Deep Learning
meetup
Protobuf/Lua (Caffe/Torch)
Python (TensorFlow)
Java (DeepLearning4J)
Programming vs ML
Stage of AI
Deep Learning history
ML algorithms
Training DL model
ConvNets
32
32
3
Convolution Layer
32x32x3 image
5x5x3 filter
convolve (slide) over all
spatial locations
activation
map
1
28
28
ConvNets
32
32
3
Convolution Layer
activation maps
6
28
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:
We processed [32x32x3] volume into [28x28x6] volume.
Q: how many parameters are used ?
A: (5*5*3)*6 = 450 parameters, (5*5*3)*(28*28*6) = ~350K multiplies
28
● InputLayer
● ConvLayer
● ReLuLayer
● PoolLayer
● FullyConnLayer
● SoftMaxLayer
Models
● LeNet - 1998
● AlexNet - ILSVRC 2012
● ZFNet - ILSVRC 2013
● GoogLeNet - ILSVRC 2014
● VGGNet - ILSVRC 2014
● ResNet - ILSVRC 2015
● ILSVRC 2016
Links
● Dl4j-examples
● Deep Learning Papers
● ConvNetJS CIFAR-10 demo
● NVIDIA DIGITS
● Darknet
● Preparing for the Future of AI
● Learning for Self-Driving Cars

Deep Learning meetup