SlideShare a Scribd company logo
A Community Roadmap for Enabling
Access to Geosciences Data

Tanu Malik
Ian Foster
Computation Institute
University of Chicago and Argonne National Lab.
tanum@ci.uchicago.edu, foster@anl.gov

                                                  www.ci.anl.gov
                                                  www.ci.uchicago.edu
Outline
•   Access Workshop
•   DataSpace
•   Post Charette EarthCube




                              www.ci.anl.gov
2
                              www.ci.uchicago.edu
Access is Vital for EarthCube’s Success
•   The goal of EarthCube is to create a sustainable
    infrastructure that enables the sharing of all
    geosciences data, information, and knowledge in an
    open, transparent and inclusive manner.

       I cant get access to *.

       It is difficult for me to *.

       I want to integrate data from other disciplines, but *.


      Access refers to software and activities that make data and computational
      resources easily, efficiently and reliably available to scientists across
      disciplines.
                                                                            www.ci.anl.gov
3
                                                                            www.ci.uchicago.edu
Access Workshop Goals
•   Encourage discussions on emergent issues:
     –   Use of cloud computing
     –   Exploiting the general principle of moving computation to data
     –   A technological and governance framework for cross-disciplinary
         access, service architecture, brokering principles, real-time data, uniform
         authentication and authorization environment, etc.
     –   Improving access to data in publications.

•   Bring some standardization on research data life cycle issues:
     –   In general, data, once generated, follow a lifecycle---they are
         stored, described, processed, transformed, accessed, discovered, analyze
         d, and curated. In organized networks and campaigns, lifecycle stages are
         often documented and standardized, though vary significantly across
         networks and campaigns. In individual initiatives, the lifecycle stages
         continue to remain ad hoc and ill-defined. [RDLM-Workshop2011]
•   Obtain community consensus on a few use cases


                                                                          www.ci.anl.gov
4
                                                                          www.ci.uchicago.edu
Workshop Activity Outcomes
•   Use Case 1: Can I access “not large” but “big data”
    to conduct statistical analysis?

•   Use Case 2: I have a hypothesis not tied to a
    physical instrument or geophysical parameter. Can
    I still access all the data, in an “interactive” fashion
    to test my hypothesis?


•   Use Case 3: The storm dust paper is vital to my
    research. Can I access the data in the publication
    and change parameters of experiments to
    understand the nature of storm dust?
                                                     www.ci.anl.gov
5
                                                     www.ci.uchicago.edu
Workshop Reflections
•   Its all about data!
                                 People

           Import                                      Import



                    Resources,            Resources,
    Data                                  Services              Data
                    Services



           Export                                 Export




                                                                       www.ci.anl.gov
6
                                                                       www.ci.uchicago.edu
Workshop Reflections-2
•   Discussing technology issues in insolation is a
    recipe for disaster.
    – Access is closely aligned with other subgroups
    – It is important to organize in functional units




                                                    www.ci.anl.gov
7
                                                    www.ci.uchicago.edu
Workshop Reflections-3
•      Challenges will continue



    Social Challenges                                     Changing Requirements/
                                                          Changing Technology
    • Transparency
    • Openness                   Adoption Culture
    • Establishing social ties                            • Real-time data
                                 Adoption is slow         • Cross-disciplinary Data
                                 Sustainability           • High dimensionality
                                 Establishing practices   • Network bandwidth,
                                                          Computational resource,
                                                          Data management constraints

                                                                       www.ci.anl.gov
8
                                                                       www.ci.uchicago.edu
%4
      Principles of Data Sharing in EarthCube
$ ) 4 ) B '* 7$ & / '* -* #$ -"#2& B '4 $ -% -$ -5'+#-* (-$ ! $
               , )          %    -+$ 4 ! '* #1-$
                 & !1, !) & "* +'/ '% !          /
                                                           "* +2+#-* "* (-$ % 8 "#"9, "(-H
                                                                . , )
                                                                           )$#1-$
-! $ 5 6' . &#) & & 0%2$ ! $ , 4 '-! $ "#"$ "* "7-/ -* #$ 6$ & 0'! '* 7$ '%& $ 0'(-+$ ) &
    /,                                                                       2* ) / +-&
                                                                                         $
                                                                                           %$
* A '+() 0-& "* ! $
   $!           6$
 1&/ ) -/ $!4 #, !4
                -$% #30 !
0 &1N!  @
#"$ ! $ * 7$ +$
     "* K) @"'4
  7!*+#3%   $+!-*. !. ) / *+, . -. !
4 3#!/ &*-3/ &(!
 5&1&' -(-*) !*3!&22#, . . !
 !2&*&@  !92(1$ (", ". '4
                 "$          '#6$
$ "#"$ "(-$ $ 1'(1$
  !     +,     '* B
  & "#'0-$ , & "(1-+$ ) &
           ", )           %$
"* ! $ & 0'* 7$ "#"$
       , -+-&         !
   0 1+&. -?, 2!*+&*!
 . !1#36-2-/ $!&!% ->% !/     ,
         *&/ *-&(!, 44-5-, / 5-, . !*3!*+3. , !$#3% !*+&*!&#, !&(#, and reuse
/ $!. % . Lowers the barrier to entry for data sharing&2) !3#$&/ -?, 2!&/ 2!4 / 2, 27
         '                                           1.                                    %        !
         Uses tenets like “metadata ASAP” to encourage submission of data
  !&55, (, #&*-/ $!. 0 &((, #!$#3% !' ) !#, 0 36-/ $!+&#2C &#, !&/ 2!. 34 &#, !36, #+, &2. @ !
                                        1.                                *C                   !P+,
  !4  Enables creation of “Curation7
    3#!&$$#, $&*-3/ !34     !2&*&7 &() . -. 7
                                      !&/     !*33(. !&($3#-*+0among communities, sub-communities
                                                      Co-ops” . 7 32, (. !&/ 2!0 , *+32. !43#!
                                                                 !0
         Serve the NSF !0 , *#-5. !. %
5, !*+&*!% , . !530 0 % -*)DMP requirement =-/ $!&/ 2!4 , 2' &5=!*3!. *3#, !&/ 2!1#30 3*, !
             .               /                 5+!&. !#&/          ,
         Based on a cloud-based infrastructure to support !0 &#=, *!/ , *C 3#=@
, $&*, 2!#, . , &#5+!1#32% !&/ 2!-/ 5#, &. , !*+, !36, #&((!6&(% !34 data discovery, access, and
                                   5*.                               , !*+,                      !
 !530 1(,mining !*3!*+, ![ &#*+!H5-, / 5, !U3((&' 3#&*3#) !6-. -3/ !*+&*!U+#-. !^ ) / / , . 7
             0 , / *&#)                                                                             !
 53((, &$% . !-/ !*+, !I , 2, #&*-3/ !34 &#*+!H5-, / 5, !A 4
             ,                          ![                    / 3#0 &*-3/ !Y&#*/ , #. !K HA O---!+&6, !
                                                                                         [ YN
*-3/ !34 &#*+!. 5-, / 5, !-/ 4
          ![                    3#0 &*-3/ !&/ 2!=/ 3C (, 2$, !#, . 3% . !' 3*+!+3#-?3/ *&(() !&/ 2!
                                                                         #5,
                                                                                                                www.ci.anl.gov
&6, !, . *&' (-. +, 2!. *#3/ $!53((&' 3#&*-3/ !' , *C , , / !*+, !*C 3!&5*-6-*-, . 7 !-((% *#&*, 2!' ) !*+, !
     9                                                                             !&.    .                     www.ci.uchicago.edu
Enabling A Data Sharing Space: The
DataSpace
 • Embrace a “semi-­­-structured” notion

 • Ingest data in raw form,
 Structuring and refinement of the data and metadata.

 • Open, extensible architecture that supports              Import
     Software as a Service (SaaS) model,
     Process for vetting contributed services prior to their incorporation.
     Based on on-demand resources
                                                 Resc,
 • Emphasis on usability instead                 Services           Data
                                                                 DataSpace
 on developing technology/infrastructure

                                                         Export


                                                              &




                                                                              www.ci.anl.gov
10
                                                                              www.ci.uchicago.edu
Post-Charette
•    2 Earthcube PI meets at University of Colorado, Boulder
      – A Concept group meeting,
           o some representation from Community groups,
           o July 10, 2012

      –   A Concept and Community group meeting,
           o   October 4 -5, 2012


•    Primary objective: Convergence
      –   Through Roadmaps
      –   Architecture
      –   On future steps




                                                               www.ci.anl.gov
11
                                                               www.ci.uchicago.edu
Highlights: Summary of Roadmaps
•    Workplace to collaborate,
•    Lower barriers for participation,
•    Openness and extensibility,
•    Feedback and reproducibility,
•    Discovery of materials held by long-tailed
     scientists,
•    Education and reward system for scientists,
•    Cross-domain teams and broad collaboration
•    A new community paradigm.
                                             www.ci.anl.gov
12
                                             www.ci.uchicago.edu
Defining DataSpace: Architecture-1



                      Import



         Resources,
         Services              Data



                 Export




                                      www.ci.anl.gov
13
                                      www.ci.uchicago.edu
Defining DataSpace: Architecture-2




                                     www.ci.anl.gov
14
                                     www.ci.uchicago.edu
Acknowledgements
• Don Middleton, NCAR                  • Dave Fulker, OPeNDAP,
• Robert Gibb, New Zealand Landcare    • Amarnath Gupta, UCS,
  Research                             • Robert Jacob, ANL
• Jeff Heard, U. of North Carolina
                                       • Chris Jenkins, JPL
• Doug Lindholm, U. of Colorado
                                       • Craig Mattocks, U. Miami
• Joseph Baker, Virginia Tech
                                       • Beth Plale, Indiana Univ.
• Anne Wilson, U of Colorado
                                       • Stephen M. Richard, AZGS
• Chris Lynnes, NASA/ESIP Federation
                                       • Sameer Sirugeri, Microsoft
• Karsten Steinhauser, U. of
                                       • Zhangfan Xing, JPL,
  Minnesota
                                       • John Williams, NCAR
• Ruth Duerr, NSIDC



                                                       www.ci.anl.gov
15
                                                       www.ci.uchicago.edu
Thank You!
•    Tanu Malik, tanum@ci.uchicago.edu,
•    Ian Foster, foster@anl.gov



•    Questions?




                                          www.ci.anl.gov
16
                                          www.ci.uchicago.edu

More Related Content

PDF
GeoDataspace: Simplifying Data Management Tasks with Globus
PDF
GlobusWorld 2015
PPTX
Benchmarking Cloud-based Tagging Services
PDF
GEN: A Database Interface Generator for HPC Programs
PDF
LDV: Light-weight Database Virtualization
PPTX
PTU: Using Provenance for Repeatability
PPTX
Data Automation at Light Sources
PDF
Cytoscape Tutorial Session 1 at UT-KBRIN Bioinformatics Summit 2014 (4/11/2014)
GeoDataspace: Simplifying Data Management Tasks with Globus
GlobusWorld 2015
Benchmarking Cloud-based Tagging Services
GEN: A Database Interface Generator for HPC Programs
LDV: Light-weight Database Virtualization
PTU: Using Provenance for Repeatability
Data Automation at Light Sources
Cytoscape Tutorial Session 1 at UT-KBRIN Bioinformatics Summit 2014 (4/11/2014)

What's hot (20)

PDF
Workshop: Introduction to Cytoscape at UT-KBRIN Bioinformatics Summit 2014 (4...
PPTX
Research Automation for Data-Driven Discovery
PPTX
Scaling collaborative data science with Globus and Jupyter
PPTX
Learning Systems for Science
PPTX
Data Tribology: Overcoming Data Friction with Cloud Automation
PPTX
Coding the Continuum
PDF
Introduction to Biological Network Analysis and Visualization with Cytoscape ...
PDF
Data science apps: beyond notebooks
PDF
2019 03-11 bio it-world west genepattern notebook slides
PPTX
The Discovery Cloud: Accelerating Science via Outsourcing and Automation
PPTX
Accelerating Discovery via Science Services
PDF
Building Reproducible Network Data Analysis / Visualization Workflows
PDF
Introduction to Biological Network Analysis and Visualization with Cytoscape ...
PPTX
Big data at experimental facilities
PPTX
Materials Data Facility: Streamlined and automated data sharing, discovery, ...
PDF
Working with Instrument Data (GlobusWorld Tour - UMich)
PPTX
Virtual Science in the Cloud
PPTX
NIH Data Commons Architecture Ideas
PDF
04 open source_tools
PPTX
Big Data Science with H2O in R
Workshop: Introduction to Cytoscape at UT-KBRIN Bioinformatics Summit 2014 (4...
Research Automation for Data-Driven Discovery
Scaling collaborative data science with Globus and Jupyter
Learning Systems for Science
Data Tribology: Overcoming Data Friction with Cloud Automation
Coding the Continuum
Introduction to Biological Network Analysis and Visualization with Cytoscape ...
Data science apps: beyond notebooks
2019 03-11 bio it-world west genepattern notebook slides
The Discovery Cloud: Accelerating Science via Outsourcing and Automation
Accelerating Discovery via Science Services
Building Reproducible Network Data Analysis / Visualization Workflows
Introduction to Biological Network Analysis and Visualization with Cytoscape ...
Big data at experimental facilities
Materials Data Facility: Streamlined and automated data sharing, discovery, ...
Working with Instrument Data (GlobusWorld Tour - UMich)
Virtual Science in the Cloud
NIH Data Commons Architecture Ideas
04 open source_tools
Big Data Science with H2O in R
Ad

Similar to EarthCube DDMA AGU (20)

PPTX
Mexico talk foster march 2012
PDF
DataONE_cobb_hubbub2012_20120924_v05
PPTX
Driving Innovation with Knowledge Sharing and Open Data
PPTX
Rethinking how we provide science IT in an era of massive data but modest bud...
PDF
Nist leaf pressclub_032911
PPTX
Why manage research data?
PPTX
Road to Analytical Stardom
PDF
Software and Education at NSF/ACI
PPTX
Data.gov Overview, August 2012
PPTX
Jeff's what isdatascience
PPT
100615 htap network_brussels
PPTX
NATIONAL INFORMATION SYSTEMS (NIS): Brazilian NIS developed according Lattes ...
PPTX
ExLibris National Library Meeting @ IFLA-Helsinki - Aug 15th 2012
PDF
Graham Pryor
PPTX
RDAP13 John Kunze: The Data Management Ecosystem
PPTX
Michener Plenary PPSR2012
PDF
Digital Curation for Excel (DCXL)
PDF
Gov + Citi-Experts
PDF
Linked Data Approach for Integration of Human Health & Environmental Data
PDF
Brand Niemann09112009
Mexico talk foster march 2012
DataONE_cobb_hubbub2012_20120924_v05
Driving Innovation with Knowledge Sharing and Open Data
Rethinking how we provide science IT in an era of massive data but modest bud...
Nist leaf pressclub_032911
Why manage research data?
Road to Analytical Stardom
Software and Education at NSF/ACI
Data.gov Overview, August 2012
Jeff's what isdatascience
100615 htap network_brussels
NATIONAL INFORMATION SYSTEMS (NIS): Brazilian NIS developed according Lattes ...
ExLibris National Library Meeting @ IFLA-Helsinki - Aug 15th 2012
Graham Pryor
RDAP13 John Kunze: The Data Management Ecosystem
Michener Plenary PPSR2012
Digital Curation for Excel (DCXL)
Gov + Citi-Experts
Linked Data Approach for Integration of Human Health & Environmental Data
Brand Niemann09112009
Ad

EarthCube DDMA AGU

  • 1. A Community Roadmap for Enabling Access to Geosciences Data Tanu Malik Ian Foster Computation Institute University of Chicago and Argonne National Lab. [email protected], [email protected] www.ci.anl.gov www.ci.uchicago.edu
  • 2. Outline • Access Workshop • DataSpace • Post Charette EarthCube www.ci.anl.gov 2 www.ci.uchicago.edu
  • 3. Access is Vital for EarthCube’s Success • The goal of EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. I cant get access to *. It is difficult for me to *. I want to integrate data from other disciplines, but *. Access refers to software and activities that make data and computational resources easily, efficiently and reliably available to scientists across disciplines. www.ci.anl.gov 3 www.ci.uchicago.edu
  • 4. Access Workshop Goals • Encourage discussions on emergent issues: – Use of cloud computing – Exploiting the general principle of moving computation to data – A technological and governance framework for cross-disciplinary access, service architecture, brokering principles, real-time data, uniform authentication and authorization environment, etc. – Improving access to data in publications. • Bring some standardization on research data life cycle issues: – In general, data, once generated, follow a lifecycle---they are stored, described, processed, transformed, accessed, discovered, analyze d, and curated. In organized networks and campaigns, lifecycle stages are often documented and standardized, though vary significantly across networks and campaigns. In individual initiatives, the lifecycle stages continue to remain ad hoc and ill-defined. [RDLM-Workshop2011] • Obtain community consensus on a few use cases www.ci.anl.gov 4 www.ci.uchicago.edu
  • 5. Workshop Activity Outcomes • Use Case 1: Can I access “not large” but “big data” to conduct statistical analysis? • Use Case 2: I have a hypothesis not tied to a physical instrument or geophysical parameter. Can I still access all the data, in an “interactive” fashion to test my hypothesis? • Use Case 3: The storm dust paper is vital to my research. Can I access the data in the publication and change parameters of experiments to understand the nature of storm dust? www.ci.anl.gov 5 www.ci.uchicago.edu
  • 6. Workshop Reflections • Its all about data! People Import Import Resources, Resources, Data Services Data Services Export Export www.ci.anl.gov 6 www.ci.uchicago.edu
  • 7. Workshop Reflections-2 • Discussing technology issues in insolation is a recipe for disaster. – Access is closely aligned with other subgroups – It is important to organize in functional units www.ci.anl.gov 7 www.ci.uchicago.edu
  • 8. Workshop Reflections-3 • Challenges will continue Social Challenges Changing Requirements/ Changing Technology • Transparency • Openness Adoption Culture • Establishing social ties • Real-time data Adoption is slow • Cross-disciplinary Data Sustainability • High dimensionality Establishing practices • Network bandwidth, Computational resource, Data management constraints www.ci.anl.gov 8 www.ci.uchicago.edu
  • 9. %4 Principles of Data Sharing in EarthCube $ ) 4 ) B '* 7$ & / '* -* #$ -"#2& B '4 $ -% -$ -5'+#-* (-$ ! $ , ) % -+$ 4 ! '* #1-$ & !1, !) & "* +'/ '% ! / "* +2+#-* "* (-$ % 8 "#"9, "(-H . , ) )$#1-$ -! $ 5 6' . &#) & & 0%2$ ! $ , 4 '-! $ "#"$ "* "7-/ -* #$ 6$ & 0'! '* 7$ '%& $ 0'(-+$ ) & /, 2* ) / +-& $ %$ * A '+() 0-& "* ! $ $! 6$ 1&/ ) -/ $!4 #, !4 -$% #30 ! 0 &1N! @ #"$ ! $ * 7$ +$ "* K) @"'4 7!*+#3% $+!-*. !. ) / *+, . -. ! 4 3#!/ &*-3/ &(! 5&1&' -(-*) !*3!&22#, . . ! !2&*&@ !92(1$ (", ". '4 "$ '#6$ $ "#"$ "(-$ $ 1'(1$ ! +, '* B & "#'0-$ , & "(1-+$ ) & ", ) %$ "* ! $ & 0'* 7$ "#"$ , -+-& ! 0 1+&. -?, 2!*+&*! . !1#36-2-/ $!&!% ->% !/ ,  *&/ *-&(!, 44-5-, / 5-, . !*3!*+3. , !$#3% !*+&*!&#, !&(#, and reuse / $!. % . Lowers the barrier to entry for data sharing&2) !3#$&/ -?, 2!&/ 2!4 / 2, 27 ' 1. % !  Uses tenets like “metadata ASAP” to encourage submission of data !&55, (, #&*-/ $!. 0 &((, #!$#3% !' ) !#, 0 36-/ $!+&#2C &#, !&/ 2!. 34 &#, !36, #+, &2. @ ! 1. *C !P+, !4  Enables creation of “Curation7 3#!&$$#, $&*-3/ !34 !2&*&7 &() . -. 7 !&/ !*33(. !&($3#-*+0among communities, sub-communities Co-ops” . 7 32, (. !&/ 2!0 , *+32. !43#! !0  Serve the NSF !0 , *#-5. !. % 5, !*+&*!% , . !530 0 % -*)DMP requirement =-/ $!&/ 2!4 , 2' &5=!*3!. *3#, !&/ 2!1#30 3*, ! . / 5+!&. !#&/ ,  Based on a cloud-based infrastructure to support !0 &#=, *!/ , *C 3#=@ , $&*, 2!#, . , &#5+!1#32% !&/ 2!-/ 5#, &. , !*+, !36, #&((!6&(% !34 data discovery, access, and 5*. , !*+, ! !530 1(,mining !*3!*+, ![ &#*+!H5-, / 5, !U3((&' 3#&*3#) !6-. -3/ !*+&*!U+#-. !^ ) / / , . 7 0 , / *&#) ! 53((, &$% . !-/ !*+, !I , 2, #&*-3/ !34 &#*+!H5-, / 5, !A 4 , ![ / 3#0 &*-3/ !Y&#*/ , #. !K HA O---!+&6, ! [ YN *-3/ !34 &#*+!. 5-, / 5, !-/ 4 ![ 3#0 &*-3/ !&/ 2!=/ 3C (, 2$, !#, . 3% . !' 3*+!+3#-?3/ *&(() !&/ 2! #5, www.ci.anl.gov &6, !, . *&' (-. +, 2!. *#3/ $!53((&' 3#&*-3/ !' , *C , , / !*+, !*C 3!&5*-6-*-, . 7 !-((% *#&*, 2!' ) !*+, ! 9 !&. . www.ci.uchicago.edu
  • 10. Enabling A Data Sharing Space: The DataSpace • Embrace a “semi-­­-structured” notion • Ingest data in raw form, Structuring and refinement of the data and metadata. • Open, extensible architecture that supports Import Software as a Service (SaaS) model, Process for vetting contributed services prior to their incorporation. Based on on-demand resources Resc, • Emphasis on usability instead Services Data DataSpace on developing technology/infrastructure Export & www.ci.anl.gov 10 www.ci.uchicago.edu
  • 11. Post-Charette • 2 Earthcube PI meets at University of Colorado, Boulder – A Concept group meeting, o some representation from Community groups, o July 10, 2012 – A Concept and Community group meeting, o October 4 -5, 2012 • Primary objective: Convergence – Through Roadmaps – Architecture – On future steps www.ci.anl.gov 11 www.ci.uchicago.edu
  • 12. Highlights: Summary of Roadmaps • Workplace to collaborate, • Lower barriers for participation, • Openness and extensibility, • Feedback and reproducibility, • Discovery of materials held by long-tailed scientists, • Education and reward system for scientists, • Cross-domain teams and broad collaboration • A new community paradigm. www.ci.anl.gov 12 www.ci.uchicago.edu
  • 13. Defining DataSpace: Architecture-1 Import Resources, Services Data Export www.ci.anl.gov 13 www.ci.uchicago.edu
  • 14. Defining DataSpace: Architecture-2 www.ci.anl.gov 14 www.ci.uchicago.edu
  • 15. Acknowledgements • Don Middleton, NCAR • Dave Fulker, OPeNDAP, • Robert Gibb, New Zealand Landcare • Amarnath Gupta, UCS, Research • Robert Jacob, ANL • Jeff Heard, U. of North Carolina • Chris Jenkins, JPL • Doug Lindholm, U. of Colorado • Craig Mattocks, U. Miami • Joseph Baker, Virginia Tech • Beth Plale, Indiana Univ. • Anne Wilson, U of Colorado • Stephen M. Richard, AZGS • Chris Lynnes, NASA/ESIP Federation • Sameer Sirugeri, Microsoft • Karsten Steinhauser, U. of • Zhangfan Xing, JPL, Minnesota • John Williams, NCAR • Ruth Duerr, NSIDC www.ci.anl.gov 15 www.ci.uchicago.edu
  • 16. Thank You! • Tanu Malik, [email protected], • Ian Foster, [email protected] • Questions? www.ci.anl.gov 16 www.ci.uchicago.edu

Editor's Notes

  • #4: Shared, standard, reusable software interfacesFor disparate data types, disparate storage, varying protocols;Deliver data in user-requested format and translation between standards.Link various kinds of data Integration of high resolution topography scans & geodetic data;Integration of geologic data in deep time;Geo-located, and non-geo-located datasets;Observation and simulation datasets for comparison.Real-time access to data and facilities Capabilities within Cloud, Grid such a shared storage and data spacesIn low bandwidth settingsSimulation and modeling capabilities within HPC, and Science Portals Access refers to software and activities that make data and computational resources easily, efficiently and reliably available to scientists.
  • #5: Access Paradigms: The SaaS model, the brokering approach. The SaaS model increases usage and adoption by making access to data and resources easy and convenient. The brokering approach implements mediation and distribution capabilities in a transparent way. Discuss these paradigms in context of the needs of the publishers of the big data and the needs of the long-tail geoscientist. Issues relating to access control, confidentiality, and the role of governance bodies for emerging access paradigms.Structural Data Integration for Access: issues relating to data a, data models, and standards for data integration. discuss novel data types needed by current science cases and their abstraction to data models and knowledge-based models based on space-time integration.Scalable Resource Access:scalable access to resources, such as HPC systems, cloud-based systems (parallel storage systems, parallel analysis systems as map-reduce [8], Hadoop, SciDB [19]), especially at marginal cost. to store and manipulate data even when the structure of the data is not fully known to the system; associating the cloud with a set of services for recognizing the structure of a wide variety of file types used in the geoscience applications, extracting structure from the data, and traversing files to extract metadata.  
  • #6: However, in cases where researchers are interested in studying a phenomena, can an EarthCube framework provide adequate semantics to express a search query, a generic model for data access of events, and interactively discover ‘events’ within data and perform ‘first look’ analytics, while keeping provenance and history of all analyses?
  • #7: Earlier Resources were at the center, and data was massaged so that the resources and services can access itBut now the data is going to be central and services will feed into it and so the
  • #11: The  Sher  Dataspace  embodies  a  “semi-­‐‑structured”  notion  compared,  on  the  one  hand,  with  rigidly   structured  systems  like,  say,  relational  database  systems,  where  a  data  schema  needs  to  be  specified  first   before  data  can  be  stored  and,  on  the  other  hand  with,  say,  filesystems,  which  are  unstructured  and  do   not  support  any  notion  of  a  schema  or  content-­‐‑based  metadata.  In  Sher,  data  can  be  ingested  as  a  file  (or  a   heterogeneous  package,  e.g.  a  folder)  with  minimal  metadata.  Services  are  provided  for  capturing  this   metadata  as  well  as  the  package  structure.  Further  services  are  provided  for  on-­‐‑going  structuring  and   refinement  of  the  data  and  metadata.  Examples  include  user-­‐‑specified  annotations;  extraction  of information  for  well-­‐‑known  filetypes  (e.g.,  netCDF);  extraction  of  metadata  for  proprietary  file  types   using  software  libraries  (e.g.,  NMR  data);  structuring  of  data  and  associated  information,  e.g.  associating   a  set  of  flat  files  with  a  database  along  with  the  set  of  data  cleaning  routines  and  load  scripts  that  were   used  to  create  the  data,  etc.  Thus,  the  Dataspace  concept  supports  the  model  of  data  being  transformed   incrementally  from  a  relatively  unstructured  state  with  minimal  metadata,  to  a  highly  structured  form   with  rich  metadata,  using  an  array  of  structuring  and  refinement  services.    A  key  enabling  characteristic  of  Sher  is  its  open,  extensible  architecture  that  supports  the  Software  as  a   Service  (SaaS)  model,  thereby  removing  the  burden  of  maintaining  software  and  software  environments   from  the  client  [52].  Using  this  SaaS  model,  Sher  facilitates  creation  of  third-­‐‑party  services  that  can  be   contributed  into  the  system,  i.e.,  a  SherStore,  similar  to  the  Apple  AppStore,  including  the  notion  of   vetting  contributed  services  prior  to  their  incorporation.