MachineLearning
inPHP
Poland,Warsaw,October2016
"Learn, someday this pain will be useful to you"
Agenda
• How to teach tricks to your PHP
• Application : searching for code in comments
• Complex learning
Speaker
• Damien Seguy
• Exakat CTO
• Static analysis of PHP code
MachineLearning
• Teaching the machine
• Supervised learning : learning then applying
• Application build its own model : training phase
• It applies its model to real cases : applying phase
Applications
• Play go, chess, tic-tac-toe and beat everyone else
• Fraud detection and risk analysis
• Automated translation or automated transcription
• OCR and face recognition
• Medical diagnostics
• Walk, welcome guest at hotels, play football
• Finding good PHP code
PhpApplications
• Recommendations systems
• Predicting user behavior
• SPAM
• conversion user to customer
• ETA
• Detect code in comments
RealUseCase
• Identify code in comments
• Classic problem
• Good problem for machine learning
• Complex, no simple solution
• A lot of data and expertise are available
SupervisedTraining
History
data
Training
ModelReal data Results
SupervisedTraining
History
data
Training
ModelReal data Results
TheFannExtension
• ext/fann (https://pecl.php.net/package/fann)
• Fast Artificial Neural Network
• http://leenissen.dk/fann/wp/
• Neural networks in PHP
• Works on PHP 7, thanks to the hard work of Jakub Zelenka
• https://github.com/bukka/php-fann
NeuralNetworks
• Imitation of nature
• Input layer
• Output layer
• Intermediate layers
NeuralNetworks
• Imitation of nature
• Input layer
• Output layer
• Intermediate layers
<?php 
$num_layers         = 1; 
$num_input          = 5; 
$num_neurons_hidden = 3; 
$num_output         = 1; 
$ann = fann_create_standard($num_layers, $num_input, 
                            $num_neurons_hidden, $num_output); 
// Activation function
fann_set_activation_function_hidden($ann, 
                                  FANN_SIGMOID_SYMMETRIC); 
fann_set_activation_function_output($ann, 
                                   FANN_SIGMOID_SYMMETRIC); 
Initialisation
PreparingData
Raw data Extract Filter Human review Fann ready
• Extract data from raw source
• Remove any useless data from extract
• Apply some human review to filtered data
• Format data for FANN
ExpertAtWork
// Test if the if is in a compressed format
// nie mowie po polsku
// There is a parser specified in `Parser::$KEYWORD_PARSERS`
// $result should exist, regardless of $_message
// TODO : fix this; var_dump($var);
// $a && $b and multidimensional
// numGlyphs + 1
//$annots .= ' /StructParent ';
// $cfg['Servers'][$i]['controlpass'] = 'pmapass';
// if(ob_get_clean()){
InputVector
• 'length' : size of the comment
• 'countDollar' : number of $
• 'countEqual' : number of =
• 'countObjectOperator' number of -> operator ($o->p)
• 'countSemicolon' : number of semi-colon ;
InputData
47 5 1
825 0 0 0 1
0
37 2 0 0 0
0
55 2 2 0 1
1
61 2 1 3 1
1
...
NumberOfInput
NumberOfIncomingData
NumberOfOutgoingData
 * (at your option) any later v
 * 
 * Exakat is distributed in the
 * but WITHOUT ANY WARRANTY; wi
 * MERCHANTABILITY or FITNESS F
 * GNU Affero General Public Li
 * 
 * You should have received a c
 * along with Exakat.  If not, 
 * 
 * The latest code can be found
 * 
*/ 
// $x[3] or $x[] and multidimen
//if ($round == 3) { die('Round
//$this->errors[] = $this->lang
BlackMagic
151
372000
0
// $X[3] Or $X[] And Multidimensional
EXT/FANN
It'sAComment
Training
<?php
$max_epochs         = 500000; 
$desired_error      = 0.001; 
// the actual training
if (fann_train_on_file($ann, 
                       'incoming.data', 
                       $max_epochs, 
                       $epochs_between_reports, 
                       $desired_error)) {
        fann_save($ann, 'model.out'); 
}
fann_destroy($ann); 
?>
Training
• 47 cases
• 5 characteristics
• 3 hidden neurons
• + 5 input + 1 output
• Duration : 5.711 s
Application
History
data
Training
ModelReal data Results
Application
<?php  
$ann = fann_create_from_file('model.out');  
$comment = '//$gvars = $this->getGraphicVars();'; 
$input   = makeVector($comment); 
$results = fann_run($ann, $input);  
if ($results[0] > 0.8) { 
     print ""$comment" -> $results[0] n";  
}  
?>
Results>0.8
• Answer between 0 and 1
• Values ranges from -14 to 0,999
• The closer to 1, the safer. The closer to 0, the safer.
• Is this a percentage? Is this a carrots count ?
• It's a mix of counts…
ScoresDistribution
-16
-12
-8
-4
0
6 0 . 0 0 0 0 0 0
7 0 . 0 0 0 0 0 0
8 0 . 0 0 0 0 0 0
9 0 . 0 0 0 0 0 0
1 0 0 . 0 0 0 0 0 0
RealCases
• Tested on 14093 comments
• Duration 68.01ms
• Found 1960 issues (14%)
0.99999893
// $cfg['Servers'][$i]['controlhost'] = '';    
0.99999928
//$_SESSION['Import_message'] = $message->getDisplay();    
/* 0.99999928
if (defined('SESSIONUPLOAD')) { 
    // write sessionupload back into the loaded PMA session 
    $sessionupload = unserialize(SESSIONUPLOAD); 
    foreach ($sessionupload as $key => $value) { 
        $_SESSION[$key] = $value; 
    } 
    // remove session upload data that are not set anymore 
    foreach ($_SESSION as $key => $value) { 
        if (mb_substr($key, 0, mb_strlen(UPLOAD_PREFIX)) 
            == UPLOAD_PREFIX 
            && ! isset($sessionupload[$key]) 
0.98780382
//LEAD_OFFSET = (0xD800 - (0x10000 >> 10)) = 55232    
0.99361396
// We have server(s) => apply default configuration
    
0.98383027
// Duration = as configured    
0.99999928
// original -> translation mapping    
0.97590065
// = (   59 x 84   ) mm  = (  2.32 x 3.31  ) in 
TRUE POSITIVE FALSE POSITIVE
TRUE NEGATIVE FALSE NEGATIVE
FOUND BY
FANN
(MACHINE
LEARNING)
TARGET (EXPERT WORK)
TRUE
POSITIVE
FALSE
POSITIVE
TRUE
NEGATIVE
FALSE
NEGATIVE
FOUND BY
FANN
TARGET
0.99999923
0.73295981
0.99999851
0.2104115
// $cfg['Servers'][$i]['table_coords'] = 'pma__
//(isset($attribs['height'])?$attribs['height']
// if ($key != null) did not work for index "0"
// the PASSWORD() function  
Results
• 1960 issues
• 50+% of false positive
• With an easy clean, 822 issues reported
• 14k comments, analyzed in 68 ms (367ms in PHP5)
• Total time of coding : 27 mins.
// = (   59 X 84   ) Mm  = (  2.32 X 3.31  ) In    
/* Vim: Set Expandtab Sw=4 Ts=4 Sts=4: */
Learn Better,NotHarder
• Better training data
• Improve characteristics
• Configure the neural network
• Change algorithm
• Automate learning
• Update constantly
Real data
History
data
Training
Model Results
Retroaction
BetterTrainingData
• More data, more data, more data
• Varied situations, real case situations
• Include specific cases
• Experience is capital
• https://homes.cs.washington.edu/~pedrod/papers/
cacm12.pdf
ImproveCharacteristics
• Add new characteristics
• Remove the one that are less interesting
• Find the right set of characteristics
NetworkConfiguration
• Input vector
• Intermediate neurons
• Activation function
• Output vector
0
5 0 0 0
1 0 0 0 0
1 5 0 0 0
2 0 0 0 0
1 2 3 4 5 6 7 8 9 1 0
1 layer 2 layers 3 layers 4 layers
TimeOfTraining(Ms)
ChangeAlgorithm
• First add more data before changing algorithm
• Try cascade2 algorithm from FANN
• 0.6 => 0 found
• 0.5 => 2 found
• Not found by the first algorithm
• Ant colony, genetics algorithm, gravitational search,
artificial immune, nie mowie po polsku, annealing,
harmony search, interior point search, taboo search
FindingTheBest
• Test with 2-4 layers

10 neurons
• Measure results
0
2 2 5 0
4 5 0 0
6 7 5 0
9 0 0 0
1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3
1 layer 2 layers 3 layers 4 layers
DeepLearning
• Chaining the neural networks
• Translators, scorers, auto-encoders
• Unsupervised Learning
OtherTools
• PHP ext/fann
• Langage R
• https://github.com/kachkaev/php-r
• Scikit-learn
• https://github.com/scikit-learn/scikit-learn
• Mahout
• https://mahout.apache.org/
Conclusion
• Machine learning is about data, not code
• There are tools to use it with PHP
• Fast to try, easy results or fast fail
• Use it for complex problems, that accepts error
HTTP ://WWW.EXAKAT.IO
@EXAKAT
HTTP ://WWW.SLIDESH ARE.NET /DSEG UY/
PHP 7.1 P REPARATION WORKSHOP
Dzięki Czemu

Machine learning in php php con poland