − 76. ( ) ( )3 ; 2 5f x x g x x= = − 77. ( ) ( ) 23 9f x x g x x= = − 78. ( ) ( ) 2 ; 5 3f x x g x x= = + 79. f(x) = |x| g(x) = 2x – 5 80. f (x) = |x|; g(x) = 3x – 4 81. 1 ( ) ( ) 2 3f x g x x x = = − 82. ( ) ( ) 1 ; 4 5f x g x x x = = +
  • 78. Chapter 2 Functions and Graphs 278 Copyright © 2018 Pearson Education, Inc. 83. ( )( ) ( ) ( )3 3 3 4 1 5f g f g+ − = − + − = + = 84. ( )( ) ( ) ( )2 2 2 2 3 1g f g f− − = − − − = − = − 85. ( )( ) ( ) ( ) ( )( )2 2 2 1 1 1fg f g= = − = − 86. ( ) ( ) ( ) 3 0 3 0 3 3 gg f f   = = =  −  87. The domain of f g+ is [ ]4,3− . 88. The domain of f g is ( )4,3− . 89. The graph of f g+ 90. The graph of f g− 91. ( )( ) ( ) ( )1 ( 1) 3 1f g f g f− = − = − = 92. ( )( ) ( ) ( )1 (1) 5 3f g f g f= = − = 93. ( )( ) ( ) ( )0 (0) 2 6g f g f g= = = − 94. ( )( ) ( ) ( )1 ( 1) 1 5g f g f g− = − = = − 95. ( )( ) 7f g x = ( )2 2 2 2 2 2 3 8 5 7 2 6 16 5 7 2 6 11 7 2 6 4 0 3 2 0 ( 1)( 2) 0 x x x x x x x x x x x x − + − = − + − = − + = − + = − + = − − = 1 0 or 2 0 1 2 x x x x − = − = = = 96. ( )( ) 5f g x = − ( )2 2 2 2 2 1 2 3 1 5 1 6 2 2 5 6 2 3 5 6 2 8 0 3 4 0 (3 4)( 1) 0 x x x x x x x x x x x x − + − = − − − + = − − − + = − − − + = + − = + − = 3 4 0 or 1 0 3 4 1 4 3 x x x x x + = − = = − = = − 97. a. ( )( ) ( ) ( ) (1.48 115.1) (1.44 120.9) 2.92 236 M F x M x F x x x x + = + = + + + = + b. ( )( ) 2.92 236 ( )(25) 2.92(25) 236 309 M F x x M F + = + + = + = The total U.S. population in 2010 was 309 million. c. It is the same. 98. a. ( )( ) ( ) ( ) (1.44 120.9) (1.48 115.1) 0.04 5.8 F M x F x M x x x x − = − = + − + = − + b. ( )( ) 0.04 5.8 ( )(25) 0.04(25) 5.8 4.8 F M x x F M − = − + − = − + = In 2010 there were 4.8 million more women than men. c. The result in part (b) underestimates the actual difference by 0.2 million.
  • 79. Section 2.6 Combinations of Functions; Composite Functions Copyright © 2018 Pearson Education, Inc. 279 99. ( )(20,000) 65(20,000) (600,000 45(20,000)) 200,000 R C− = − + = − The company lost $200,000 since costs exceeded revenues. (R – C)(30,000) = 65(30,000) – (600,000 + 45(30,000)) = 0 The company broke even. (R – C)(40,000) = 65(40,000) – (600,000 + 45(40,000)) = 200,000 The company gained $200,000 since revenues exceeded costs. 100. a. The slope for f is -0.44 This is the decrease in profits for the first store for each year after 2012. b. The slope of g is 0.51 This is the increase in profits for the second store for each year after 2012. c. f + g = -.044x + 13.62 + 0.51x + 11.14 = 0.07x + 24.76 The slope for f + g is 0.07 This is the profit for the two stores combined for each year after 2012. 101. a. f gives the price of the computer after a $400 discount. g gives the price of the computer after a 25% discount. b. ( )( ) 0.75 400f g x x= − This models the price of a computer after first a 25% discount and then a $400 discount. c. ( )( ) 0.75( 400)g f x x= − This models the price of a computer after first a $400 discount and then a 25% discount. d. The function f g models the greater discount, since the 25% discount is taken on the regular price first. 102. a. f gives the cost of a pair of jeans for which a $5 rebate is offered. g gives the cost of a pair of jeans that has been discounted 40%. b. ( )( ) 0.6 5f g x x= − The cost of a pair of jeans is 60% of the regular price minus a $5 rebate. c. ( )( ) ( )0.6 5g f x x= − = 0.6x – 3 The cost of a pair of jeans is 60% of the regular price minus a $3 rebate. d. f g because of a $5 rebate. 103. – 107. Answers will vary. 108. When your trace reaches x = 0, the y value disappears because the function is not defined at x = 0. 109. ( )( ) 2f g x x= − The domain of g is [ )0,∞ . The expression under the radical in f g must not be negative. 2 0 2 2 4 x x x x − ≥ − ≥ − ≤ ≤ domain: [ ]0,4 110. makes sense 111. makes sense 112. does not make sense; Explanations will vary. Sample explanation: It is common that f g and g f are not the same.
  • 80. Chapter 2 Functions and Graphs 280 Copyright © 2018 Pearson Education, Inc. 113. does not make sense; Explanations will vary. Sample explanation: The diagram illustrates ( ) 2 ( ) 4.g f x x= + 114. false; Changes to make the statement true will vary. A sample change is: ( )( ) ( ) ( ) 2 2 2 2 2 4 4 4 4 4 8 f g x f x x x x = − = − − = − − = −  115. false; Changes to make the statement true will vary. A sample change is: ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) 2 ; 3 ( ) 3 2(3 ) 6 ( ) 3 2 6 f x x g x x f g x f g x f x x x g f x g f x g f x x x = = = = = = = = = =   116. false; Changes to make the statement true will vary. A sample change is: ( ) ( )( ) ( )( ) 4 4 7 5f g f g f= = = 117. true 118. ( )( ) ( )( )f g x f g x= −  ( ( )) ( ( )) since is even ( ( )) ( ( )) so is even f g x f g x g f g x f g x f g = − =  119. Answers will vary. 120. 1 3 1 5 2 4 x x x− + − = − ( ) ( ) 1 3 20 20 1 5 2 4 4 1 10 3 20 5 4 4 10 30 20 5 6 34 20 5 6 5 20 34 1 54 54 x x x x x x x x x x x x x x x − +    − = −        − − + = − − − − = − − − = − − + = + − = = − The solution set is {-54}. 121. Let x = the number of bridge crossings at which the costs of the two plans are the same.  Discount PassNo Pass 6 30 4 6 4 30 2 30 15 x x x x x x = + − = = =  The two plans cost the same for 15 bridge crossings. The monthly cost is ( )$6 15 $90.= 122. ( ) Ax By Cy D By Cy D Ax y B C D Ax D Ax y B C + = + − = − − = − − = − 123. {(4, 2),(1, 1),(1,1),(4,2)}− − The element 1 in the domain corresponds to two elements in the range. Thus, the relation is not a function. 124. 5 4 5 ( ) 4 5 4 4 5 ( 4) 5 5 4 x y y x y y xy y xy y y x y x = +   = +    = + − = − = = − 125. 2 2 2 1 1 1 1 1 x y x y x y x y y x = − + = + = + = = +
  • 81. Section 2.7 Inverse Functions Copyright © 2018 Pearson Education, Inc. 281 Section 2.7 Check Point Exercises 1. ( ) 7 ( ) 4 7 4 7 7 x f g x x x +  = −    = + − = ( ) (4 7) 7 ( ) 4 4 7 7 4 4 4 x g f x x x x − + = − + = = = ( ) ( )( ) ( )f g x g f x x= = 2. ( ) 2 7f x x= + Replace ( )f x with y: 2 7y x= + Interchange x and y: 2 7x y= + Solve for y: 2 7 7 2 7 2 x y x y x y = + − = − = Replace y with 1 ( )f x− : 1 7 ( ) 2 x f x− − = 3. 3 ( ) 4 1f x x= − Replace ( )f x with y: 3 4 1y x= − Interchange x and y: 3 4 1x y= − Solve for y: 3 3 3 3 4 1 1 4 1 4 1 4 x y x y x y x y = − + = + = + = Replace y with 1 ( )f x− : 1 3 1 ( ) 4 x f x− + = Alternative form for answer: 3 1 3 3 33 3 3 3 3 3 1 1 ( ) 4 4 1 2 2 2 4 2 8 2 2 2 x x f x x x x − + + = = + + = ⋅ = + = 4. 1 ( ) , 5 5 x f x x x + = ≠ − Replace ( )f x with y: 1 5 x y x + = − Interchange x and y: 1 5 y x y + = − Solve for y: ( ) 1 5 5 1 5 1 5 1 ( 1) 5 1 5 1 1 y x y x y y xy x y xy y x y x x x y x + = − − = + − = + − = + − = + + = − Replace y with 1 ( )f x− : 1 5 1 ( ) 1 x f x x − + = − 5. The graphs of (b) and (c) pass the horizontal line test and thus have an inverse. 6. Find points of 1 f − . ( )f x 1 ( )f x− ( 2, 2)− − ( 2, 2)− − ( 1,0)− (0, 1)− (1,2) (2,1)
  • 82. Chapter 2 Functions and Graphs 282 Copyright © 2018 Pearson Education, Inc. 7. 2 ( ) 1f x x= + Replace ( )f x with y: 2 1y x= + Interchange x and y: 2 1x y= + Solve for y: 2 2 1 1 1 x y x y x y = + − = − = Replace y with 1 ( )f x− : 1 ( ) 1f x x− = − Concept and Vocabulary Check 2.7 1. inverse 2. x; x 3. horizontal; one-to-one 4. y x= Exercise Set 2.7 1. ( ) 4 ; ( ) 4 ( ( )) 4 4 4 ( ( )) 4 x f x x g x x f g x x x g f x x = =   = =    = = f and g are inverses. 2. ( ) ( ) ( ) 6 ; ( ) 6 ( ) 6 6 6 ( ) 6 x f x x g x x f g x x x g f x x = =   = =    = = f and g are inverses. 3. f(x) = 3x + 8; 8 ( ) 3 x g x − = 8 ( ( )) 3 8 8 8 3 (3 8) 8 3 ( ( )) 3 3 x f g x x x x x g f x x −  = + = − + =    + − = = = f and g are inverses. 4. ( ) ( ) 9 ( ) 4 9; ( ) 4 9 ( ) 4 9 9 9 4 (4 9) 9 4 ( ) 4 4 x f x x g x x f g x x x x x g f x x − = + = −  = + = − + =    + − = = = f and g are inverses. 5. f(x) = 5x – 9; 5 ( ) 9 x g x + = 5 ( ( )) 5 9 9 5 25 9 9 5 56 9 5 9 5 5 4 ( ( )) 9 9 x f g x x x x x g f x +  = −    + = − − = − + − = = f and g are not inverses. 6. ( ) ( ) 3 ( ) 3 7; ( ) 7 3 3 9 3 40 ( ) 3 7 7 7 7 7 3 7 3 3 4 ( ) 7 7 x f x x g x x x x f g x x x g f x + = − = + + −  = − = − =    − + − = = f and g are not inverses. 7. 3 3 3 3 ( ) ; ( ) 4 4 3 3 ( ( )) 4 4x x f x g x x x f g x x = = + − = = = + − 3 4 3 ( ( )) 4 4 3 4 3 4 4 x g f x x x x − = + −  = ⋅ +    = − + = f and g are inverses.
  • 83. Section 2.7 Inverse Functions Copyright © 2018 Pearson Education, Inc. 283 8. ( ) ( ) 2 2 5 2 2 ( ) ; ( ) 5 5 2 2 ( ( )) 5 5 2 2 5 ( ) 5 2 5 5 5 2 x x f x g x x x x f g x x x g f x x x − = = + − = = = + − −  = + = + = − + =    f and g are inverses. 9. ( ) ; ( ) ( ( )) ( ) ( ( )) ( ) f x x g x x f g x x x g f x x x = − = − = − − = = − − = f and g are inverses. 10. ( ) ( ) ( ) 33 3 33 3 3 3 ( ) 4; ( ) 4 ( ) 4 4 ( ) 4 4 4 4 f x x g x x f g x x x x g f x x x x = − = + = + − = = = − + = − + = f and g are inverses. 11. a. f(x) = x + 3 y = x + 3 x = y + 3 y = x – 3 1 ( ) 3f x x− = − b. 1 1 ( ( )) 3 3 ( ( )) 3 3 f f x x x f f x x x − − = − + = = + − = 12. a. 1 ( ) 5 5 5 5 ( ) 5 f x x y x x y y x f x x− = + = + = + = − = − b. ( ) ( ) 1 1 ( ) 5 5 ( ) 5 5 f f x x x f f x x x − − = − + = = + − = 13. a. 1 ( ) 2 2 2 2 ( ) 2 f x x y x x y x y x f x− = = = = = b. 1 1 ( ( )) 2 2 2 ( ( )) 2 x f f x x x f f x x − −   = =    = = 14. a. 1 ( ) 4 4 4 4 ( ) 4 f x x y x x y x y x f x− = = = = = b. ( ) ( ) 1 1 ( ) 4 4 4 ( ) 4 x f f x x x f f x x − −   = =    = = 15. a. 1 ( ) 2 3 2 3 2 3 3 2 3 2 3 ( ) 2 f x x y x x y x y x y x f x− = + = + = + − = − = − = b. 1 1 3 ( ( )) 2 3 2 3 3 2 3 3 2 ( ( )) 2 2 x f f x x x x x f f x x − − −  = +    = − + = + − = = = 16. a. ( ) 3 1 3 1 3 1 1 3 f x x y x x y x y = − = − = − + = 1 1 3 1 ( ) 3 x y x f x− + = + = b. ( ) ( ) 1 1 1 ( ) 3 1 1 1 3 3 1 1 3 ( ) 3 3 x f f x x x x x f f x x − − +  = − = + − =    − + = = =
  • 84. Chapter 2 Functions and Graphs 284 Copyright © 2018 Pearson Education, Inc. 3 3 3 3 3 1 3 ( ) 2 2 2 2 2 ( ) 2 . . f x x y x x y x y y x f x x− = + = + = + − = = − = − 17 a b. ( ) 3 1 3 ( ( )) 2 2 2 2 f f x x x x − = − + = − + = 3 31 3 3 ( ( )) 2 2f f x x x x− = + − = = 18. a. 3 3 3 3 3 1 3 ( ) 1 1 1 1 1 ( ) 1 f x x y x x y x y y x f x x− = − = − = − + = = + = + b. ( ) 3 1 3 3 31 3 3 ( ( )) 1 1 1 1 ( ( )) 1 1 f f x x x x f f x x x x − − = + − = + − = = − + = = 19. a. 3 3 3 3 3 1 3 ( ) ( 2) ( 2) ( 2) 2 2 ( ) 2 f x x y x x y x y y x f x x− = + = + = + = + = − = − b. ( ) ( ) 3 3 1 3 3 1 33 ( ( )) 2 2 ( ( )) ( 2) 2 2 2 f f x x x x f f x x x x − − = − + = = = + − = + − = 20. a. 3 3 3 3 3 ( ) ( 1) ( 1) ( 1) 1 1 f x x y x x y x y y x = − = − = − = − = + b. ( ) ( ) ( ) ( ) 3 3 1 3 3 1 33 ( ) 1 1 ( ) ( 1 1 1 1 f f x x x x f f x x x x − − = + − = = = − + = − + = 21. a. 1 1 ( ) 1 1 1 1 1 ( ) f x x y x x y xy y x f x x − = = = = = = b. 1 1 1 ( ( )) 1 1 ( ( )) 1 f f x x x f f x x x − − = = = = 22. a. 1 2 ( ) 2 2 2 2 2 ( ) f x x y x x y xy y x f x x − = = = = = = b. 21( ( )) 2 2 2 x f f x x x − = = ⋅ = ( ) 21( ) 2 2 2 x f f x x x − = = ⋅ =
  • 85. Section 2.7 Inverse Functions Copyright © 2018 Pearson Education, Inc. 285 23. a. 2 1 2 ( ) ( ) , 0 f x x y x x y y x f x x x− = = = = = ≥ b. 1 2 1 2 ( ( )) for 0. ( ( )) ( ) f f x x x x x f f x x x − − = = = ≥ = = 24. a. 3 3 3 3 1 3 ( ) ( ) f x x y x x y y x f x x− = = = = = b. ( ) ( ) ( ) 31 3 3 1 3 ( ) ( ) f f x x x f f x x x − − = = = = 25. a. 4 ( ) 2 x f x x + = − ( ) 1 4 2 4 2 2 4 2 4 1 2 4 2 4 1 2 4 ( ) , 1 1 x y x y x y xy x y xy y x y x x x y x x f x x x − + = − + = − − = + − = + − = + + = − + = ≠ − b. ( ) ( ) ( ) 1 2 4 4 1( ) 2 4 2 1 2 4 4 1 2 4 2 1 6 6 x xf f x x x x x x x x x − + + −= + − − + + − = + − − = = ( ) ( ) ( ) 1 4 2 4 2 ( ) 4 1 2 2 8 4 2 4 2 6 6 x x f f x x x x x x x x x − +  + − = + − − + + − = + − − = = 26. a. 5 ( ) 6 x f x x + = − ( ) 1 5 6 5 6 6 5 6 5 1 6 5 6 5 1 6 5 ( ) , 1 1 x y x y x y xy x y xy y x y x x x y x x f x x x − + = − + = − − = + − = + − = + + = − + = ≠ −
  • 86. Chapter 2 Functions and Graphs 286 Copyright © 2018 Pearson Education, Inc. b. ( ) ( ) ( ) 1 6 5 5 1( ) 6 5 6 1 6 5 5 1 6 5 6 1 11 11 x xf f x x x x x x x x x − + + −= + − − + + − = + − − = = ( ) ( ) ( ) 1 5 6 5 6 ( ) 5 1 6 6 30 5 6 5 6 11 11 x x f f x x x x x x x x x − +  + − = + − − + + − = + − − = = 27. a. ( ) 2 1 3 2 1 3 2 1 3 x f x x x y x y x y + = − + = − + = − x(y – 3) = 2y + 1 xy – 3x = 2y + 1 xy – 2y = 3x + 1 y(x – 2) = 3x + 1 3 1 2 x y x + = − ( )1 3 1 2 x f x x − + = − b. ( )–1 3 12 1 2( ( )) 3 1 3 2 x xf f x x x + + −= + − − ( ) ( ) 2 3 1 2 6 2 2 3 1 3 2 3 1 3 6 x x x x x x x x + + − + + − = = + − − + − + 7 7 x x= = ( ) ( ) ( ) 1 2 13 1 3( ( )) 2 1 2 3 3 2 1 3 2 1 2 3 6 3 3 7 2 1 2 6 7 x xf f x x x x x x x x x x x x x − + + −= + − − + + − = + − − + + − = = = + − + 28. a. ( ) 2 3 1 x f x x − = + 2 3 1 x y x − = + 2 3 1 y x y − = + xy + x = 2y – 3 y(x – 2) = –x – 3 3 2 x y x − − = − ( )1 3 2 x f x x − − − = − , 2x ≠ b. ( )( ) ( )1 32 3 2 3 1 2 x xf f x x x − − − − −= − − + − 2 6 3 6 5 3 2 5 x x x x x x − − − + − = = = − − + − − ( )1 2 3 3 1( ( )) 2 3 2 1 x xf f x x x − −− − += − − + 2 3 3 3 5 2 3 2 2 5 x x x x x x − + − − − = = = − − − − 29. The function fails the horizontal line test, so it does not have an inverse function. 30. The function passes the horizontal line test, so it does have an inverse function.
  • 87. Section 2.7 Inverse Functions Copyright © 2018 Pearson Education, Inc. 287 31. The function fails the horizontal line test, so it does not have an inverse function. 32. The function fails the horizontal line test, so it does not have an inverse function. 33. The function passes the horizontal line test, so it does have an inverse function. 34. The function passes the horizontal line test, so it does have an inverse function. 35. 36. 37. 38. 39. a. ( ) 2 1f x x= − 1 2 1 2 1 1 2 1 2 1 ( ) 2 y x x y x y x y x f x− = − = − + = + = + = b. c. domain of f : ( ),−∞ ∞ range of f : ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 40. a. ( ) 2 3f x x= − 1 2 3 2 3 3 2 3 2 3 ( ) 2 y x x y x y x y x f x− = − = − + = + = + = b. c. domain of f : ( ),−∞ ∞ range of f : ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞
  • 88. Chapter 2 Functions and Graphs 288 Copyright © 2018 Pearson Education, Inc. 41. a. 2 ( ) 4f x x= − 2 2 2 1 4 4 4 4 ( ) 4 y x x y x y x y f x x− = − = − + = + = = + b. c. domain of f : [ )0,∞ range of f : [ )4,− ∞ domain of 1 f − : [ )4,− ∞ range of 1 f − : [ )0,∞ 42. a. 2 ( ) 1f x x= − 2 2 2 1 1 1 1 1 ( ) 1 y x x y x y x y f x x− = − = − + = − + = = − + b. c. domain of f : ( ],0−∞ range of f : [ )1,− ∞ domain of 1 f − : [ )1,− ∞ range of 1 f − : ( ],0−∞ 43. a. ( ) 2 ( ) 1f x x= − ( ) ( ) 2 2 1 1 1 1 1 ( ) 1 y x x y x y x y f x x− = − = − − = − − + = = − b. c. domain of f : ( ],1−∞ range of f : [ )0,∞ domain of 1 f − : [ )0,∞ range of 1 f − : ( ],1−∞ 44. a. ( ) 2 ( ) 1f x x= − ( ) ( ) 2 2 1 1 1 1 1 ( ) 1 y x x y x y x y f x x− = − = − = − + = = + b. c. domain of f : [ )1,∞ range of f : [ )0,∞ domain of 1 f − : [ )0,∞ range of 1 f − : [ )1,∞ 45. a. 3 ( ) 1f x x= − 3 3 3 3 1 3 1 1 1 1 ( ) 1 y x x y x y x y f x x− = − = − + = + = = + b.
  • 89. Section 2.7 Inverse Functions Copyright © 2018 Pearson Education, Inc. 289 c. domain of f : ( ),−∞ ∞ range of f : ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 46. a. 3 ( ) 1f x x= + 3 3 3 3 1 3 1 1 1 1 ( ) 1 y x x y x y x y f x x− = + = + − = − = = − b. c. domain of f : ( ),−∞ ∞ range of f : ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 47. a. 3 ( ) ( 2)f x x= + 3 3 3 3 1 3 ( 2) ( 2) 2 2 ( ) 2 y x x y x y x y f x x− = + = + = + − = = − b. c. domain of f : ( ),−∞ ∞ range of f : ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 48. a. 3 ( ) ( 2)f x x= − 3 3 3 3 1 3 ( 2) ( 2) 2 2 ( ) 2 y x x y x y x y f x x− = − = − = − + = = + b. c. domain of f : ( ),−∞ ∞ range of f : ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 49. a. ( ) 1f x x= − 2 2 1 2 1 1 1 1 ( ) 1 y x x y x y x y f x x− = − = − = − + = = + b. c. domain of f : [ )1,∞ range of f : [ )0,∞ domain of 1 f − : [ )0,∞ range of 1 f − : [ )1,∞ 50. a. ( ) 2f x x= + 2 1 2 2 2 2 ( 2) ( ) ( 2) y x x y x y x y f x x− = + = + − = − = = −
  • 90. Chapter 2 Functions and Graphs 290 Copyright © 2018 Pearson Education, Inc. b. c. domain of f : [ )0,∞ range of f : [ )2,∞ domain of 1 f − : [ )2,∞ range of 1 f − : [ )0,∞ 51. a. 3 ( ) 1f x x= + 3 3 3 3 1 3 1 1 1 ( 1) ( ) ( 1) y x x y x y x y f x x− = + = + − = − = = − b. c. domain of f : ( ),−∞ ∞ range of f : ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 52. a. 3 ( ) 1f x x= − 3 3 3 3 1 3 1 1 1 1 ( ) 1 y x x y x y x y f x x− = − = − = − + = = + b. c. domain of f : ( ),−∞ ∞ range of f : ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 53. ( ) ( )(1) 1 5f g f= = 54. ( ) ( )(4) 2 1f g f= = − 55. ( )( ) ( ) ( )1 ( 1) 1 1g f g f g− = − = = 56. ( )( ) ( ) ( )0 (0) 4 2g f g f g= = = 57. ( ) ( )1 1 (10) 1 2f g f− − = − = , since ( )2 1f = − . 58. ( ) ( )1 1 (1) 1 1f g f− − = = − , since ( )1 1f − = . 59. ( )( ) ( ) ( ) ( ) ( ) 0 (0) 4 0 1 1 2 1 5 7 f g f g f f = = ⋅ − = − = − − = −  60. ( )( ) ( ) ( ) ( ) ( ) 0 (0) 2 0 5 5 4 5 1 21 g f g f g g = = ⋅ − = − = − − = −  61. Let ( )1 1f x− = . Then ( ) 1 2 5 1 2 6 3 f x x x x = − = = = Thus, ( )1 1 3f − = 62. Let ( )1 7g x− = . Then ( ) 7 4 1 7 4 8 2 g x x x x = − = = = Thus, ( )1 7 2g− =
  • 91. Section 2.7 Inverse Functions Copyright © 2018 Pearson Education, Inc. 291 63. [ ]( ) ( ) ( ) ( ) ( ) 2 (1) 1 1 2 (4) 2 4 5 3 4 3 1 11 g f h g f g f g g  = + +  = = ⋅ − = = ⋅ − = 64. [ ]( ) ( ) ( ) ( ) ( ) 2 (1) 1 1 2 (4) 4 4 1 15 2 15 5 25 f g h f g f g f f  = + +  = = ⋅ − = = ⋅ − = 65. a. {(Zambia, 4.2), (Colombia, 4.5), (Poland, 3.3), (Italy, 3.3), (United States, 2.5)} b. {(4.2, Zambia), (4.5 , Colombia), (3.3 , Poland), (3.3, Italy), (2.5, United States)} f is not a one-to-one function because the inverse of f is not a function. 66. a. {(Zambia,- 7.3), (Colombia, - 4.5), (Poland, - 2.8), (Italy, - 2.8), (United States, - 1.9)} b. { (- 7.3, Zambia), (- 4.5, Colombia), (- 2.8, Po land), (- 2.8, Italy), (- 1.9, United States)} g is not a one-to-one function because the inverse of g is not a function. 67. a. It passes the horizontal line test and is one-to- one. b. f--1 (0.25) = 15 If there are 15 people in the room, the probability that 2 of them have the same birthday is 0.25. f--1 (0.5) = 21 If there are 21 people in the room, the probability that 2 of them have the same birthday is 0.5. f--1 (0.7) = 30 If there are 30 people in the room, the probability that 2 of them have the same birthday is 0.7. 68. a. This function fails the horizontal line test. Thus, this function does not have an inverse. b. The average happiness level is 3 at 12 noon and at 7 p.m. These values can be represented as (12,3) and (19,3) . c. The graph does not represent a one-to-one function. (12,3) and (19,3) are an example of two x-values that correspond to the same y- value. 69. 9 5 ( ( )) ( 32) 32 5 9 32 32 f g x x x x   = − +   = − + = 5 9 ( ( )) 32 32 9 5 32 32 g f x x x x    = + −      = + − = f and g are inverses. 70. – 75. Answers will vary. 76. not one-to-one 77. one-to-one
  • 92. Chapter 2 Functions and Graphs 292 Copyright © 2018 Pearson Education, Inc. 78. one-to-one 79. not one-to-one 80. not one-to-one 81. not one-to-one 82. one-to-one 83. not one-to-one 84. f and g are inverses 85. f and g are inverses 86. f and g are inverses 87. makes sense 88. makes sense 89. makes sense 90. does not make sense; Explanations will vary. Sample explanation: The vertical line test is used to determine if a relation is a function, but does not tell us if a function is one-to-one.
  • 93. Section 2.7 Inverse Functions Copyright © 2018 Pearson Education, Inc. 293 91. false; Changes to make the statement true will vary. A sample change is: The inverse is {(4,1), (7,2)}. 92. false; Changes to make the statement true will vary. A sample change is: f(x) = 5 is a horizontal line, so it does not pass the horizontal line test. 93. false; Changes to make the statement true will vary. A sample change is: 1 ( ) . 3 x f x− = 94. true 95. ( )( ) 3( 5) 3 15.f g x x x= + = + 3 15 3 15 15 3 y x x y x y = + = + − = ( ) 1 15 ( ) 3 x f g x − − = 1 ( ) 5 5 5 5 ( ) 5 g x x y x x y y x g x x− = + = + = + = − = − 1 ( ) 3 3 3 3 ( ) 3 f x x y x x y x y x f x− = = = = = ( )1 1 15 ( ) 5 3 3 x x g f x− − − = − = 96. 1 3 2 ( ) 5 3 3 2 5 3 3 2 5 3 (5 3) 3 2 5 3 3 2 5 3 3 2 (5 3) 3 2 3 2 5 3 3 2 ( ) 5 3 x f x x x y x y x y x y y xy x y xy y x y x x x y x x f x x − − = − − = − − = − − = − − = − − = − − = − − = − − = − Note: An alternative approach is to show that ( )( ) .f f x x= 97. No, there will be 2 times when the spacecraft is at the same height, when it is going up and when it is coming down. 98. 1 8 ( 1) 10f x− + − = 1 ( 1) 2 (2) 1 6 1 7 7 f x f x x x x − − = = − = − = = 99. Answers will vary.
  • 94. Chapter 2 Functions and Graphs 294 Copyright © 2018 Pearson Education, Inc. 100. 2 2 5 1 0x x− + = 2 2 2 2 5 1 0 2 2 5 1 2 2 5 25 1 25 2 16 2 16 5 17 4 16 5 17 4 16 5 17 4 4 5 17 4 4 5 17 4 x x x x x x x x x x x − + = − = − − + = − +   − =    − = ± − = ± = ± ± = The solution set is 5 17 4  ±       . 101. ( ) ( ) 3/4 3/2 3/4 4 3 4 33/4 4/3 5 15 0 5 15 3 3 3 x x x x x − = = = = = The solution set is { }4/3 3 . 102. 3 2 1 21 2 1 7 x x − ≥ − ≥ 2 1 7 2 1 7 or 2 6 2 8 2 6 2 8 2 2 2 2 3 4 x x x x x x x x − ≤ − − ≥ ≤ − ≥ − ≤ ≥ ≤ − ≥ The solution set is { }3 or 4x x x≤ − ≥ or ( ] [ ), 3 4, .−∞ − ∞ 103. 2 2 2 2 2 1 2 1 2 2 ( ) ( ) (1 7) ( 1 2) ( 6) ( 3) 36 9 45 3 5 x x y y− + − = − + − − = − + − = + = = 104. 105. 2 2 2 2 6 4 0 6 4 6 9 4 9 ( 3) 13 3 13 3 13 y y y y y y y y y − − = − = − + = + − = − = ± = ± Solution set: { }3 13±
  • 95. Section 2.8 Distance and Midpoint Formulas; Circles Copyright © 2018 Pearson Education, Inc. 295 Section 2.8 Check Point Exercises 1. ( ) ( ) 2 2 2 1 2 1d x x y y= − + − ( ) ( ) 2 2 2 2 2 ( 1) 3 ( 3) 3 6 9 36 45 3 5 6.71 d = − − + − − = + = + = = ≈ 2. 1 7 2 ( 3) 8 1 1 , , 4, 2 2 2 2 2 + + − −      = = −            3. 2 2 2 2 2 0, 0, 4; ( 0) ( 0) 4 16 h k r x y x y = = = − + − = + = 4. 2 2 2 2 2 2 2 0, 6, 10; ( 0) [ ( 6)] 10 ( 0) ( 6) 100 ( 6) 100 h k r x y x y x y = = − = − + − − = − + + = + + = 5. a. 2 2 2 2 2 ( 3) ( 1) 4 [ ( 3)] ( 1) 2 x y x y + + − = − − + − = So in the standard form of the circle’s equation 2 2 2 ( ) ( )x h y k r− + − = , we have 3, 1, 2.h k r= − = = center: ( , ) ( 3, 1)h k = − radius: r = 2 b. c. domain: [ ]5, 1− − range: [ ]1,3− 6. 2 2 4 4 1 0x y x y+ + − − = ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 4 4 1 0 4 4 0 4 4 4 4 1 4 4 ( 2) ( 2) 9 [ ( )] ( 2) 3 x y x y x x y y x x y y x y x x y + + − − = + + − = + + + + + = + + + + − = − − + − = So in the standard form of the circle’s equation 2 2 2 ( ) ( )x h y k r− + − = , we have 2, 2, 3h k r= − = = . Concept and Vocabulary Check 2.8 1. 2 2 2 1 2 1( ) ( )x x y y− + − 2. 1 2 2 x x+ ; 1 2 2 y y+ 3. circle; center; radius 4. 2 2 2 ( ) ( )x h y k r− + − = 5. general 6. 4; 16 Exercise Set 2.8 1. 2 2 (14 2) (8 3)d = − + − 2 2 12 5 144 25 169 13 = + = + = =
  • 96. Chapter 2 Functions and Graphs 296 Copyright © 2018 Pearson Education, Inc. 2. 2 2 (8 5) (5 1)d = − + − 2 2 3 4 9 16 25 5 = + = + = = 3. ( ) ( ) 2 2 6 4 3 ( 1)d = − − + − − ( ) ( ) 2 2 10 4 100 16 116 2 29 10.77 = − + = + = = ≈ 4. ( ) ( ) 2 2 1 2 5 ( 3)d = − − + − − ( ) ( ) 2 2 3 8 9 64 73 8.54 = − + = + = ≈ 5. 2 2 ( 3 0) (4 0)d = − − + − 2 2 3 4 9 16 25 5 = + = + = = 6. ( ) 22 (3 0) 4 0d = − + − − ( ) 22 3 4 9 16 25 5 = + − = + = = 7. 2 2 [3 ( 2)] [ 4 ( 6)]d = − − + − − − 2 2 5 2 25 4 29 5.39 = + = + = ≈ 8. 2 2 [2 ( 4)] [ 3 ( 1)]d = − − + − − − ( ) 22 6 2 36 4 40 2 10 6.32 = + − = + = = ≈ 9. 2 2 (4 0) [1 ( 3)]d = − + − − 2 2 4 4 16 16 32 4 2 5.66 = + = + = = ≈ 10. ( ) ( ) 2 2 2 2 2 4 0 [3 2 ] 4 [3 2] 16 5 16 25 41 6.40 d = − + − − = + + = + = + = ≈ 11. 2 2 2 2 ( .5 3.5) (6.2 8.2) ( 4) ( 2) 16 4 20 2 5 4.47 d = − − + − = − + − = + = = ≈ 12. ( ) ( ) ( ) 22 2 2 (1.6 2.6) 5.7 1.3 1 7 1 49 50 5 2 7.07 d = − + − − = − + − = + = = ≈
  • 97. Section 2.8 Distance and Midpoint Formulas; Circles Copyright © 2018 Pearson Education, Inc. 297 13. 2 2 2 2 ( 5 0) [0 ( 3)] ( 5) ( 3) 5 3 8 2 2 2.83 d = − + − − = + = + = = ≈ 14. ( ) ( ) ( ) 22 2 2 7 0 0 2 7 2 7 2 9 3 d  = − + − −    = + −  = + = = 15. 2 2 2 2 ( 3 3 3) (4 5 5) ( 4 3) (3 5) 16(3) 9(5) 48 45 93 9.64 d = − − + − = − + = + = + = ≈ 16. ( ) ( ) ( ) ( ) 2 2 2 2 3 2 3 5 6 6 3 3 4 6 9 3 16 6 27 96 123 11.09 d = − − + − = − + = ⋅ + ⋅ = + = ≈ 17. 2 2 2 2 1 7 6 1 3 3 5 5 ( 2) 1 4 1 5 2.24 d     = − + −        = − + = + = ≈ 18. 2 2 2 2 2 2 3 1 6 1 4 4 7 7 3 1 6 1 4 4 7 7 1 1 2 1.41 d        = − − + − −                  = + + +        = + = ≈ 19. 6 2 8 4 8 12 , , (4,6) 2 2 2 2 + +    = =        20. 10 2 4 6 12 10 , , (6,5) 2 2 2 2 + +    = =        21. 2 ( 6) 8 ( 2) , 2 2 8 10 , ( 4, 5) 2 2 − + − − + −      − −  = = − −    22. ( ) ( )4 1 7 3 5 10 , , 2 2 2 2 5 , 5 2 − + − − + −  − −  =       −  = −    23. 3 6 4 ( 8) , 2 2 3 12 3 , , 6 2 2 2 − + − + −      −    = = −        24. ( )2 8 1 6 10 5 5 , 5, 2 2 2 2 2 − + − − + −    = = −           25. ( ) 7 5 3 11 2 2 2 2 , 2 2 12 8 6 42 2, , 3, 2 2 2 2 2  −     + − + −                − −    −  = = − = − −         
  • 98. Chapter 2 Functions and Graphs 298 Copyright © 2018 Pearson Education, Inc. 26. 2 2 7 4 4 3 5 5 15 15 5 15, , 2 2 2 2 4 1 3 1 2 1 , , 5 2 15 2 5 10       − + − + − −           =                = − ⋅ ⋅ = −        27. ( ) 8 ( 6) 3 5 7 5 , 2 2 2 10 5 , 1,5 5 2 2  + − +        = =     28. ( ) 7 3 3 3 6 ( 2) 10 3 8 , , 2 2 2 2 5 3, 4    + − + − − =           = − 29. 18 2 4 4 , 2 2 3 2 2 0 4 2 , ,0 (2 2,0) 2 2 2  + − +         + = = =           30. ( ) 50 2 6 6 5 2 2 0 , , 2 2 2 2 6 2 ,0 3 2,0 2    + − + + =             = =     31. 2 2 2 2 2 ( 0) ( 0) 7 49 x y x y − + − = + = 32. 2 2 2 ( 0) ( 0) 8x y− + − = 2 2 64x y+ = 33. ( ) ( ) ( ) ( ) 2 2 2 2 2 3 2 5 3 2 25 x y x y − + − = − + − = 34. ( ) [ ] 22 2 2 ( 1) 4x y− + − − = ( ) ( ) 2 2 2 1 16x y− + + = 35. [ ] ( ) ( ) ( ) 2 2 2 2 2 ( 1) 4 2 1 4 4 x y x y − − + − = + + − = 36. [ ] ( ) 2 2 2 ( 3) 5 3x y− − + − = ( ) ( ) 2 2 3 5 9x y+ + − = 37. [ ] [ ] ( ) ( ) ( ) 22 2 2 2 ( 3) ( 1) 3 3 1 3 x y x y − − + − − = + + + = 38. [ ] [ ] ( ) 22 2 ( 5) ( 3) 5x y− − + − − = ( ) ( ) 2 2 5 3 5x y+ + + = 39. [ ] ( ) ( ) ( ) 2 2 2 2 2 ( 4) 0 10 4 0 100 x y x y − − + − = + + − = 40. [ ] ( ) 2 2 2 ( 2) 0 6x y− − + − = ( ) 2 2 2 36x y+ + = 41. 2 2 2 2 2 16 ( 0) ( 0) 0, 0, 4; x y x y y h k r + = − + − = = = = center = (0, 0); radius = 4 domain: [ ]4,4− range: [ ]4,4− 42. 2 2 49x y+ = 2 2 2 ( 0) ( 0) 7 0, 0, 7; x y h k r − + − = = = = center = (0, 0); radius = 7 domain: [ ]7,7− range: [ ]7,7−
  • 99. Section 2.8 Distance and Midpoint Formulas; Circles Copyright © 2018 Pearson Education, Inc. 299 43. ( ) ( ) ( ) ( ) 2 2 2 2 2 3 1 36 3 1 6 3, 1, 6; x y x y h k r − + − = − + − = = = = center = (3, 1); radius = 6 domain: [ ]3,9− range: [ ]5,7− 44. ( ) ( ) 2 2 2 3 16x y− + − = 2 2 2 ( 2) ( 3) 4 2, 3, 4; x y h k r − + − = = = = center = (2, 3); radius = 4 domain: [ ]2,6− range: [ ]1,7− 45. 2 2 2 2 2 ( 3) ( 2) 4 [ ( 3)] ( 2) 2 3, 2, 2 x y x y h k r + + − = − − + − = = − = = center = (–3, 2); radius = 2 domain: [ ]5, 1− − range: [ ]0,4 46. ( ) ( ) 2 2 1 4 25x y+ + − = [ ] 2 2 2 ( 1) ( 4) 5 1, 4, 5; x y h k r − − + − = = − = = center = (–1, 4); radius = 5 domain: [ ]6,4− range: [ ]1,9− 47. 2 2 2 2 2 ( 2) ( 2) 4 [ ( 2)] [ ( 2)] 2 2, 2, 2 x y x y h k r + + + = − − + − − = = − = − = center = (–2, –2); radius = 2 domain: [ ]4,0− range: [ ]4,0− 48. ( ) ( ) 2 2 4 5 36x y+ + + = [ ] [ ] 2 2 2 ( 4) ( 5) 6 4, 5, 6; x y h k r − − + − − = = − = − = center = (–4, –5); radius = 6 domain: [ ]10,2− range: [ ]11,1−
  • 100. Chapter 2 Functions and Graphs 300 Copyright © 2018 Pearson Education, Inc. 49. ( ) 22 1 1x y+ − = 0, 1, 1;h k r= = = center = (0, 1); radius = 1 domain: [ ]1,1− range: [ ]0,2 50. ( ) 22 2 4x y+ − = 0, 2, 2;h k r= = = center = (0,2); radius = 2 domain: [ ]2,2− range: [ ]0,4 51. ( ) 2 2 1 25x y+ + = 1, 0, 5;h k r= − = = center = (–1,0); radius = 5 domain: [ ]6,4− range: [ ]5,5− 52. ( ) 2 2 2 16x y+ + = 2, 0, 4;h k r= − = = center = (–2,0); radius = 4 domain: [ ]6,2− range: [ ]4,4− 53. ( ) ( ) ( ) ( ) ( ) ( ) [ ] [ ] 2 2 2 2 2 2 2 2 2 2 2 6 2 6 0 6 2 6 6 9 2 1 9 1 6 3 1 4 ( 3) 9 ( 1) 2 x y x y x x y y x x y y x y x + + + + = + + + = − + + + + + = + − + + + = − − + − − = center = (–3, –1); radius = 2 54. 2 2 8 4 16 0x y x y+ + + + = ( ) ( )2 2 8 4 16x x y y+ + + = − ( ) ( )2 2 8 16 4 4 20 16x x y y+ + + + + = − ( ) ( ) 2 2 4 2 4x y+ + + = [ ] [ ] 2 2 2 ( 4) ( 2) 2x y− − + − − = center = (–4, –2); radius = 2
  • 101. Section 2.8 Distance and Midpoint Formulas; Circles Copyright © 2018 Pearson Education, Inc. 301 55. ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 10 6 30 0 10 6 30 10 25 6 9 25 9 30 5 3 64 ( 5) ( 3) 8 x y x y x x y y x x y y x y x y + − − − = − + − = − + + − + = + + − + − = − + − = center = (5, 3); radius = 8 56. 2 2 4 12 9 0x y x y+ − − − = ( ) ( )2 2 4 12 9x x y y− + − = ( ) ( )2 2 4 4 12 36 4 36 9x x y y− + + − + = + + ( ) ( ) 2 2 2 6 49x y− + − = 2 2 2 ( 2) ( 6) 7x y− + − = center = (2, 6); radius = 7 57. ( ) ( ) ( ) ( ) ( ) ( ) [ ] 2 2 2 2 2 2 2 2 2 2 2 8 2 8 0 8 2 8 8 16 2 1 16 1 8 4 1 25 ( 4) ( 1) 5 x y x y x x y y x x y y x y x y + + − − = + + − = + + + − + = + + + + − = − − + − = center = (–4, 1); radius = 5 58. 2 2 12 6 4 0x y x y+ + − − = ( ) ( )2 2 12 6 4x x y y+ + − = ( ) ( )2 2 12 36 6 9 36 9 4x x y y+ + + − + = + + [ ] ( ) 2 2 2 ( 6) 3 7x y− − + − = center = (–6, 3); radius = 7 59. ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 22 2 2 2 2 2 2 15 0 2 15 2 1 0 1 0 15 1 0 16 1 0 4 x x y x x y x x y x y x y − + − = − + = − + + − = + + − + − = − + − = center = (1, 0); radius = 4 60. 2 2 6 7 0x y y+ − − = ( )2 2 6 7x y y+ − = ( ) ( )2 2 0 6 9 0 9 7x y y− = − + = + + ( ) ( ) 2 2 0 3 16x y− + − = 2 2 2 ( 0) ( 3) 4x y− + − = center = (0, 3); radius = 4
  • 102. Chapter 2 Functions and Graphs 302 Copyright © 2018 Pearson Education, Inc. 61. 2 2 2 1 0x y x y+ − + + = ( ) 2 2 2 2 2 2 2 1 1 1 2 1 1 1 4 4 1 1 1 2 4 x x y y x x y y x y − + + = − − + + + + = − + +   − + + =    center = 1 , 1 2   −    ; radius = 1 2 62. 2 2 1 0 2 x y x y+ + + − = 2 2 2 2 2 2 1 2 1 1 1 1 1 4 4 2 4 4 1 1 1 2 2 x x y y x x y y x y + + + = + + + + + = + +     − + − =        center = 1 1 , 2 2       ; radius = 1 63. 2 2 3 2 1 0x y x y+ + − − = ( ) 2 2 2 2 2 2 3 2 1 9 9 3 2 1 1 1 4 4 3 17 1 2 4 x x y y x x y y x y + + − = + + + − + = + +   + + − =    center = 3 ,1 2   −    ; radius = 17 2 64. 2 2 9 3 5 0 4 x y x y+ + + + = 2 2 2 2 2 2 9 3 5 4 9 25 9 9 25 3 5 4 4 4 4 4 3 5 25 2 2 4 x x y y x x y y x y + + + = − + + + + + = − + +     + + + =        center = 3 5 , 2 2   − −    ; radius = 5 2 65. a. Since the line segment passes through the center, the center is the midpoint of the segment. ( ) 1 2 1 2 , 2 2 3 7 9 11 10 20 , , 2 2 2 2 5,10 x x y y M + +  =     + +    = =        = The center is ( )5,10 .
  • 103. Section 2.8 Distance and Midpoint Formulas; Circles Copyright © 2018 Pearson Education, Inc. 303 b. The radius is the distance from the center to one of the points on the circle. Using the point ( )3,9 , we get: ( ) ( ) 2 2 2 2 5 3 10 9 2 1 4 1 5 d = − + − = + = + = The radius is 5 units. c. ( ) ( ) ( ) ( ) ( ) 22 2 2 2 5 10 5 5 10 5 x y x y − + − = − + − = 66. a. Since the line segment passes through the center, the center is the midpoint of the segment. ( ) 1 2 1 2 , 2 2 3 5 6 4 8 10 , , 2 2 2 2 4,5 x x y y M + +  =     + +    = =        = The center is ( )4,5 . b. The radius is the distance from the center to one of the points on the circle. Using the point ( )3,6 , we get: ( ) ( ) ( ) 2 2 22 4 3 5 6 1 1 1 1 2 d = − + − = + − = + = The radius is 2 units. c. ( ) ( ) ( ) ( ) ( ) 22 2 2 2 4 5 2 4 5 2 x y x y − + − = − + − = 67. Intersection points: ( )0, 4− and ( )4,0 Check ( )0, 4− : ( ) 22 0 4 16 16 16 true + − = = ( )0 4 4 4 4 true − − = = Check ( )4,0 : 2 2 4 0 16 16 16 true + = = 4 0 4 4 4 true − = = The solution set is ( ) ( ){ }0, 4 , 4,0− . 68. Intersection points: ( )0, 3− and ( )3,0 Check ( )0, 3− : ( ) 22 0 3 9 9 9 true + − = = ( )0 3 3 3 3 true − − = = Check ( )3,0 : 2 2 3 0 9 9 9 true + = = 3 0 3 3 3 true − = = The solution set is ( ) ( ){ }0, 3 , 3,0− .
  • 104. Chapter 2 Functions and Graphs 304 Copyright © 2018 Pearson Education, Inc. 69. Intersection points: ( )0, 3− and ( )2, 1− Check ( )0, 3− : ( ) ( ) ( ) 2 2 2 2 0 2 3 3 9 2 0 4 4 4 true − + − + = − + = = 3 0 3 3 3 true − = − − = − Check ( )2, 1− : ( ) ( ) 2 2 2 2 2 2 1 3 4 0 2 4 4 4 true − + − + = + = = 1 2 3 1 1 true − = − − = − The solution set is ( ) ( ){ }0, 3 , 2, 1− − . 70. Intersection points: ( )0, 1− and ( )3,2 Check ( )0, 1− : ( ) ( ) ( ) 2 2 2 2 0 3 1 1 9 3 0 9 9 9 true − + − + = − + = = 1 0 1 1 1 true − = − − = − Check ( )3,2 : ( ) ( ) 2 2 2 2 3 3 2 1 9 0 3 9 9 9 true − + + = + = = 2 3 1 2 2 true = − = The solution set is ( ) ( ){ }0, 1 , 3,2− . 71. 2 2 (8495 4422) (8720 1241) 0.1 72,524,770 0.1 2693 d d d = − + − ⋅ = ⋅ ≈ The distance between Boston and San Francisco is about 2693 miles. 72. 2 2 (8936 8448) (3542 2625) 0.1 1,079,033 0.1 328 d d d = − + − ⋅ = ⋅ ≈ The distance between New Orleans and Houston is about 328 miles. 73. If we place L.A. at the origin, then we want the equation of a circle with center at ( )2.4, 2.7− − and radius 30. ( )( ) ( )( ) ( ) ( ) 2 2 2 2 2 2.4 2.7 30 2.4 2.7 900 x y x y − − + − − = + + + = 74. C(0, 68 + 14) = (0, 82) 2 2 2 2 2 ( 0) ( 82) 68 ( 82) 4624 x y x y − + − = + − = 75. – 82. Answers will vary. 83. 84.
  • 105. Section 2.8 Distance and Midpoint Formulas; Circles Copyright © 2018 Pearson Education, Inc. 305 85. 86. makes sense 87. makes sense 88. does not make sense; Explanations will vary. Sample explanation: Since 2 4r = − this is not the equation of a circle. 89. makes sense 90. false; Changes to make the statement true will vary. A sample change is: The equation would be 2 2 256.x y+ = 91. false; Changes to make the statement true will vary. A sample change is: The center is at (3, –5). 92. false; Changes to make the statement true will vary. A sample change is: This is not an equation for a circle. 93. false; Changes to make the statement true will vary. A sample change is: Since 2 36r = − this is not the equation of a circle. 94. The distance for A to B: ( )2 2 2 2 (3 1) [3 1 ] 2 2 4 4 8 2 2 AB d d= − + + − + = + = + = = The distance from B to C: ( ) ( ) 2 2 22 (6 3) [3 6 ] 3 3 9 9 18 3 2 BC d d= − + + − + = + − = + = = The distance for A to C: 2 2 2 2 (6 1) [6 (1 )] 5 5 25 25 50 5 2 AC d d= − + + − + = + = + = = 2 2 3 2 5 2 5 2 5 2 AB BC AC+ = + = = 95. a. is distance from ( , ) to midpoint 1 1 2 d x x ( ) 2 2 1 2 1 2 1 1 1 2 2 1 2 1 1 2 1 1 2 2 2 1 2 1 1 2 2 2 2 1 2 1 2 2 1 1 1 2 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1 2 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 4 4 1 2 2 4 1 2 2 2 x x y y d x y x x x y y y d x x y y d x x x x y y y y d d x x x x y y y y d x x x x y y y y + +    = − + −        + − + −    = +        − −    = +        − + − + = + = − + + − + = − + + − + ( ) 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 1 1 2 2 1 2 1 2 2 2 2 2 2 1 1 2 2 1 2 is distance from midpoint to , 2 2 2 2 2 2 2 2 2 2 4 4 1 2 2 4 d x y x x y y d x y x x x y y y d x x y y d x x x x y y y y d d x x x x y y y + +    = − + −        + − + −    = +        − −    = +        − + − + = + = − + + −( )2 1 2 2 2 2 2 2 1 1 2 2 1 2 1 2 1 2 1 2 2 2 y d x x x x y y y y d d + = − + + − + =
  • 106. Chapter 2 Functions and Graphs 306 Copyright © 2018 Pearson Education, Inc. b. ( ) ( )3 1 1 2 2is the distance from , tod x y x y 2 2 3 2 1 2 1 2 2 2 2 3 2 1 2 1 2 2 1 1 1 2 3 ( ) ( ) 2 2 1 1 because 2 2 d x x y y d x x x x y y y y d d d a a a = − + − = − + + − + + = + = 96. Both circles have center (2, –3). The smaller circle has radius 5 and the larger circle has radius 6. The smaller circle is inside of the larger circle. The area between them is given by ( ) ( ) 2 2 6 5π π− 36 25π π= − 11 34.56squareunits. π= ≈ 97. The circle is centered at (0,0). The slope of the radius with endpoints (0,0) and (3,–4) is 4 0 4 . 3 0 3 m − − = − = − − The line perpendicular to the radius has slope 3 . 4 The tangent line has slope 3 4 and passes through (3,–4), so its equation is: 3 4 ( 3). 4 y x+ = − 98. ( )7 2 5 7 9x x− + = − 7 14 5 7 9 7 9 7 9 9 9 x x x x − + = − − = − − = − The original equation is equivalent to the statement 9 9,− = − which is true for every value of x. The equation is an identity, and all real numbers are solutions. The solution set { is a real number}.x x 99. 4 7 4 7 5 2 5 2 5 2 5 2 i i i i i i + + + = ⋅ − − + 2 2 20 8 35 14 25 10 10 4 34 8 35 25 4 34 27 29 27 34 29 29 i i i i i i i i i + + + = + − − − + = + + = = + 100. 9 4 1 15 8 4 16 2 4 x x x − ≤ − < − ≤ < − ≤ < The solution set is { }2 4 or [ 2, 4).x x− ≤ < − 101. 2 2 2 0 2( 3) 8 2( 3) 8 ( 3) 4 3 4 3 2 1, 5 x x x x x x = − − + − = − = − = ± = ± = 102. 2 2 2 1 0 2 1 0 x x x x − − + = + − = 2 2 4 2 ( 2) ( 2) 4(1)( 1) 2(1) 2 8 2 2 2 2 2 1 2 b b ac x a x − ± − = − − ± − − − = ± = ± = = ± The solution set is {1 2}.± 103. The graph of g is the graph of f shifted 1 unit up and 3 units to the left.
  • 107. Chapter 2 Review Exercises Copyright © 2018 Pearson Education, Inc. 307 Chapter 2 Review Exercises 1. function domain: {2, 3, 5} range: {7} 2. function domain: {1, 2, 13} range: {10, 500, π} 3. not a function domain: {12, 14} range: {13, 15, 19} 4. 2 8 2 8 x y y x + = = − + Since only one value of y can be obtained for each value of x, y is a function of x. 5. 2 2 3 14 3 14 x y y x + = = − + Since only one value of y can be obtained for each value of x, y is a function of x. 6. 2 2 2 6 2 6 2 6 x y y x y x + = = − + = ± − + Since more than one value of y can be obtained from some values of x, y is not a function of x. 7. f(x) = 5 – 7x a. f(4) = 5 – 7(4) = –23 b. ( 3) 5 7( 3) 5 7 21 7 16 f x x x x + = − + = − − = − − c. f(–x) = 5 – 7(–x) = 5 + 7x 8. 2 ( ) 3 5 2g x x x= − + a. 2 (0) 3(0) 5(0) 2 2g = − + = b. 2 ( 2) 3( 2) 5( 2) 2 12 10 2 24 g − = − − − + = + + = c. 2 2 2 ( 1) 3( 1) 5( 1) 2 3( 2 1) 5 5 2 3 11 10 g x x x x x x x x − = − − − + = − + − + + = − + d. 2 2 ( ) 3( ) 5( ) 2 3 5 2 g x x x x x − = − − − + = + + 9. a. (13) 13 4 9 3g = − = = b. g(0) = 4 – 0 = 4 c. g(–3) = 4 – (–3) = 7 10. a. 2 ( 2) 1 3 ( 2) 1 2 1 3 f − − − = = = − − − − b. f(1) = 12 c. 2 2 1 3 (2) 3 2 1 1 f − = = = − 11. The vertical line test shows that this is not the graph of a function. 12. The vertical line test shows that this is the graph of a function. 13. The vertical line test shows that this is the graph of a function. 14. The vertical line test shows that this is not the graph of a function. 15. The vertical line test shows that this is not the graph of a function. 16. The vertical line test shows that this is the graph of a function. 17. a. domain: [–3, 5) b. range: [–5, 0] c. x-intercept: –3 d. y-intercept: –2 e. increasing: ( 2, 0) or (3, 5)− decreasing: ( 3, 2) or (0, 3)− − f. f(–2) = –3 and f(3) = –5
  • 108. Chapter 2 Functions and Graphs 308 Copyright © 2018 Pearson Education, Inc. 18. a. domain: ( , )−∞ ∞ b. range: ( ],3−∞ c. x-intercepts: –2 and 3 d. y-intercept: 3 e. increasing: (–, 0) decreasing: (0, )∞ f. f(–2) = 0 and f(6) = –3 19. a. domain: ( , )−∞ ∞ b. range: [–2, 2] c. x-intercept: 0 d. y-intercept: 0 e. increasing: (–2, 2) constant: ( , 2) or (2, )−∞ − ∞ f. f(–9) = –2 and f(14) = 2 20. a. 0, relative maximum −2 b. −2, 3, relative minimum −3, –5 21. a. 0, relative maximum 3 b. none 22. Test for symmetry with respect to the y-axis. ( ) 2 2 2 8 8 8 y x y x y x = + = − + = + The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y- axis. Test for symmetry with respect to the x-axis. 2 2 2 8 8 8 y x y x y x = + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) 2 2 2 2 8 8 8 2 y x y x y x y x = + − = − + − = + = − − The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 23. Test for symmetry with respect to the y-axis. ( ) 2 2 2 2 2 2 17 17 17 x y x y x y + = − + = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y- axis. Test for symmetry with respect to the x-axis. ( ) 2 2 22 2 2 17 17 17 x y x y x y + = + − = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x- axis. Test for symmetry with respect to the origin. ( ) ( ) 2 2 2 2 2 2 17 17 17 x y x y x y + = − + − = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the origin. 24. Test for symmetry with respect to the y-axis. ( ) 3 2 3 2 3 2 5 5 5 x y x y x y − = − − = − − = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the y-axis. Test for symmetry with respect to the x-axis. ( ) 3 2 23 3 2 5 5 5 x y x y x y − = − − = − = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the x- axis.
  • 109. Chapter 2 Review Exercises Copyright © 2018 Pearson Education, Inc. 309 Test for symmetry with respect to the origin. ( ) ( ) 3 2 3 2 3 2 5 5 5 x y x y x y − = − − − = − − = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 25. The graph is symmetric with respect to the origin. The function is odd. 26. The graph is not symmetric with respect to the y-axis or the origin. The function is neither even nor odd. 27. The graph is symmetric with respect to the y-axis. The function is even. 28. 3 3 3 ( ) 5 ( ) ( ) 5( ) 5 ( ) f x x x f x x x x x f x = − − = − − − = − + = − The function is odd. The function is symmetric with respect to the origin. 29. 4 2 4 2 4 2 ( ) 2 1 ( ) ( ) 2( ) 1 2 1 ( ) f x x x f x x x x x f x = − + − = − − − + = − + = The function is even. The function is symmetric with respect to the y-axis. 30. 2 2 2 ( ) 2 1 ( ) 2( ) 1 ( ) 2 1 ( ) f x x x f x x x x x f x = − − = − − − = − − = − The function is odd. The function is symmetric with respect to the origin. 31. a. b. range: {–3, 5} 32. a. b. range: { }0y y ≤ 33. 8( ) 11 (8 11) 8 8 11 8 11 8 8 8 x h x h x h x h h + − − − + − − + = = = 34. ( )2 2 2( ) ( ) 10 2 10x h x h x x h − + + + + − − + + ( ) ( ) 2 2 2 2 2 2 2 2 2 10 2 10 2 4 2 10 2 10 4 2 4 2 1 4 2 1 x xh h x h x x h x xh h x h x x h xh h h h h x h h x h − + + + + + + − − = − − − + + + + − − = − − + = − − + = − − + 35. a. Yes, the eagle’s height is a function of time since the graph passes the vertical line test. b. Decreasing: (3, 12) The eagle descended. c. Constant: (0, 3) or (12, 17) The eagle’s height held steady during the first 3 seconds and the eagle was on the ground for 5 seconds. d. Increasing: (17, 30) The eagle was ascending.
  • 110. Chapter 2 Functions and Graphs 310 Copyright © 2018 Pearson Education, Inc. 36. 37. 1 2 1 1 ; 5 3 2 2 m − − = = = − − falls 38. 4 ( 2) 2 1; 3 ( 1) 2 m − − − − = = = − − − − rises 39. 1 1 4 4 0 0; 6 ( 3) 9 m − = = = − − horizontal 40. 10 5 5 2 ( 2) 0 m − = = − − − undefined; vertical 41. point-slope form: y – 2 = –6(x + 3) slope-intercept form: y = –6x – 16 42. 2 6 4 2 1 1 2 m − − = = = − − − point-slope form: y – 6 = 2(x – 1) or y – 2 = 2(x + 1) slope-intercept form: y = 2x + 4 43. 3x + y – 9 = 0 y = –3x + 9 m = –3 point-slope form: y + 7 = –3(x – 4) slope-intercept form: y = –3x + 12 – 7 y = –3x + 5 44. perpendicular to 1 4 3 y x= + m = –3 point-slope form: y – 6 = –3(x + 3) slope-intercept form: y = –3x – 9 + 6 y = –3x – 3 45. Write 6 4 0x y− − = in slope intercept form. 6 4 0 6 4 6 4 x y y x y x − − = − = − + = − The slope of the perpendicular line is 6, thus the slope of the desired line is 1 . 6 m = − ( ) 1 1 1 6 1 6 1 6 ( ) ( 1) ( 12) 1 ( 12) 1 2 6 6 12 6 18 0 y y m x x y x y x y x y x x y − = − − − = − − − + = − + + = − − + = − − + + = 46. slope: 2 ; 5 y-intercept: –1 47. slope: –4; y-intercept: 5 48. 2 3 6 0 3 2 6 2 2 3 x y y x y x + + = = − − = − − slope: 2 ; 3 − y-intercept: –2
  • 111. Chapter 2 Review Exercises Copyright © 2018 Pearson Education, Inc. 311 49. 2 8 0 2 8 4 y y y − = = = slope: 0; y-intercept: 4 50. 2 5 10 0x y− − = Find x-intercept: 2 5(0) 10 0 2 10 0 2 10 5 x x x x − − = − = = = Find y-intercept: 2(0) 5 10 0 5 10 0 5 10 2 y y y y − − = − − = − = = − 51. 2 10 0x − = 2 10 5 x x = = 52. a. First, find the slope using the points (2,28.2) and (4,28.6). 28.6 28.2 0.4 0.2 4 2 2 m − = = = − Then use the slope and one of the points to write the equation in point-slope form. ( ) ( ) ( ) 1 1 28.2 0.2 2 or 28.6 0.2 4 y y m x x y x y x − = − − = − − = − b. Solve for y to obtain slope-intercept form. ( )28.2 0.2 2 28.2 0.2 0.4 0.2 27.8 ( ) 0.2 27.8 y x y x y x f x x − = − − = − = + = + c. ( ) 0.2 27.8 (7) 0.2(12) 27.8 30.2 f x x f = + = + = The linear function predicts men’s average age of first marriage will be 30.2 years in 2020. 53. a. 27 21 6 0.2 2010 1980 30 m − = = = − b. For the period shown, the number of the percentage of liberal college freshman increased each year by approximately 0.2. The rate of change was 0.2% per year. 54. ( )2 2 2 1 2 1 [9 4 9 ] [4 4 5]( ) ( ) 10 9 5 f x f x x x − − − ⋅− = = − − 55. 56.
  • 112. Chapter 2 Functions and Graphs 312 Copyright © 2018 Pearson Education, Inc. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.
  • 113. Chapter 2 Review Exercises Copyright © 2018 Pearson Education, Inc. 313 69. 70. 71. 72. 73. 74. 75. 76. domain: ( , )−∞ ∞ 77. The denominator is zero when x = 7. The domain is ( ) ( ),7 7,−∞ ∞ . 78. The expressions under each radical must not be negative. 8 – 2x ≥ 0 –2x ≥ –8 x ≤ 4 domain: ( , 4].−∞ 79. The denominator is zero when x = –7 or x = 3. domain: ( ) ( ) ( ), 7 7,3 3,−∞ − − ∞  80. The expressions under each radical must not be negative. The denominator is zero when x = 5. x – 2 ≥ 0 x ≥ 2 domain: [ ) ( )2,5 5,∞ 81. The expressions under each radical must not be negative. 1 0 and 5 0 1 5 x x x x − ≥ + ≥ ≥ ≥ − domain: [ )1,∞ 82. f(x) = 3x – 1; g(x) = x – 5 (f + g)(x) = 4x – 6 domain: ( , )−∞ ∞ (f – g)(x) = (3x – 1) – (x – 5) = 2x + 4 domain: ( , )−∞ ∞ 2 ( )( ) (3 1)( 5) 3 16 5fg x x x x x= − − = − + domain: ( , )−∞ ∞ 3 1 ( ) 5 f x x g x   − =  −  domain: ( ) ( ),5 5,−∞ ∞
  • 114. Chapter 2 Functions and Graphs 314 Copyright © 2018 Pearson Education, Inc. 83. 2 2 ( ) 1; ( ) 1f x x x g x x= + + = − 2 ( )( ) 2f g x x x+ = + domain: ( , )−∞ ∞ 2 2 ( )( ) ( 1) ( 1) 2f g x x x x x− = + + − − = + domain: ( , )−∞ ∞ 2 2 4 3 2 2 ( )( ) ( 1)( 1) 1 1 ( ) 1 fg x x x x x x x f x x x g x = + + − = + − −   + + =  −  domain: ( ) ( ) ( ), 1 1,1 1,−∞ − − ∞  84. ( ) 7; ( ) 2 ( )( ) 7 2 f x x g x x f g x x x = + = − + = + + − domain: [2, )∞ ( )( ) 7 2f g x x x− = + − − domain: [2, )∞ 2 ( )( ) 7 2 5 14 fg x x x x x = + ⋅ − = + − domain: [2, )∞ 7 ( ) 2 f x x g x   + =  −  domain: (2, )∞ 85. 2 ( ) 3; ( ) 4 1f x x g x x= + = − a. 2 2 ( )( ) (4 1) 3 16 8 4 f g x x x x = − + = − +  b. 2 2 ( )( ) 4( 3) 1 4 11 g f x x x = + − = +  c. 2 ( )(3) 16(3) 8(3) 4 124f g = − + = 86. ( ) ;f x x= g(x) = x + 1 a. ( )( ) 1f g x x= + b. ( )( ) 1g f x x= + c. ( )(3) 3 1 4 2f g = + = = 87. a. ( )( ) 1 11 11 1 1 1 1 2 2 2 f g x f x x xxx x x x x   =       ++   + = = = − − −     b. 0 1 2 0 1 2 x x x ≠ − ≠ ≠ ( ) 1 1 ,0 0, , 2 2     −∞ ∞          88. a. ( )( ) ( 3) 3 1 2f g x f x x x= + = + − = + b. 2 0 2 x x + ≥ ≥ − [ 2, )− ∞ 89. 4 2 ( ) ( ) 2 1f x x g x x x= = + − 90. ( ) 3 ( ) 7 4f x x g x x= = + 91. 3 1 5 ( ) ; ( ) 2 5 2 3 f x x g x x= + = − 3 5 1 ( ( )) 2 5 3 2 6 1 5 2 7 10 f g x x x x   = − +    = − + = − 5 3 1 ( ( )) 2 3 5 2 5 2 6 7 6 g f x x x x   = + −    = + − = − f and g are not inverses of each other.
  • 115. Chapter 2 Review Exercises Copyright © 2018 Pearson Education, Inc. 315 92. 2 ( ) 2 5 ; ( ) 5 x f x x g x − = − = 2 ( ( )) 2 5 5 2 (2 ) 2 (2 5 ) 5 ( ( )) 5 5 x f g x x x x x g f x x −  = −     = − − = − − = = = f and g are inverses of each other. 93. a. ( ) 4 3f x x= − 1 4 3 4 3 3 4 3 ( ) 4 y x x y x y x f x− = − = − + = + = b. 1 3 ( ( )) 4 3 4 x f f x− +  = −    3 3x x = + − = 1 (4 3) 3 4 ( ( )) 4 4 x x f f x x− − + = = = 94. a. 3 ( ) 8 1f x x= + 3 3 3 3 3 3 3 1 8 1 8 1 1 8 1 8 1 8 1 2 1 ( ) 2 y x x y x y x y x y x y x f x− = + = + − = − = − = − = − = b. ( ) 3 3 1 1 ( ) 8 1 2 x f f x−  − = +     1 8 1 8 1 1 x x x −  = +    = − + = ( ) ( )33 1 33 8 1 1 ( ) 2 8 2 2 2 x f f x x x x − + − = = = = 95. a. 7 ( ) 2 x f x x − = + ( ) 1 7 2 7 2 2 7 2 7 1 2 7 2 7 1 2 7 ( ) , 1 1 x y x y x y xy x y xy y x y x x x y x x f x x x − − = + − = + + = − − = − − − = − − − − = − − − = ≠ −
  • 116. Chapter 2 Functions and Graphs 316 Copyright © 2018 Pearson Education, Inc. b. ( ) ( ) ( ) 1 2 7 7 1( ) 2 7 2 1 2 7 7 1 2 7 2 1 9 9 x xf f x x x x x x x x x − − − − −= − − + − − − − − = − − + − − = − = ( ) ( ) ( ) 1 7 2 7 2 ( ) 7 1 2 2 14 7 2 7 2 9 9 x x f f x x x x x x x x x − −  − − + = − − + − + − + = − − + − = − = 96. The inverse function exists. 97. The inverse function does not exist since it does not pass the horizontal line test. 98. The inverse function exists. 99. The inverse function does not exist since it does not pass the horizontal line test. 100. 101. 2 ( ) 1f x x= − 2 2 2 1 1 1 1 1 ( ) 1 y x x y y x y x f x x− = − = − = − = − = − 102. ( ) 1f x x= + 2 1 2 1 1 1 ( 1) ( ) ( 1) , 1 y x x y x y x y f x x x− = + = + − = − = = − ≥ 103. 2 2 2 2 [3 ( 2)] [9 ( 3)] 5 12 25 144 169 13 d = − − + − − = + = + = = 104. ( ) 22 2 2 [ 2 ( 4)] 5 3 2 2 4 4 8 2 2 2.83 d = − − − + − = + = + = = ≈ 105. ( ) ( ) 2 12 6 4 10 10 , , 5,5 2 2 2 2 + − + −  = = −      
  • 117. Chapter 2 Test Copyright © 2018 Pearson Education, Inc. 317 106. 4 ( 15) 6 2 11 4 11 , , , 2 2 2 2 2 2 + − − + − − −      = = −            107. 2 2 2 2 2 3 9 x y x y + = + = 108. 2 2 2 2 2 ( ( 2)) ( 4) 6 ( 2) ( 4) 36 x y x y − − + − = + + − = 109. center: (0, 0); radius: 1 domain: [ ]1,1− range: [ ]1,1− 110. center: (–2, 3); radius: 3 domain: [ ]5,1− range: [ ]0,6 111. 2 2 2 2 2 2 2 2 4 2 4 0 4 2 4 4 4 2 1 4 4 1 ( 2) ( 1) 9 x y x y x x y y x x y y x y + − + − = − + + = − + + + + = + + − + + = center: (2, –1); radius: 3 domain: [ ]1,5− range: [ ]4,2− Chapter 2 Test 1. (b), (c), and (d) are not functions. 2. a. f(4) – f(–3) = 3 – (–2) = 5 b. domain: (–5, 6] c. range: [–4, 5] d. increasing: (–1, 2) e. decreasing: ( 5, 1) or (2, 6)− − f. 2, f(2) = 5 g. (–1, –4) h. x-intercepts: –4, 1, and 5. i. y-intercept: –3 3. a. –2, 2 b. –1, 1 c. 0 d. even; ( ) ( )f x f x− = e. no; f fails the horizontal line test f. (0)f is a relative minimum. g. h.
  • 118. Chapter 2 Functions and Graphs 318 Copyright © 2018 Pearson Education, Inc. i. j. 2 1 2 1 ( ) ( ) 1 0 1 1 ( 2) 3 f x f x x x − − − = = − − − − 4. domain: ( ),−∞ ∞ range: ( ),−∞ ∞ 5. domain: [ ]2,2− range: [ ]2,2− 6. domain: ( ),−∞ ∞ range: {4} 7. domain: ( ),−∞ ∞ range: ( ),−∞ ∞ 8. domain: [ ]5,1− range: [ ]2,4− 9. domain: ( ),−∞ ∞ range: { }1,2− 10. domain: [ ]6,2− range: [ ]1,7− 11. domain of f: ( ),−∞ ∞ range of f: [ )0,∞ domain of g: ( ),−∞ ∞ range of g: [ )2,− ∞
  • 119. Chapter 2 Test Copyright © 2018 Pearson Education, Inc. 319 12. domain of f: ( ),−∞ ∞ range of f: [ )0,∞ domain of g: ( ),−∞ ∞ range of g: ( ],4−∞ 13. domain of f: ( ),−∞ ∞ range of f: ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 14. domain of f: ( ),−∞ ∞ range of f: ( ),−∞ ∞ domain of 1 f − : ( ),−∞ ∞ range of 1 f − : ( ),−∞ ∞ 15. domain of f: [ )0,∞ range of f: [ )1,− ∞ domain of 1 f − : [ )1,− ∞ range of 1 f − : [ )0,∞ 16. 2 ( ) 4f x x x= − − 2 2 2 ( 1) ( 1) ( 1) 4 2 1 1 4 3 2 f x x x x x x x x − = − − − − = − + − + − = − − 17. ( ) ( )f x h f x h + − ( ) ( ) 2 2 2 2 2 2 ( ) ( ) 4 4 2 4 4 2 2 1 2 1 x h x h x x h x xh h x h x x h xh h h h h x h h x h + − + − − − − = + + − − − − + + = + − = + − = = + − 18. ( )2 ( )( ) 2 6 4g f x x x x− = − − − − 2 2 2 6 4 3 2 x x x x x = − − + + = − + − 19. 2 4 ( ) 2 6 f x x x g x   − − =  −  domain: ( ) ( ),3 3,−∞ ∞ 20. ( )( )( ) ( )f g x f g x= 2 2 2 (2 6) (2 6) 4 4 24 36 2 6 4 4 26 38 x x x x x x x = − − − − = − + − + − = − + 21. ( )( )( ) ( )g f x g f x= ( )2 2 2 2 4 6 2 2 8 6 2 2 14 x x x x x x = − − − = − − − = − − 22. ( ) ( )2 ( 1) 2 ( 1) ( 1) 4 6g f − = − − − − − ( ) ( ) 2 1 1 4 6 2 2 6 4 6 10 = + − − = − − = − − = −
  • 120. Chapter 2 Functions and Graphs 320 Copyright © 2018 Pearson Education, Inc. 23. 2 ( ) 4f x x x= − − 2 2 ( ) ( ) ( ) 4 4 f x x x x x − = − − − − = + − f is neither even nor odd. 24. Test for symmetry with respect to the y-axis. ( ) 2 3 2 3 2 3 7 7 7 x y x y x y + = − + = + = The resulting equation is equivalent to the original. Thus, the graph is symmetric with respect to the y- axis. Test for symmetry with respect to the x-axis. ( ) 2 3 32 2 3 7 7 7 x y x y x y + = + − = − = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the x-axis. Test for symmetry with respect to the origin. ( ) ( ) 2 3 2 3 2 3 7 7 7 x y x y x y + = − + − = − = The resulting equation is not equivalent to the original. Thus, the graph is not symmetric with respect to the origin. 25. 8 1 9 3 1 2 3 m − − − = = = − − − point-slope form: y – 1 = 3(x – 2) or y + 8 = 3(x + 1) slope-intercept form: y = 3x – 5 26. 1 5 4 y x= − + so m = 4 point-slope form: y – 6 = 4(x + 4) slope-intercept form: y = 4x + 22 27. Write 4 2 5 0x y+ − = in slope intercept form. 4 2 5 0 2 4 5 52 2 x y y x y x + − = = − + = − + The slope of the parallel line is –2, thus the slope of the desired line is 2.m = − ( ) 1 1( ) ( 10) 2 ( 7) 10 2( 7) 10 2 14 2 24 0 y y m x x y x y x y x x y − = − − − = − − − + = − + + = − − + + = 28. a. Find slope: 25.8 24.6 1.2 0.12 20 10 10 m − = = = − point-slope form: ( ) ( ) 1 1 24.6 0.12 10 y y m x x y x − = − − = − b. slope-intercept form: ( )24.6 0.12 10 24.6 0.12 1.2 0.12 23.4 ( ) 0.12 23.4 y x y x y x f x x − = − − = − = + = + c. ( ) 0.12 23.4 0.12(40) 23.4 28.2 f x x= + = + = According to the model, 28.2% of U.S. households will be one-person households in 2020. 29. 2 2 3(10) 5 [3(6) 5] 10 6 205 103 4 192 4 48 − − − − − = = = 30. g(–1) = 3 – (–1) = 4 (7) 7 3 4 2g = − = = 31. The denominator is zero when x = 1 or x = –5. domain: ( ) ( ) ( ), 5 5,1 1,−∞ − − ∞  32. The expressions under each radical must not be negative. 5 0 and 1 0 5 1 x x x x + ≥ − ≥ ≥ − ≥ domain: [ )1,∞
  • 121. Cumulative Review Copyright © 2018 Pearson Education, Inc. 321 33. 7 7 ( )( ) 2 2 44 x f g x x x = = −−  0, 2 4 0 1 2 x x x ≠ − ≠ ≠ domain: ( ) 1 1 ,0 0, , 2 2     −∞ ∞          34. ( ) ( )7 2 3f x x g x x= = + 35. 2 2 2 1 2 1( ) ( )d x x y y= − + − ( ) ( ) 22 2 1 2 1 22 2 2 ( ) (5 2) 2 ( 2) 3 4 9 16 25 5 d x x y y= − + − = − + − − = + = + = = 1 2 1 2 2 5 2 2 , , 2 2 2 2 7 ,0 2 x x y y+ + + − +    =         =     The length is 5 and the midpoint is ( ) 7 ,0 or 3.5,0 2       . Cumulative Review Exercises (Chapters 1–2) 1. domain: [ )0,2 range: [ ]0,2 2. ( ) 1f x = at 1 2 and 3 2 . 3. relative maximum: 2 4. 5. 6. 2 2 ( 3)( 4) 8 12 8 20 0 ( 4)( 5) 0 x x x x x x x x + − = − − = − − = + − = x + 4 = 0 or x – 5 = 0 x = –4 or x = 5 7. 3(4 1) 4 6( 3) 12 3 4 6 18 18 25 25 18 x x x x x x − = − − − = − + = = 8. 2 2 2 2 2 2 ( ) ( 2) 4 4 0 5 4 0 ( 1)( 4) x x x x x x x x x x x x x + = = − = − = − + = − + = − − x – 1 = 0 or x – 4 = 0 x = 1 or x = 4 A check of the solutions shows that x = 1 is an extraneous solution. The solution set is {4}. 9. 2/ 3 1/ 3 6 0x x− − = Let 1/ 3 .u x= Then 2 2/ 3 .u x= 2 6 0 ( 2)( 3) 0 u u u u − − = + − = 1/3 1/3 3 3 –2 or 3 –2 or 3 (–2) or 3 –8 or 27 u u x x x x x x = = = = = = = =
  • 122. Chapter 2 Functions and Graphs 322 Copyright © 2018 Pearson Education, Inc. 10. 3 2 2 4 x x − ≤ + 4 3 4 2 2 4 2 12 8 20 x x x x x     − ≤ +        − ≤ + ≤ The solution set is ( ,20].−∞ 11. domain: ( ),−∞ ∞ range: ( ),−∞ ∞ 12. domain: [ ]0,4 range: [ ]3,1− 13. domain of f: ( ),−∞ ∞ range of f: ( ),−∞ ∞ domain of g: ( ),−∞ ∞ range of g: ( ),−∞ ∞ 14. domain of f: [ )3,∞ range of f: [ )2,∞ domain of 1 f − : [ )2,∞ range of 1 f − : [ )3,∞ 15. ( ) ( )f x h f x h + − ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 4 ( ) 4 4 ( 2 ) 4 4 2 4 2 2 2 x h x h x xh h x h x xh h x h xh h h h x h h x h − + − − = − + + − − = − − − − + = − − = − − = = − − 16. ( )( )( ) ( )f g x f g x= ( ) ( ) 2 2 2 2 2 ( )( ) 5 0 4 5 0 4 ( 10 25) 0 4 10 25 0 10 21 0 10 21 0 ( 7)( 3) f g x f x x x x x x x x x x x x = + = − + = − + + = − − − = − − − = + + = + +  The value of ( )( )f g x will be 0 when 3x = − or 7.x = − 17. 1 1 , 4 3 y x= − + so m = 4. point-slope form: y – 5 = 4(x + 2) slope-intercept form: y = 4x + 13 general form: 4 13 0x y− + =
  • 123. Cumulative Review Copyright © 2018 Pearson Education, Inc. 323 18. 0.07 0.09(6000 ) 510 0.07 540 0.09 510 0.02 30 1500 6000 4500 x x x x x x x + − = + − = − = − = − = $1500 was invested at 7% and $4500 was invested at 9%. 19. 200 0.05 .15 200 0.10 2000 x x x x + = = = For $2000 in sales, the earnings will be the same. 20. width = w length = 2w + 2 2(2w + 2) + 2w = 22 4w + 4 + 2w = 22 6w = 18 w = 3 2w + 2 = 8 The garden is 3 feet by 8 feet.