1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
Generating Wikipedia by Summarizing Long Sequences
(ICLR 2018)
Toru Fujino, scalab, UTokyo
• . /0
• s ( -:: 8 2 I
• : p 2>2 > goo.gl/wSuuS9 k
• 1 2ILCG B iI rd i
e
• a Ird i I R l
• G ItW )
• B W DC noI2>> > : g
• , ) 1
• ,
•
• : ,
•
•
• :
•
•
• , , ( )
• , ,
1
• .G DC L N
•
• 51 3 2 : 0 6 4 1 (
•
• R
• // 1 2 : /1 1:1 4 1 )
•
•
•
1) Rush et al. “A Neural Attention Model for Sentence Summarization”, EMNLP 2015
2) Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence RNNs and Beyond”, CoNLL 2016
• (,
,, ),( )
• e /
• S
•
/
• 2 A / /
2) Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence RNNs and Beyond”, CoNLL 2016
2)
• 2. 1
/
• 2
• 1 W R
a
•
• 2 G
• 00 . c
•
• 1 d
https://en.wikipedia.org/wiki/Deep_learning
• goo.gl/wSuuS9 ( )
• ,
1
2
3
4
•
•
• -
•
• 3 43 4 Y p
• CD 4 M i
• ac c 43 , 4 a
• d ac c n nY
r Ly
• ot ldA CN m m
3 43 e
• 4 , 3 43 m u
• ) 24 : 42 3 43 m
• s e
3) A. Vaswani et al. “Attention is All You Need”, NIPS 2017
4) N. Shazzer et al. “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, ICLR 2017
• . .
• 3 .)
• .) A
• ( 3 .) : :
3) A. Vaswani et al. “Attention is All You Need”, NIPS 2017
• ( 2
• E !"
= [!%
"
, !'
"
, … , !)"
"
]
• E !+
= [!%
+
, !'
+
, … , !)+
+
]
• ) E
• A : D
5) M.-T. Luong et al. “Effective Approaches to Attention-based Neural Machine translation”, EMNLP 2015
5)
• ) :A
• ( , - , -
• , - , -
• , - , -
• V E
• SQ D K , , E
K - E: AE
•
• A , -
•
• Q a
K A ,
• ( ) e6
• KV A i
• d , A 5/ 2
• S K a)
a) eV
• ) A )
• ( = =
• 1 . 1
• i
• d A 1, 3/
) (
• )
•
/(
4) N. Shazzer et al. “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, ICLR 2017
4)
• 9 L
• 2 / 02 2 / 02 2 /
• 9
• M - - - 9 =
• -1 5
•
• - -
• -
• -
• :
•
)& (
• ( ()
•
•
• M
• / / -,/ p k lsr im e
• W lsr f :
• n s k
• a a > - - /
• - / y
• -2 2 - -, - / Wy
•
• ot C L c A
• L M d L C
• lsr : L

Generating Wikipedia by Summarizing Long Sequences (ICLR 2018)

  • 1.
    1 DEEP LEARNING JP [DLPapers] http://deeplearning.jp/ Generating Wikipedia by Summarizing Long Sequences (ICLR 2018) Toru Fujino, scalab, UTokyo
  • 2.
    • . /0 •s ( -:: 8 2 I • : p 2>2 > goo.gl/wSuuS9 k • 1 2ILCG B iI rd i e • a Ird i I R l • G ItW ) • B W DC noI2>> > : g
  • 3.
    • , )1 • , • • : , • • • : • • • , , ( ) • , ,
  • 4.
    1 • .G DCL N • • 51 3 2 : 0 6 4 1 ( • • R • // 1 2 : /1 1:1 4 1 ) • • • 1) Rush et al. “A Neural Attention Model for Sentence Summarization”, EMNLP 2015 2) Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence RNNs and Beyond”, CoNLL 2016
  • 5.
    • (, ,, ),() • e / • S • / • 2 A / / 2) Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence RNNs and Beyond”, CoNLL 2016 2)
  • 6.
  • 7.
    • 1 WR a • • 2 G • 00 . c • • 1 d https://en.wikipedia.org/wiki/Deep_learning
  • 8.
  • 9.
  • 10.
  • 11.
    • 3 434 Y p • CD 4 M i • ac c 43 , 4 a • d ac c n nY r Ly • ot ldA CN m m 3 43 e • 4 , 3 43 m u • ) 24 : 42 3 43 m • s e 3) A. Vaswani et al. “Attention is All You Need”, NIPS 2017 4) N. Shazzer et al. “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, ICLR 2017
  • 12.
    • . . •3 .) • .) A • ( 3 .) : : 3) A. Vaswani et al. “Attention is All You Need”, NIPS 2017
  • 13.
    • ( 2 •E !" = [!% " , !' " , … , !)" " ] • E !+ = [!% + , !' + , … , !)+ + ] • ) E • A : D 5) M.-T. Luong et al. “Effective Approaches to Attention-based Neural Machine translation”, EMNLP 2015 5)
  • 14.
    • ) :A •( , - , - • , - , - • , - , - • V E • SQ D K , , E K - E: AE
  • 15.
  • 16.
    • Q a KA , • ( ) e6 • KV A i • d , A 5/ 2
  • 17.
    • S Ka) a) eV • ) A ) • ( = = • 1 . 1 • i • d A 1, 3/
  • 18.
    ) ( • ) • /( 4)N. Shazzer et al. “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, ICLR 2017 4)
  • 19.
    • 9 L •2 / 02 2 / 02 2 / • 9 • M - - - 9 = • -1 5
  • 20.
  • 21.
    • - - •- • - • :
  • 22.
  • 24.
  • 26.
  • 27.
    • M • // -,/ p k lsr im e • W lsr f : • n s k • a a > - - / • - / y • -2 2 - -, - / Wy • • ot C L c A • L M d L C • lsr : L