Filipo Novo Mór
Supervisor: Dr. César Augusto Missio Marcon
Co-supervisor: Dr. Andrew Rau-Chaplin
www.filipomor.com
master thesis defense
Presentation Outline
1
Introduction
Theoretical
Background
Related
Work
Project
Methodology
Experimental
Results
Conclusions
Filipo Novo Mór
Introduction
 Some concepts
 NoC - Network on Chip
 Tasks
2Filipo Novo Mór
NoC t0 t1
t3
t4
t2
t5
Introduction
 The Task Mapping Problem
3
t0 t1
t3
t4
t2
TASKS
t5
NP-Hard problem!
 power consumption
 communication profile
 execution time
Filipo Novo Mór
Introduction
 Brute-force algorithms are not feasible for solving
NP-Hard problems
 Alternative: to use heuristic methods
 Best solution possible, although there is no
guarantee the best global solution will be found
 Evolutionary Algorithms
 Differential Evolution (DE)
4Filipo Novo Mór
Introduction
 Motivation
 Previous works
 Considering the DE features of:
 Optimization of non-linear problems
 Simplicity and flexibility of its code
 Try finding a more efficient task mapping solver
using DE
5Filipo Novo Mór
Introduction
 Objective
 Implement a new elitist strategy on Single
Objective DE to efficiently solve the Task Mapping
onto NoC Problem
6Filipo Novo Mór
Theoretical Background
7Filipo Novo Mór
Introduction
Theoretical
Background
Related
Work
Project
Methodology
Experimental
Results
Conclusions
Theoretical Background
 Task Mapping onto NoC Problem
 Traditional
approaches:
 Partitioning
 Mapping
Filipo Novo Mór 8
6
Application App1
t1
t4
t2
t6
t5
t7
t9
t10
t11
t12
t22
t16
t20
t21t18 t17
t19
t15 t14
t13
t12t2
t14
t11
t10
t16
t22
t7t19 t9
t1
t15
t13
t3
t20
t17
t21
t4
n1 n2 n3 n4 n5 n6
Communication Infrastructure
Application App3
pA1
n3
1 pA2 pA3 pA4 pA5 pA6
Application App2
t5t18
t6
Partitioning
Mapping
2 3 4 5
n5 n1 n6 n4 n2
t8
t8
t3
C.A.M.Marcon, 2005
Theoretical Background
 Task Mapping Algorithms
Filipo Novo Mór 9
 Network Flow Algorithm
 Shortest Tree Algorithm
 A* Algorithm
 Mathematical Inequalities
 Linear programming
 Evolutionary Algorithms
 Genetic programming
 Simulated Annealing
Theoretical Background
 Evolutionary Algorithms
Filipo Novo Mór 10
SearchingTechniques
EvolutionaryAlgorithmsCalculation Based Enumerative
SingleObjective MultiObjective
SimulatedAnnealing EvolutionaryStrategies Genetic ProgrammingDifferentialEvolution Genetic Algorithms
Theoretical Background
 Differential Evolution (DE)
Filipo Novo Mór 11
vector
initialization
mutation recombination selection
Theoretical Background
 Differential Evolution (DE)
Filipo Novo Mór 12
vector
initialization
mutation recombination selection
 vector initialization
 Population is randomly initialized
 Uniform probabilistic distribution
 If a preliminary solution is available, must add distributed random
deviations to it
 Each individual on the population represent a solution candidate
Theoretical Background
Filipo Novo Mór 13
𝑿𝒊,𝑮 , 𝐢 = {𝟏, 𝟐, … , 𝑵𝑷}
…
NP
Population
(solution candidate)1
(solution candidate)2
(solution candidate)3
(solution candidate)n
Theoretical Background
 Differential Evolution (DE)
Filipo Novo Mór 14
 mutation
 generate a new mutate vector
 a new parameter vector is generated by the DE by adding the
weighted difference between two population vectors to a third vector
vector
initialization
mutation recombination selection
Theoretical Background
Filipo Novo Mór 15
𝒇 𝒙 =
𝒊=𝟏
𝒅
𝒙𝒊
𝟐
D. Bingham, 2015
Theoretical Background
Filipo Novo Mór 16
X2
X1
𝑿 𝒓 𝟐
𝒊
𝑿 𝒓 𝟑
𝒊
𝑿 𝒓 𝟏
𝒊
α
δ
𝑽 𝒊,𝑮 target vector
𝑽𝒊,𝑮+𝟏 = 𝑿 𝒓 𝟏,𝑮
𝒊 + 𝑭 𝑿 𝒓 𝟐,𝑮
𝒊 − 𝑿 𝒓 𝟑,𝑮
𝒊
mutation
factor
Theoretical Background
 Differential Evolution (DE)
Filipo Novo Mór 17
 mutation
 generate a new mutate vector
 a new parameter vector is generated by the DE by adding the
weighted difference between two population vectors to a third vector
 the resulting vector will be used as a donor on the next step
 keeps pacing throughout the solution space
vector
initialization
mutation recombination selection
Theoretical Background
 Differential Evolution (DE)
Filipo Novo Mór 18
 recombination
 enhance the Population diversity
 keep track of good candidate solutions from previous generations
vector
initialization
mutation recombination selection
Theoretical Background
Filipo Novo Mór 19
𝑽 𝒊,𝑮+𝟏
𝑿 𝒊,𝑮
𝑼 𝒋,𝒊,𝑮+𝟏
D
𝑼𝒋,𝒊,𝑮+𝟏 =
𝑽𝒋,𝒊,𝑮+𝟏 if 𝒓𝒂𝒏𝒅𝒋,𝒊 ≤ 𝑪𝑹
𝑿𝒋,𝒊,𝑮 if 𝒓𝒂𝒏𝒅𝒋,𝒊 > 𝑪𝑹
i = 1, 2, … , 𝑁𝑃
j = 1, 2, … , 𝐷
𝑉𝑖,𝐺+1 ≠ 𝑋𝑖,𝐺
Theoretical Background
 Differential Evolution (DE)
Filipo Novo Mór 20
 selection
 only the best individuals will be kept in the Population
vector
initialization
mutation recombination selection
Theoretical Background
Filipo Novo Mór 21
𝑿 𝒊,𝑮
𝑼 𝒋,𝒊,𝑮+𝟏
…
Population
Xi,G
(solution candidate)2
(solution candidate)3
(solution candidate)n
Uj,i,G+1
Theoretical Background
Filipo Novo Mór 22
A - Population
Initialization
Is ui,G+1
better
than xi,G
?
H - Update
Population
B – Population
Evaluation
C - Select
xr1,G, xr2,G and xr3,G
D - Mutation E - Recombination F - Evaluates ui,G+1
no
yes
repeat for n generations
for each individual i in the Population, repeatI - Select
Dominant
Solutions from
Archieve
G
 DE – complete steps
Theoretical Background
 Population Evaluation on DE
Filipo Novo Mór 23
 ≅ 𝑶 𝒏 𝟐
 how deep would be the
impact on the overall
performance?
X2
X1
Filipo Novo Mór 24
Theoretical Background
0
200
400
600
800
1000
1200
1400
1600
50 100 500 1000 2000 5000 7500 10000
milliseconds
N
Dominance Algorithms
Execution Time
M&S BF Naive BF Smart
0
1
2
3
4
5
6
50 100 500 1000 2000 5000 7500 10000
milliseconds
N
Mishra & Sandeep Dominance Algorithm
Execution Time
3
5
21
32
63
146
210
287
0 50 100 150 200 250 300 350
50
100
500
1000
2000
5000
7500
10000
Speedup
N
M&S Dominance Algorithm Tested algorithms:
Brute Force “Naïve”: N2 two independent nested loops.
Brute Force “Smart”: N2 two dependent nested loops.
Mishra & Sandeep: heapsort + 1 outer loop with a dynamic
variant linked list.
Tested in a I5 CPU, 8GB RAM, running Kubuntu 14.04. All tests
performed using “nice -20” prioritization.
To generate the data set:
𝑓1 = 1 − 𝑥2, 𝑥 = 𝑟𝑎𝑛𝑑48()
𝑓2 = 1 − 𝑥2, 𝑥 = 𝑟𝑎𝑛𝑑48()
Filipo Novo Mór 25
Theoretical Background
 Managing the DE archive
 truncate the archive using
the Crowding Distance metric
Kumar and Kesavan, 2015
Theoretical Background
 Simulated Annealing (SA)
Filipo Novo Mór 26
FCE Frankfurt Consulting Engineers GmbH, 2015
Theoretical Background
 NASA Numerical Aerodynamic Simulation (NAS)
Filipo Novo Mór 27
 CG - Conjugate Gradient, irregular memory access and communication
 FT - discrete 3D fast Fourier Transform, all-to-all communication
 IS - Integer Sort, random memory access
 LU - Lower-Upper Gauss-Seidel solver. Large number of short messages
 MG - Multi-Grid on a sequence of meshes, long- and short-distance
communication, memory intensive
These applications were selected because they have task
communication based profiles. Therefore they are ideal for the
purposes of this work.
Related Work
28Filipo Novo Mór
Introduction
Theoretical
Background
Related
Work
Project
Methodology
Experimental
Results
Conclusions
Related Work
• J. R. Ku and S. G. Ku [34]
• Two phases:
• clustered high communicating tasks into partitions
• Used NSGA-II algorithm
• Mapped these partitions onto NoC processors.
• Tried to keep high communicating partitions close to each other
• Used a second version of the NSGA-II algorithm
• 15% more efficient then Physical Mapping Algorithm
• C. Deng et al. [41]
• Changed the classical DE
• Included a sorting step before chromosomes recombination
• For high-level task graphs, free of a target hardware architecture
Filipo Novo Mór 29
Related Work
• Sen Zhao et al. [45]
• Proposed a MODE using an adaptative mutation operator.
• The strategy is changed during runtime to try achieving better solutions on the
fly
• The resulting vector is now compared with the whole population, not only with
your ’father’
• Tested using benchmark ZDT functions only
• D. Das, M. Verma and A. Das [58]
• Hardware/software partitioning problem using DE
• Objective functions: execution time, area cost and communication cost
• DE ran 16% faster than PSO
• Quality of acieved solutions were not described
• Zhuo Qingqi et al. [51]
• Solving Task Mapping problem combining two evolutionary algorithms (not DE)
• Parallel approach for searching the solution space
• MPEG-4 and VOPD (Video Objective Plane Decoder) benchmark applications
• Saves 13% on energy and is 3% more efficient in communication latency
Filipo Novo Mór 30
Project Methodology
31Filipo Novo Mór
Introduction
Theoretical
Background
Related
Work
Project
Methodology
Experimental
Results
Conclusions
Project Methodology
Filipo Novo Mór 32
E A C
F B
D
0
1
2
0 1 2
0 1 2
3 4 5
6 7 8
resulting task map
E A C F B  D  
0 1 2 3 4 5 6 7 8
chromosomes
individual
0
1
2
0 1 2
0 1 2
3 4 5
6 7 8
task mapping step
A
C
E
B
D
F
5
5
3
2
5
3
4
1
Project Methodology
Filipo Novo Mór 33
E A C F B  D  
B   A C  D F E
 C  A B E D  F
F D A    B E C
0 1 2 3 4 5 6 7 8
0
1
2
3
0
1
2
0 1 2
0 1 2
3 4 5
6 7 8
A
C
E
B
D
F
5
5
3
2
5
3
4
1
Project Methodology
 Data Structures Modelling
Filipo Novo Mór 34
0 0 3 4 2
1 3 2 4 4
4 2 2 1 0
3 4 0 1 1
t0 t1 t2 t3 t4
Populationsize(NP)Population Dimension (D)
0
1
2
0 1 2
0 1 2
3 4 5
6 7 8
 D = number of existing tasks
 Adherent to SODE and MODE
Project Methodology
 Communication Volume Metric
Filipo Novo Mór 35
Manhattan Distance
𝑴 𝒅 = 𝒙 𝟏 − 𝒙 𝟐 + 𝒚 𝟏 − 𝒚 𝟐
15
2025
10
10
t0 t1
t3
t4
t2
TASKS
t5
10
20
25 15
0
Candidate Solution 1
fo3(solution 1) = 10+0+25+20+15 = 70
1020
25 15
10
10 10
10
1010
Candidate Solution 2
fo3(solution 2) = 10+10+10+10+10+10+10+25+20+15 = 130
Project Methodology
 Load Balance Metric
Filipo Novo Mór 36
75 t0 t1
t3
t4
t2
TASKS
t5
53
75 50
10
65
Candidate Solution 1 Candidate Solution 2
fo2(solution 1) = 29.45
fo2(solution 2) = 54.11
𝑹𝑴𝑺𝑫 =
𝟏
𝒏
𝒊=𝟏
𝒏
𝑿𝒊 − 𝑿 𝟐
Project Methodology
 Modifying DE: rewarding “good” individuals
 Identify most communicating tasks
 proposal 1:
Reward individuals keeping most communicating tasks
near to each other
 Proposal 2:
 Try generate “good” individuals during mutation or
recombination operations
Filipo Novo Mór 37
Project Methodology
 Identifying most communicating tasks
Filipo Novo Mór 38
A
C
E
B
D
F
5
5
3
2
5
3
4
1
A, B: 5
A, C: 5
B, D: 3
D, F: 1
F, D: 4
C, E: 5
E, A: 3
E, B: 2
A, B: 5
A, C: 5
B, D: 3
D, F: 1+4
C, E: 5
E, A: 3
E, B: 2
A, B, C,E: 5+5+3
B, D, A, E: 3+5+2
D, F, B: 5+3
C, E, A: 5+5
E, A, C, B: 3+5+2
A, B, C,E: 13
B, D, A, E: 10
D, F, B: 8
C, E, A: 10
E, A, C, B: 10
tA, tB, tC and tE
Project Methodology
 Proposal 1
Filipo Novo Mór 39
 Ideal bonus value is 10%
 Different bonus values tend to
stuck the evolution (no more
convergence is reach)
 On average, ±14% of solutions at
the final Generation had been
rewarded
Project Methodology
 Proposal 2
Filipo Novo Mór 40
 Proposal 2 was halted:
 No more convergence after 4
generations on average
 Too few tasks? Too small NoC?
Project Methodology
 Validating the DE (Single Objective)
Filipo Novo Mór 41
SO_Proc36_T36_CR0_50_F0_40_Gen1000_Noc6_6_1_Pop20_Test2016061716017308_ft32x1_v2ap01
Project Methodology
 Validating the DE (Multiple Objective)
Filipo Novo Mór 42
 Function ZDT1
ETH Zürich, 2008
Project Methodology
 Validating the DE (Multiple Objective)
Filipo Novo Mór 43
 Function ZDT2
ETH Zürich, 2008
Project Methodology
 Validating the DE (Multiple Objective)
 Hypervolume metric
Filipo Novo Mór 44
Kian Sheng Lim et al, 2013
Experimental Results
45Filipo Novo Mór
Introduction
Theoretical
Background
Related
Work
Project
Methodology
Experimental
Results
Conclusions
Experimental Results
Parameters Range
NP 10 and 20
G 100, 300, 500, 100, 5000 and 10000
CR 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 06, 0.7, 0.8 and 0.9
F 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 06, 0.7, 0.8 and 0.9
Filipo Novo Mór 46
 Single Objective DE
 NASA NAS applications: IS, CG, FT, MG, LU
 Each test case was executed at least 30 times
 Goal: reduce communication volume
Experimental Results
Filipo Novo Mór 47
 Single Objective DE – NASA NAS benchmark
Experimental Results
Filipo Novo Mór 48
 Single Objective DE – NASA NAS benchmark
0 5000 10000 15000 20000 25000
CG - 10 - 100
CG - 10 - 500
CG - 10 - 5000
CG - 20 - 100
CG - 20 - 500
CG - 20 - 5000
121
367
615
1233
6078
12194
245
735
1226
2462
12124
24049
0 20000 40000 60000
FT - 10 - 100
FT - 10 - 500
FT - 10 - 5000
FT - 20 - 100
FT - 20 - 500
FT - 20 - 5000
269
812
1336
2684
13596
27099
550
1595
2709
5428
26841
53608
0 20000 40000 60000
IS - 10 - 100
IS - 10 - 500
IS - 10 - 5000
IS - 20 - 100
IS - 20 - 500
IS - 20 - 5000
279
842
1388
2769
13765
27320
553
1671
2768
5387
27091
54840
0 5000 10000 15000 20000 25000
LU - 10 - 100
LU - 10 - 500
LU - 10 - 5000
LU - 20 - 100
LU - 20 - 500
LU - 20 - 5000
123
372
607
1170
6076
11490
239
721
1196
2375
11971
24141
0 5000 10000 15000 20000 25000
MG - 10 - 100
MG - 10 - 500
MG - 10 - 5000
MG - 20 - 100
MG - 20 - 500
MG - 20 - 5000
127
375
629
1265
6079
12402
245
742
1253
2474
12173
24000
Experimental Results
Filipo Novo Mór 49
 Single Objective DE – NASA NAS benchmark
5120
11377 11556
5040 5147
0
2000
4000
6000
8000
10000
12000
14000
CG FT IS LU MG
Average Execution Time
by benchmark application
Experimental Results
Filipo Novo Mór 50
 SODE vs CAFES – NASA NAS benchmark
 NASA NAS applications: IS, CG, FT, MG, LU
 Each test case was executed at least 30 times
 CAFES was set to the best execution parameters found during
preparation tests.
 The same formula was used by CAFES and SODE to calculate the
fitness value
 The comparison focused on the quality of the best candidate solutions
 The comparison considered the five best candidate solutions of each
test case for both tested algorithms
Experimental Results
Filipo Novo Mór 51
 SODE vs CAFES – NASA NAS benchmark
969114
989330
2616473
3020149
1124121
1109178
3858343
2503478
655376
485965
SODE
CAFES
SODE
CAFES
SODE
CAFES
SODE
CAFES
SODE
CAFES
CGFTISLUMG
SODE vs CAFES
Top 5 Best Solutions - Mean Values
SODE CAFES SODE CAFES SODE CAFES SODE CAFES SODE CAFES
CG FT IS LU MG
8766 11537 9954
100 914 574
92400
51726
14357
4950
SODE vs CAFES
Top 5 Best Solutions - Standard Deviation
 Mean Values: absolute scalar value for the communication volume
 Standard Deviation: how close are the best solutions from each other
Conclusions
52Filipo Novo Mór
Introduction
Theoretical
Background
Related
Work
Project
Methodology
Experimental
Results
Conclusions
Conclusions
 A new adaptation for the SODE was proposed,
rewarding individuals who kept related
communicating tasks close to each other
 Testes were executed using the NASA NAS
benchmark, showing our implementation was able
to generate feasible solutions.
 Our algorithm was compared to the SA
implementation existing on the CAFES Framework.
 Our implementation reached better solutions on two
of five benchmark applications; achieve similar
results on one application. CAFES achieved better
solution on other two tested applications
 Our implementation has proved to be important on
solving the Task Mapping onto NoC problem,
specially for applications with similar NASA NAS
message exchange profiles
Filipo Novo Mór 53
Filipo Novo Mór
Supervisor: Dr. César Augusto Missio Marcon
Co-supervisor: Dr. Andrew Rau-Chaplin
2016, August 18th
www.filipomor.com
master thesis defense
Thank you!

More Related Content

PDF
Naver learning to rank question answer pairs using hrde-ltc
PPT
The Concurrent Constraint Programming Research Programmes -- Redux (part2)
PPT
The Concurrent Constraint Programming Research Programmes -- Redux
PPT
Game Assignments in computer Science
DOC
352735340 rsh-qam11-tif-12-doc
PDF
Statistical analysis of network data and evolution on GPUs: High-performance ...
DOC
352735343 rsh-qam11-tif-07-doc
PDF
PERFORMANCE ANALYSIS OF PARALLEL POLLARD’S RHO FACTORING ALGORITHM
Naver learning to rank question answer pairs using hrde-ltc
The Concurrent Constraint Programming Research Programmes -- Redux (part2)
The Concurrent Constraint Programming Research Programmes -- Redux
Game Assignments in computer Science
352735340 rsh-qam11-tif-12-doc
Statistical analysis of network data and evolution on GPUs: High-performance ...
352735343 rsh-qam11-tif-07-doc
PERFORMANCE ANALYSIS OF PARALLEL POLLARD’S RHO FACTORING ALGORITHM

What's hot (17)

PDF
Model-Based Reinforcement Learning @NIPS2017
PDF
Cari presentation maurice-tchoupe-joskelngoufo
PDF
Matching networks for one shot learning
PDF
Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks
PPT
gSpan algorithm
PDF
Capitalico / Chart Pattern Matching in Financial Trading Using RNN
PDF
12_applications.pdf
PDF
Predicting organic reaction outcomes with weisfeiler lehman network
PDF
NIPS2017 Few-shot Learning and Graph Convolution
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
PPTX
Example of iterative deepening search & bidirectional search
PDF
QMC: Transition Workshop - Discussion of "Representative Points for Small and...
PPTX
Lgm saarbrucken
PDF
B.Sc.IT: Semester - VI (October - 2016) [IDOL - Revised Course | Question Paper]
PDF
Towards Automatic Code Selection with ppOpen-AT: A Case of FDM - Variants of ...
PDF
Fast Non-Uniform Filtering with Symmetric Weighted Integral Images
PDF
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Model-Based Reinforcement Learning @NIPS2017
Cari presentation maurice-tchoupe-joskelngoufo
Matching networks for one shot learning
Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks
gSpan algorithm
Capitalico / Chart Pattern Matching in Financial Trading Using RNN
12_applications.pdf
Predicting organic reaction outcomes with weisfeiler lehman network
NIPS2017 Few-shot Learning and Graph Convolution
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
Example of iterative deepening search & bidirectional search
QMC: Transition Workshop - Discussion of "Representative Points for Small and...
Lgm saarbrucken
B.Sc.IT: Semester - VI (October - 2016) [IDOL - Revised Course | Question Paper]
Towards Automatic Code Selection with ppOpen-AT: A Case of FDM - Variants of ...
Fast Non-Uniform Filtering with Symmetric Weighted Integral Images
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Ad

Viewers also liked (20)

PPTX
Marketing - Vantagem Relativa
ODP
PPTX
Uma Abordagem Paralela da Evolução Diferencial em GPU
PPTX
Aula Especial - Redes de Computadores A - Sockets
ODP
Gimp 2.8 - Texto Espetacular (Fancy Text)
PPTX
Gimp 2.8 - Efeito Entardecer/Noite
PPTX
Programação C - Aula 1
PPTX
efeito de texto dobrado no Gimp 2.8
PPTX
Programaçao C - Aula 2
PPTX
Desenvolvendo Aplicações de Uso Geral para GPU com CUDA
PPTX
Aula 11 - Terceirização em TI
PPTX
Aula 6 - Redes de Computadores A - Endereçamento IP
PDF
Tutorial Gimp - Colorizar imagem
PDF
Gimp para Iniciantes 1
PDF
Segurança da informação - Forense Computacional
PDF
Curso De Redes
PPTX
Gimp 2.6.7 - Efeito Old Photo
PDF
Conceitos básicos de redes de computadores - Prof. Jefferson Costa
PPTX
Aula 4 - Redes de Computadores A - Camadas Modelos TCP/IP e OSI. Camada Física.
PDF
Fundamentos de redes bradesco escola virtual
Marketing - Vantagem Relativa
Uma Abordagem Paralela da Evolução Diferencial em GPU
Aula Especial - Redes de Computadores A - Sockets
Gimp 2.8 - Texto Espetacular (Fancy Text)
Gimp 2.8 - Efeito Entardecer/Noite
Programação C - Aula 1
efeito de texto dobrado no Gimp 2.8
Programaçao C - Aula 2
Desenvolvendo Aplicações de Uso Geral para GPU com CUDA
Aula 11 - Terceirização em TI
Aula 6 - Redes de Computadores A - Endereçamento IP
Tutorial Gimp - Colorizar imagem
Gimp para Iniciantes 1
Segurança da informação - Forense Computacional
Curso De Redes
Gimp 2.6.7 - Efeito Old Photo
Conceitos básicos de redes de computadores - Prof. Jefferson Costa
Aula 4 - Redes de Computadores A - Camadas Modelos TCP/IP e OSI. Camada Física.
Fundamentos de redes bradesco escola virtual
Ad

Similar to Master Thesis Defense (20)

PDF
Improving Genetic Algorithm (GA) based NoC mapping algorithm using a formal ...
PDF
MULTIPROCESSOR SCHEDULING AND PERFORMANCE EVALUATION USING ELITIST NON DOMINA...
PDF
Algorithm Design.pdf
PDF
On the Value of User Preferences in Search-Based Software Engineering:
PPTX
DAA_Hard_Problems_(4th_Sem).pptxxxxxxxxx
PPTX
Final Presentation - Edan&Itzik
PPT
Fitness Inheritance in Evolutionary and
PPT
Genetic Algorithms
PPTX
SIRG-BSU_2.pptx
PPT
Genetic Algorithms-1.ppt
PDF
Algorithm Design
PPTX
Review And Evaluations Of Shortest Path Algorithms
PPTX
Review and evaluations of shortest path algorithms
PPSX
9th ITAB 2009 Parallel-MEGA
PPSX
University Course Timetabling by using Multi Objective Genetic Algortihms
PDF
ABOU-NAOUM_AMANE_ROUGUI_Article
PDF
Multi-Objective Optimization in Rule-based Design Space Exploration (ASE 2014)
PDF
P2P EC: A study of viability
Improving Genetic Algorithm (GA) based NoC mapping algorithm using a formal ...
MULTIPROCESSOR SCHEDULING AND PERFORMANCE EVALUATION USING ELITIST NON DOMINA...
Algorithm Design.pdf
On the Value of User Preferences in Search-Based Software Engineering:
DAA_Hard_Problems_(4th_Sem).pptxxxxxxxxx
Final Presentation - Edan&Itzik
Fitness Inheritance in Evolutionary and
Genetic Algorithms
SIRG-BSU_2.pptx
Genetic Algorithms-1.ppt
Algorithm Design
Review And Evaluations Of Shortest Path Algorithms
Review and evaluations of shortest path algorithms
9th ITAB 2009 Parallel-MEGA
University Course Timetabling by using Multi Objective Genetic Algortihms
ABOU-NAOUM_AMANE_ROUGUI_Article
Multi-Objective Optimization in Rule-based Design Space Exploration (ASE 2014)
P2P EC: A study of viability

More from Filipo Mór (20)

PPTX
Auditoria e Segurança em TI - Aula 4
PPTX
Aula 3 - Redes de Computadores A - Administração da Internet. Modelo TCP/IP.
PPTX
Auditoria e Segurança em TI - Aula 3
PPTX
Aula 1 - Redes de Computadores A - Conceitos Básicos.
PPTX
Aula 1 - Conceitos de TI e PDTI
PPTX
Curso "Desenvolvendo aplicações de uso geral para GPU com CUDA".
PPTX
Aula 12 - Gestão do Conhecimento
PPTX
Aula 10 - Acompanhamento de Projetos
PPTX
Aula 9 - Controle de Atividades e Custos
PPTX
Aula 8 - Técnicas de Negociação e Gestão de RH
PPTX
Aula 7 - Técnicas de Planejamento
PPTX
Aula 6 - O Processo Decisório e a Inteligência Competitiva de TI
PPTX
Aula 5 - A TI nas Organizações
PDF
Parallelization Strategies for Implementing Nbody Codes on Multicore Architec...
PPTX
Aula 3 - Gestão de Processos, BPM e Desenvolvimento de Sistemas
PPTX
Aula 4 - O Profissional de TI
PPTX
GPU Performance Prediction Using High-level Application Models
PPTX
Aula 2 - Estratégia Competitivas de TI
PPTX
Aula 1 - Conceitos de TI e PDTI
PPTX
GPU Programming with CUDA
Auditoria e Segurança em TI - Aula 4
Aula 3 - Redes de Computadores A - Administração da Internet. Modelo TCP/IP.
Auditoria e Segurança em TI - Aula 3
Aula 1 - Redes de Computadores A - Conceitos Básicos.
Aula 1 - Conceitos de TI e PDTI
Curso "Desenvolvendo aplicações de uso geral para GPU com CUDA".
Aula 12 - Gestão do Conhecimento
Aula 10 - Acompanhamento de Projetos
Aula 9 - Controle de Atividades e Custos
Aula 8 - Técnicas de Negociação e Gestão de RH
Aula 7 - Técnicas de Planejamento
Aula 6 - O Processo Decisório e a Inteligência Competitiva de TI
Aula 5 - A TI nas Organizações
Parallelization Strategies for Implementing Nbody Codes on Multicore Architec...
Aula 3 - Gestão de Processos, BPM e Desenvolvimento de Sistemas
Aula 4 - O Profissional de TI
GPU Performance Prediction Using High-level Application Models
Aula 2 - Estratégia Competitivas de TI
Aula 1 - Conceitos de TI e PDTI
GPU Programming with CUDA

Recently uploaded (20)

PDF
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
PDF
ECG Practice from Passmedicine for MRCP Part 2 2024.pdf
PDF
2019UpdateAHAASAAISGuidelineSlideDeckrevisedADL12919.pdf
PPT
Cell Structure Description and Functions
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPT
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
PPTX
TORCH INFECTIONS in pregnancy with toxoplasma
PPTX
02_OpenStax_Chemistry_Slides_20180406 copy.pptx
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PDF
Chapter 3 - Human Development Poweroint presentation
PPTX
Platelet disorders - thrombocytopenia.pptx
PPT
Animal tissues, epithelial, muscle, connective, nervous tissue
PPTX
BPharm_Hospital_Organization_Complete_PPT.pptx
PDF
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
Presentation1 INTRODUCTION TO ENZYMES.pptx
PPTX
AP CHEM 1.2 Mass spectroscopy of elements
PPTX
congenital heart diseases of burao university.pptx
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
ECG Practice from Passmedicine for MRCP Part 2 2024.pdf
2019UpdateAHAASAAISGuidelineSlideDeckrevisedADL12919.pdf
Cell Structure Description and Functions
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
TORCH INFECTIONS in pregnancy with toxoplasma
02_OpenStax_Chemistry_Slides_20180406 copy.pptx
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
Chapter 3 - Human Development Poweroint presentation
Platelet disorders - thrombocytopenia.pptx
Animal tissues, epithelial, muscle, connective, nervous tissue
BPharm_Hospital_Organization_Complete_PPT.pptx
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
Presentation1 INTRODUCTION TO ENZYMES.pptx
AP CHEM 1.2 Mass spectroscopy of elements
congenital heart diseases of burao university.pptx

Master Thesis Defense

  • 1. Filipo Novo Mór Supervisor: Dr. César Augusto Missio Marcon Co-supervisor: Dr. Andrew Rau-Chaplin www.filipomor.com master thesis defense
  • 3. Introduction  Some concepts  NoC - Network on Chip  Tasks 2Filipo Novo Mór NoC t0 t1 t3 t4 t2 t5
  • 4. Introduction  The Task Mapping Problem 3 t0 t1 t3 t4 t2 TASKS t5 NP-Hard problem!  power consumption  communication profile  execution time Filipo Novo Mór
  • 5. Introduction  Brute-force algorithms are not feasible for solving NP-Hard problems  Alternative: to use heuristic methods  Best solution possible, although there is no guarantee the best global solution will be found  Evolutionary Algorithms  Differential Evolution (DE) 4Filipo Novo Mór
  • 6. Introduction  Motivation  Previous works  Considering the DE features of:  Optimization of non-linear problems  Simplicity and flexibility of its code  Try finding a more efficient task mapping solver using DE 5Filipo Novo Mór
  • 7. Introduction  Objective  Implement a new elitist strategy on Single Objective DE to efficiently solve the Task Mapping onto NoC Problem 6Filipo Novo Mór
  • 8. Theoretical Background 7Filipo Novo Mór Introduction Theoretical Background Related Work Project Methodology Experimental Results Conclusions
  • 9. Theoretical Background  Task Mapping onto NoC Problem  Traditional approaches:  Partitioning  Mapping Filipo Novo Mór 8 6 Application App1 t1 t4 t2 t6 t5 t7 t9 t10 t11 t12 t22 t16 t20 t21t18 t17 t19 t15 t14 t13 t12t2 t14 t11 t10 t16 t22 t7t19 t9 t1 t15 t13 t3 t20 t17 t21 t4 n1 n2 n3 n4 n5 n6 Communication Infrastructure Application App3 pA1 n3 1 pA2 pA3 pA4 pA5 pA6 Application App2 t5t18 t6 Partitioning Mapping 2 3 4 5 n5 n1 n6 n4 n2 t8 t8 t3 C.A.M.Marcon, 2005
  • 10. Theoretical Background  Task Mapping Algorithms Filipo Novo Mór 9  Network Flow Algorithm  Shortest Tree Algorithm  A* Algorithm  Mathematical Inequalities  Linear programming  Evolutionary Algorithms  Genetic programming  Simulated Annealing
  • 11. Theoretical Background  Evolutionary Algorithms Filipo Novo Mór 10 SearchingTechniques EvolutionaryAlgorithmsCalculation Based Enumerative SingleObjective MultiObjective SimulatedAnnealing EvolutionaryStrategies Genetic ProgrammingDifferentialEvolution Genetic Algorithms
  • 12. Theoretical Background  Differential Evolution (DE) Filipo Novo Mór 11 vector initialization mutation recombination selection
  • 13. Theoretical Background  Differential Evolution (DE) Filipo Novo Mór 12 vector initialization mutation recombination selection  vector initialization  Population is randomly initialized  Uniform probabilistic distribution  If a preliminary solution is available, must add distributed random deviations to it  Each individual on the population represent a solution candidate
  • 14. Theoretical Background Filipo Novo Mór 13 𝑿𝒊,𝑮 , 𝐢 = {𝟏, 𝟐, … , 𝑵𝑷} … NP Population (solution candidate)1 (solution candidate)2 (solution candidate)3 (solution candidate)n
  • 15. Theoretical Background  Differential Evolution (DE) Filipo Novo Mór 14  mutation  generate a new mutate vector  a new parameter vector is generated by the DE by adding the weighted difference between two population vectors to a third vector vector initialization mutation recombination selection
  • 16. Theoretical Background Filipo Novo Mór 15 𝒇 𝒙 = 𝒊=𝟏 𝒅 𝒙𝒊 𝟐 D. Bingham, 2015
  • 17. Theoretical Background Filipo Novo Mór 16 X2 X1 𝑿 𝒓 𝟐 𝒊 𝑿 𝒓 𝟑 𝒊 𝑿 𝒓 𝟏 𝒊 α δ 𝑽 𝒊,𝑮 target vector 𝑽𝒊,𝑮+𝟏 = 𝑿 𝒓 𝟏,𝑮 𝒊 + 𝑭 𝑿 𝒓 𝟐,𝑮 𝒊 − 𝑿 𝒓 𝟑,𝑮 𝒊 mutation factor
  • 18. Theoretical Background  Differential Evolution (DE) Filipo Novo Mór 17  mutation  generate a new mutate vector  a new parameter vector is generated by the DE by adding the weighted difference between two population vectors to a third vector  the resulting vector will be used as a donor on the next step  keeps pacing throughout the solution space vector initialization mutation recombination selection
  • 19. Theoretical Background  Differential Evolution (DE) Filipo Novo Mór 18  recombination  enhance the Population diversity  keep track of good candidate solutions from previous generations vector initialization mutation recombination selection
  • 20. Theoretical Background Filipo Novo Mór 19 𝑽 𝒊,𝑮+𝟏 𝑿 𝒊,𝑮 𝑼 𝒋,𝒊,𝑮+𝟏 D 𝑼𝒋,𝒊,𝑮+𝟏 = 𝑽𝒋,𝒊,𝑮+𝟏 if 𝒓𝒂𝒏𝒅𝒋,𝒊 ≤ 𝑪𝑹 𝑿𝒋,𝒊,𝑮 if 𝒓𝒂𝒏𝒅𝒋,𝒊 > 𝑪𝑹 i = 1, 2, … , 𝑁𝑃 j = 1, 2, … , 𝐷 𝑉𝑖,𝐺+1 ≠ 𝑋𝑖,𝐺
  • 21. Theoretical Background  Differential Evolution (DE) Filipo Novo Mór 20  selection  only the best individuals will be kept in the Population vector initialization mutation recombination selection
  • 22. Theoretical Background Filipo Novo Mór 21 𝑿 𝒊,𝑮 𝑼 𝒋,𝒊,𝑮+𝟏 … Population Xi,G (solution candidate)2 (solution candidate)3 (solution candidate)n Uj,i,G+1
  • 23. Theoretical Background Filipo Novo Mór 22 A - Population Initialization Is ui,G+1 better than xi,G ? H - Update Population B – Population Evaluation C - Select xr1,G, xr2,G and xr3,G D - Mutation E - Recombination F - Evaluates ui,G+1 no yes repeat for n generations for each individual i in the Population, repeatI - Select Dominant Solutions from Archieve G  DE – complete steps
  • 24. Theoretical Background  Population Evaluation on DE Filipo Novo Mór 23  ≅ 𝑶 𝒏 𝟐  how deep would be the impact on the overall performance? X2 X1
  • 25. Filipo Novo Mór 24 Theoretical Background 0 200 400 600 800 1000 1200 1400 1600 50 100 500 1000 2000 5000 7500 10000 milliseconds N Dominance Algorithms Execution Time M&S BF Naive BF Smart 0 1 2 3 4 5 6 50 100 500 1000 2000 5000 7500 10000 milliseconds N Mishra & Sandeep Dominance Algorithm Execution Time 3 5 21 32 63 146 210 287 0 50 100 150 200 250 300 350 50 100 500 1000 2000 5000 7500 10000 Speedup N M&S Dominance Algorithm Tested algorithms: Brute Force “Naïve”: N2 two independent nested loops. Brute Force “Smart”: N2 two dependent nested loops. Mishra & Sandeep: heapsort + 1 outer loop with a dynamic variant linked list. Tested in a I5 CPU, 8GB RAM, running Kubuntu 14.04. All tests performed using “nice -20” prioritization. To generate the data set: 𝑓1 = 1 − 𝑥2, 𝑥 = 𝑟𝑎𝑛𝑑48() 𝑓2 = 1 − 𝑥2, 𝑥 = 𝑟𝑎𝑛𝑑48()
  • 26. Filipo Novo Mór 25 Theoretical Background  Managing the DE archive  truncate the archive using the Crowding Distance metric Kumar and Kesavan, 2015
  • 27. Theoretical Background  Simulated Annealing (SA) Filipo Novo Mór 26 FCE Frankfurt Consulting Engineers GmbH, 2015
  • 28. Theoretical Background  NASA Numerical Aerodynamic Simulation (NAS) Filipo Novo Mór 27  CG - Conjugate Gradient, irregular memory access and communication  FT - discrete 3D fast Fourier Transform, all-to-all communication  IS - Integer Sort, random memory access  LU - Lower-Upper Gauss-Seidel solver. Large number of short messages  MG - Multi-Grid on a sequence of meshes, long- and short-distance communication, memory intensive These applications were selected because they have task communication based profiles. Therefore they are ideal for the purposes of this work.
  • 29. Related Work 28Filipo Novo Mór Introduction Theoretical Background Related Work Project Methodology Experimental Results Conclusions
  • 30. Related Work • J. R. Ku and S. G. Ku [34] • Two phases: • clustered high communicating tasks into partitions • Used NSGA-II algorithm • Mapped these partitions onto NoC processors. • Tried to keep high communicating partitions close to each other • Used a second version of the NSGA-II algorithm • 15% more efficient then Physical Mapping Algorithm • C. Deng et al. [41] • Changed the classical DE • Included a sorting step before chromosomes recombination • For high-level task graphs, free of a target hardware architecture Filipo Novo Mór 29
  • 31. Related Work • Sen Zhao et al. [45] • Proposed a MODE using an adaptative mutation operator. • The strategy is changed during runtime to try achieving better solutions on the fly • The resulting vector is now compared with the whole population, not only with your ’father’ • Tested using benchmark ZDT functions only • D. Das, M. Verma and A. Das [58] • Hardware/software partitioning problem using DE • Objective functions: execution time, area cost and communication cost • DE ran 16% faster than PSO • Quality of acieved solutions were not described • Zhuo Qingqi et al. [51] • Solving Task Mapping problem combining two evolutionary algorithms (not DE) • Parallel approach for searching the solution space • MPEG-4 and VOPD (Video Objective Plane Decoder) benchmark applications • Saves 13% on energy and is 3% more efficient in communication latency Filipo Novo Mór 30
  • 32. Project Methodology 31Filipo Novo Mór Introduction Theoretical Background Related Work Project Methodology Experimental Results Conclusions
  • 33. Project Methodology Filipo Novo Mór 32 E A C F B D 0 1 2 0 1 2 0 1 2 3 4 5 6 7 8 resulting task map E A C F B  D   0 1 2 3 4 5 6 7 8 chromosomes individual 0 1 2 0 1 2 0 1 2 3 4 5 6 7 8 task mapping step A C E B D F 5 5 3 2 5 3 4 1
  • 34. Project Methodology Filipo Novo Mór 33 E A C F B  D   B   A C  D F E  C  A B E D  F F D A    B E C 0 1 2 3 4 5 6 7 8 0 1 2 3 0 1 2 0 1 2 0 1 2 3 4 5 6 7 8 A C E B D F 5 5 3 2 5 3 4 1
  • 35. Project Methodology  Data Structures Modelling Filipo Novo Mór 34 0 0 3 4 2 1 3 2 4 4 4 2 2 1 0 3 4 0 1 1 t0 t1 t2 t3 t4 Populationsize(NP)Population Dimension (D) 0 1 2 0 1 2 0 1 2 3 4 5 6 7 8  D = number of existing tasks  Adherent to SODE and MODE
  • 36. Project Methodology  Communication Volume Metric Filipo Novo Mór 35 Manhattan Distance 𝑴 𝒅 = 𝒙 𝟏 − 𝒙 𝟐 + 𝒚 𝟏 − 𝒚 𝟐 15 2025 10 10 t0 t1 t3 t4 t2 TASKS t5 10 20 25 15 0 Candidate Solution 1 fo3(solution 1) = 10+0+25+20+15 = 70 1020 25 15 10 10 10 10 1010 Candidate Solution 2 fo3(solution 2) = 10+10+10+10+10+10+10+25+20+15 = 130
  • 37. Project Methodology  Load Balance Metric Filipo Novo Mór 36 75 t0 t1 t3 t4 t2 TASKS t5 53 75 50 10 65 Candidate Solution 1 Candidate Solution 2 fo2(solution 1) = 29.45 fo2(solution 2) = 54.11 𝑹𝑴𝑺𝑫 = 𝟏 𝒏 𝒊=𝟏 𝒏 𝑿𝒊 − 𝑿 𝟐
  • 38. Project Methodology  Modifying DE: rewarding “good” individuals  Identify most communicating tasks  proposal 1: Reward individuals keeping most communicating tasks near to each other  Proposal 2:  Try generate “good” individuals during mutation or recombination operations Filipo Novo Mór 37
  • 39. Project Methodology  Identifying most communicating tasks Filipo Novo Mór 38 A C E B D F 5 5 3 2 5 3 4 1 A, B: 5 A, C: 5 B, D: 3 D, F: 1 F, D: 4 C, E: 5 E, A: 3 E, B: 2 A, B: 5 A, C: 5 B, D: 3 D, F: 1+4 C, E: 5 E, A: 3 E, B: 2 A, B, C,E: 5+5+3 B, D, A, E: 3+5+2 D, F, B: 5+3 C, E, A: 5+5 E, A, C, B: 3+5+2 A, B, C,E: 13 B, D, A, E: 10 D, F, B: 8 C, E, A: 10 E, A, C, B: 10 tA, tB, tC and tE
  • 40. Project Methodology  Proposal 1 Filipo Novo Mór 39  Ideal bonus value is 10%  Different bonus values tend to stuck the evolution (no more convergence is reach)  On average, ±14% of solutions at the final Generation had been rewarded
  • 41. Project Methodology  Proposal 2 Filipo Novo Mór 40  Proposal 2 was halted:  No more convergence after 4 generations on average  Too few tasks? Too small NoC?
  • 42. Project Methodology  Validating the DE (Single Objective) Filipo Novo Mór 41 SO_Proc36_T36_CR0_50_F0_40_Gen1000_Noc6_6_1_Pop20_Test2016061716017308_ft32x1_v2ap01
  • 43. Project Methodology  Validating the DE (Multiple Objective) Filipo Novo Mór 42  Function ZDT1 ETH Zürich, 2008
  • 44. Project Methodology  Validating the DE (Multiple Objective) Filipo Novo Mór 43  Function ZDT2 ETH Zürich, 2008
  • 45. Project Methodology  Validating the DE (Multiple Objective)  Hypervolume metric Filipo Novo Mór 44 Kian Sheng Lim et al, 2013
  • 46. Experimental Results 45Filipo Novo Mór Introduction Theoretical Background Related Work Project Methodology Experimental Results Conclusions
  • 47. Experimental Results Parameters Range NP 10 and 20 G 100, 300, 500, 100, 5000 and 10000 CR 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 06, 0.7, 0.8 and 0.9 F 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 06, 0.7, 0.8 and 0.9 Filipo Novo Mór 46  Single Objective DE  NASA NAS applications: IS, CG, FT, MG, LU  Each test case was executed at least 30 times  Goal: reduce communication volume
  • 48. Experimental Results Filipo Novo Mór 47  Single Objective DE – NASA NAS benchmark
  • 49. Experimental Results Filipo Novo Mór 48  Single Objective DE – NASA NAS benchmark 0 5000 10000 15000 20000 25000 CG - 10 - 100 CG - 10 - 500 CG - 10 - 5000 CG - 20 - 100 CG - 20 - 500 CG - 20 - 5000 121 367 615 1233 6078 12194 245 735 1226 2462 12124 24049 0 20000 40000 60000 FT - 10 - 100 FT - 10 - 500 FT - 10 - 5000 FT - 20 - 100 FT - 20 - 500 FT - 20 - 5000 269 812 1336 2684 13596 27099 550 1595 2709 5428 26841 53608 0 20000 40000 60000 IS - 10 - 100 IS - 10 - 500 IS - 10 - 5000 IS - 20 - 100 IS - 20 - 500 IS - 20 - 5000 279 842 1388 2769 13765 27320 553 1671 2768 5387 27091 54840 0 5000 10000 15000 20000 25000 LU - 10 - 100 LU - 10 - 500 LU - 10 - 5000 LU - 20 - 100 LU - 20 - 500 LU - 20 - 5000 123 372 607 1170 6076 11490 239 721 1196 2375 11971 24141 0 5000 10000 15000 20000 25000 MG - 10 - 100 MG - 10 - 500 MG - 10 - 5000 MG - 20 - 100 MG - 20 - 500 MG - 20 - 5000 127 375 629 1265 6079 12402 245 742 1253 2474 12173 24000
  • 50. Experimental Results Filipo Novo Mór 49  Single Objective DE – NASA NAS benchmark 5120 11377 11556 5040 5147 0 2000 4000 6000 8000 10000 12000 14000 CG FT IS LU MG Average Execution Time by benchmark application
  • 51. Experimental Results Filipo Novo Mór 50  SODE vs CAFES – NASA NAS benchmark  NASA NAS applications: IS, CG, FT, MG, LU  Each test case was executed at least 30 times  CAFES was set to the best execution parameters found during preparation tests.  The same formula was used by CAFES and SODE to calculate the fitness value  The comparison focused on the quality of the best candidate solutions  The comparison considered the five best candidate solutions of each test case for both tested algorithms
  • 52. Experimental Results Filipo Novo Mór 51  SODE vs CAFES – NASA NAS benchmark 969114 989330 2616473 3020149 1124121 1109178 3858343 2503478 655376 485965 SODE CAFES SODE CAFES SODE CAFES SODE CAFES SODE CAFES CGFTISLUMG SODE vs CAFES Top 5 Best Solutions - Mean Values SODE CAFES SODE CAFES SODE CAFES SODE CAFES SODE CAFES CG FT IS LU MG 8766 11537 9954 100 914 574 92400 51726 14357 4950 SODE vs CAFES Top 5 Best Solutions - Standard Deviation  Mean Values: absolute scalar value for the communication volume  Standard Deviation: how close are the best solutions from each other
  • 54. Conclusions  A new adaptation for the SODE was proposed, rewarding individuals who kept related communicating tasks close to each other  Testes were executed using the NASA NAS benchmark, showing our implementation was able to generate feasible solutions.  Our algorithm was compared to the SA implementation existing on the CAFES Framework.  Our implementation reached better solutions on two of five benchmark applications; achieve similar results on one application. CAFES achieved better solution on other two tested applications  Our implementation has proved to be important on solving the Task Mapping onto NoC problem, specially for applications with similar NASA NAS message exchange profiles Filipo Novo Mór 53
  • 55. Filipo Novo Mór Supervisor: Dr. César Augusto Missio Marcon Co-supervisor: Dr. Andrew Rau-Chaplin 2016, August 18th www.filipomor.com master thesis defense Thank you!

Editor's Notes

  • #51: FT e IS COM MUITAS TROCAS DE MENSAGENS
  • #52: FT e IS COM MUITAS TROCAS DE MENSAGENS
  • #53: FT e IS COM MUITAS TROCAS DE MENSAGENS