Modelling
Data in Neo4j
plus a few best practices and lessons learned
by Michal Bachman

GraphAware

TM
GraphAware

TM
Contents

GraphAware

TM
Contents
Quick intro

GraphAware

TM
Contents
Quick intro
1x mistake

GraphAware

TM
Contents
Quick intro
1x mistake
1x experiment

GraphAware

TM
Contents
Quick intro
1x mistake
1x experiment
1x FAQ

GraphAware

TM
Contents
Quick intro
1x mistake
1x experiment
1x FAQ
1x case-study

GraphAware

TM
Data Has Changed

GraphAware

TM
Data Has Changed
Larger Volumes

GraphAware

TM
Data Has Changed
Larger Volumes
Less Structured

GraphAware

TM
Data Has Changed
Larger Volumes
Less Structured
More Interconnected

GraphAware

TM
Data Has Changed
Larger Volumes
Less Structured
More Interconnected
Polygot Persistence

GraphAware

TM
NoSQL

GraphAware

TM
NoSQL
Key-Value Stores

GraphAware

TM
NoSQL
Key-Value Stores
Column-Family Stores

GraphAware

TM
NoSQL
Key-Value Stores
Column-Family Stores
Document Databases

GraphAware

TM
NoSQL
Key-Value Stores
Column-Family Stores
Document Databases
Graph Databases

GraphAware

TM
Graph Databases
The first three use aggregate data
models, graph databases work with simple
records and complex interconnections.

GraphAware

TM
Neo4j

GraphAware

TM
Neo4j
Open-source

GraphAware

TM
Neo4j
Open-source
Schema-less

GraphAware

TM
Neo4j
Open-source
Schema-less
JVM-based

GraphAware

TM
Neo4j
Open-source
Schema-less
JVM-based
Fully ACID

GraphAware

TM
Property Graph

name: "Triller"
type: "genre"

name: "Drama"
type: "genre"

IS
_

OF
_G
EN

RE

ED
CT

ipsum

IS_A

IS_

A

_
IS

name: "Pulp Fiction"
year: 1994
type: "movie"

name: "Director"
type: "occupation"

A

name: "Actor"
type: "occupation"

IS_OF_GENRE

RE
DI

A

ED
CT

le:
ro
name: "Samuel L. Jackson"
type: "person"

name: "Quentin Tarantino"
type: "person"

_IN

imm
"J

Dim
ie

ck"
mi

N
D_I
ld"
TE
AC
nfie
Win
les
"J u
:
ole
r

GraphAware

TM
Traversal

name: "Triller"
type: "genre"

name: "Drama"
type: "genre"

IS
_

OF
_G
EN

RE

IS_

IS_A

ED
CT

A

_
IS

name: "Pulp Fiction"
year: 1994
type: "movie"

name: "Director"
type: "occupation"

A

name: "Actor"
type: "occupation"

IS_OF_GENRE

E
IR
D

A

ED
CT

le:
ro
name: "Samuel L. Jackson"
type: "person"

_IN

imm
"J

name: "Quentin Tarantino"
type: "person"

Dim
ie

"
ick
m

_IN
D

A

:
ole
r

E
CT

les
"J u

"
eld
fi
inn
W

GraphAware

TM
Modeling Data as Graphs
There is no single correct way.

GraphAware

TM
One Way

name: "Triller"
type: "genre"

name: "Drama"
type: "genre"

IS
_

OF
_G
EN

RE

ED
CT

ipsum

IS_A

IS_

A

_
IS

name: "Pulp Fiction"
year: 1994
type: "movie"

name: "Director"
type: "occupation"

A

name: "Actor"
type: "occupation"

IS_OF_GENRE

RE
DI

A

ED
CT

le:
ro
name: "Samuel L. Jackson"
type: "person"

name: "Quentin Tarantino"
type: "person"

_IN

imm
"J

Dim
ie

ck"
mi

N
D_I
ld"
TE
AC
nfie
Win
les
"J u
:
ole
r

GraphAware

TM
name: "Pulp Fiction"
year: 1994
type: "movie"
genres: "Drama", "Thriller"

TE
R
AC
AR
CH

CT
ED
DI
RE

name: "Quentin Tarantino"
type: "person"
occupation: "Actor", "Director"

_IN
TER

ACTED_AS

RAC

name: "Jimmie Dimmick"
type: "role"

CHA

_IN

Another Way

name: "Jules Winnfield"
type: "role"

ACTED_AS

name: "Samuel L. Jackson"
type: "person"
occupation: "Actor"

GraphAware

TM
Bidirectional
Relationships
a common mistake

GraphAware

TM
Ice Hockey

Czech
Republic

DEFEATED

Sweden

GraphAware

TM
Ice Hockey

Czech
Republic

DEFEATED

Sweden

GraphAware

TM
Ice Hockey (Implied Relationship)

DEFEATED
Czech
Republic

Sweden

DEFEATED_BY

GraphAware

TM
Ice Hockey (Implied Relationship)

DEFEATED
Czech
Republic

Sweden

DEFEATED_BY

GraphAware

TM
Traversals
In Neo4j, the speed of traversal does not
depend on the direction of the relationships
being traversed.

GraphAware

TM
Why?
GraphAware

TM
TM
Node Record in the Node Store (9 bytes), first bit = inUse flag
next
relationship
(35 bits)

next
property
(36 bits)

Relationship Record in the Relationship Store (33 bytes), first bit = inUse flag, second bit unused
first node's
first node's
second
second
type
previous
next
node's first
node's next next property
first node
second node
(16
relationship relationship relationship relationship
(36 bits)
(35 bits)
(35 bits)
bits)
(35 bits)
(35 bits)
(35 bits)
(35 bits)

Neo4j Data Layout

GraphAware

TM
Company Partnership (Naturally Bidirectional)
Neo
Technology

PARTNER

GraphAware

Neo
Technology

PARTNER

GraphAware

GraphAware

TM
Company Partnership (Naturally Bidirectional)

PARTNER
Neo
Technology

GraphAware
PARTNER

GraphAware

TM
Company Partnership (Naturally Bidirectional)

PARTNER
Neo
Technology

GraphAware
PARTNER

GraphAware

TM
Company Partnership (Naturally Bidirectional)

Neo
Technology

PARTNER

GraphAware

GraphAware

TM
Company Partnership (Naturally Bidirectional)

Neo
Technology

PARTNER

GraphAware

GraphAware

TM
Why?
Neo4j APIs allow developers to
completely ignore relationship direction
when querying the graph.

GraphAware

TM
Cypher
MATCH	
  (neo)-­‐[:PARTNER]-­‐>(partner)

GraphAware

TM
Cypher
MATCH	
  (neo)<-­‐[:PARTNER]-­‐(partner)

GraphAware

TM
Cypher
MATCH	
  (neo)-­‐[:PARTNER]-­‐(partner)

GraphAware

TM
Qualifying
Relationships
performance comparison

GraphAware

TM
Qualifying by Properties

Daniela

D
E

T
A
R

:4
g

tin
a

r
Pulp
Fiction

RATED

Michal

rating: 5

RA
ra TE
tin
D
g:
1
Mark

GraphAware

TM
Who liked Pulp Fiction? (Cypher)
START	
  	
  	
  pulpFiction=node({id})
MATCH	
  	
  	
  (pulpFiction)<-­‐[r:RATED]-­‐(fan)
WHERE	
  	
  	
  r.rating	
  >	
  3
RETURN	
  	
  fan

GraphAware

TM
Who liked Pulp Fiction? (Java)
for	
  (Relationship	
  r	
  :	
  pulpFiction.getRelationships(INCOMING,	
  RATED))	
  
{
	
  	
  	
  	
  if	
  ((int)	
  r.getProperty("rating")	
  >	
  3)	
  
	
  	
  	
  	
  {
	
  	
  	
  	
  	
  	
  	
  	
  Node	
  fan	
  =	
  r.getStartNode();	
  //do	
  something	
  with	
  it
	
  	
  	
  	
  }
}

GraphAware

TM
Qualifying by
Relationship Type

Daniela
D
E

IK
L

Pulp
Fiction

LOVED

Michal

HA
TE

D

Mark

GraphAware

TM
Who liked Pulp Fiction? (Cypher)
START	
  	
  	
  pulpFiction=node({id})
MATCH	
  	
  	
  (pulpFiction)<-­‐[r:LIKED|LOVED]-­‐(fan)
RETURN	
  	
  fan

GraphAware

TM
Who liked Pulp Fiction? (Java)
for	
  (Relationship	
  r	
  :	
  pF.getRelationships(INCOMING,	
  LIKED,	
  LOVED))	
  
{
	
  	
  	
  	
  Node	
  fan	
  =	
  r.getStartNode();	
  //do	
  something	
  with	
  it
}

GraphAware

TM
GraphAware

TM
GraphAware

TM
Winner!

Daniela
D
E

IK
L

Pulp
Fiction

LOVED

Michal

HA
TE

D

Mark

GraphAware

TM
Other interesting info?
Hardware Sizing
frequently asked question

GraphAware

TM
JVM

Other APIs
Transaction
Management

Core API

Object Cache

Operating System
File System Cache

HDD

Properties

Relationship
Types

Relationships

Record Files

Nodes

Neo4j Architecture

Neo4j

Transaction
Log

GraphAware

TM
Disk Space
>	
  cd	
  data
>	
  ls	
  -­‐ah

GraphAware

TM
Disk Space
drwxr-­‐xr-­‐x	
  	
  	
  5	
  bachmanm	
  	
  wheel	
  	
  	
  170B	
  19	
  Oct	
  12:56	
  index
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  31K	
  19	
  Oct	
  12:56	
  messages.log
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  69B	
  19	
  Oct	
  12:56	
  neostore
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  8.8K	
  19	
  Oct	
  12:56	
  neostore.nodestore.db
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.nodestore.db.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  39M	
  19	
  Oct	
  12:56	
  neostore.propertystore.db
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  153B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.arrays
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.arrays.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  43B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.index
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.index.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  140B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.index.keys
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.index.keys.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  154B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.strings
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.propertystore.db.strings.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  31M	
  19	
  Oct	
  12:56	
  neostore.relationshipstore.db
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.relationshipstore.db.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  38B	
  19	
  Oct	
  12:56	
  neostore.relationshiptypestore.db
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.relationshiptypestore.db.id
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  140B	
  19	
  Oct	
  12:56	
  neostore.relationshiptypestore.db.names
-­‐rw-­‐r-­‐-­‐r-­‐-­‐	
  	
  	
  1	
  bachmanm	
  	
  wheel	
  	
  	
  	
  	
  9B	
  19	
  Oct	
  12:56	
  neostore.relationshiptypestore.db.names.id

GraphAware

TM
Disk Space
node

9B

relationship

33B

property

41B

GraphAware

TM
Disk Space (Example)
1,000 nodes
1,000,000 rels
2,010,000 props
TOTAL

x 9B =
8.8 kB
x 33B = 31.5 MB
x 41B = 78.6 MB
= 110.1 MB

GraphAware

TM
Low Level Cache
How about low level cache? Any guesses?

GraphAware

TM
Low Level Cache
Same as disk space

GraphAware

TM
High Level Cache
node

344B

relationship

208B

property

116B

...

GraphAware

TM
Other interesting info?
Java API vs. Cypher
case study

GraphAware

TM
Modelling Data in Neo4j (plus a few tips)
Data Model
User 2

TRAVELLED_WITH
weight: 3

User 4

TRAVELLED_WITH
weight: 4

TRAVELLED_TOGETHER
weight: 1

User 3

FRIEND
weight: 5

User 1

GraphAware

TM
START	
  	
  	
  	
  from=node:node_auto_index(user_id="{FROM}"),
	
  	
  	
  	
  	
  	
  	
  	
  	
  to=node:node_auto_index(user_id="{TO}")
MATCH	
  	
  	
  	
  p	
  =	
  from-­‐[r*1..5]-­‐>to
RETURN	
  	
  	
  extract(n	
  in	
  nodes(p)	
  :	
  n.user_id),	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  extract(rel	
  in	
  relationships(p)	
  :	
  rel.weight),	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  extract(rel	
  in	
  relationships(p)	
  :	
  type(rel))
ORDER	
  BY	
  length(p),	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  reduce(totalWeight	
  =	
  0,	
  rel	
  in	
  relationships(p)	
  :
	
  	
  	
  	
  	
  	
  	
  	
  	
  totalWeight	
  +	
  rel.weight)
LIMIT	
  	
  	
  	
  3

GraphAware

TM
START	
  	
  	
  	
  from=node:node_auto_index(user_id="{FROM}"),
	
  	
  	
  	
  	
  	
  	
  	
  	
  to=node:node_auto_index(user_id="{TO}")
MATCH	
  	
  	
  	
  p	
  =	
  from-­‐[r*1..5]-­‐>to
RETURN	
  	
  	
  extract(n	
  in	
  nodes(p)	
  :	
  n.user_id),	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  extract(rel	
  in	
  relationships(p)	
  :	
  rel.weight),	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  extract(rel	
  in	
  relationships(p)	
  :	
  type(rel))
ORDER	
  BY	
  length(p),	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  reduce(totalWeight	
  =	
  0,	
  rel	
  in	
  relationships(p)	
  :
	
  	
  	
  	
  	
  	
  	
  	
  	
  totalWeight	
  +	
  rel.weight)
LIMIT	
  	
  	
  	
  3

> 1 second
GraphAware

TM
Modelling Data in Neo4j (plus a few tips)
10 - 20 ms
Java API vs. Cypher

GraphAware

TM
Java API vs. Cypher
Cypher is great!

GraphAware

TM
Java API vs. Cypher
Cypher is great!
Cypher is improving

GraphAware

TM
Java API vs. Cypher
Cypher is great!
Cypher is improving
But don’t be afraid of writing some Java

GraphAware

TM
Thanks!
www.graphaware.com
@graph_aware

GraphAware

TM

More Related Content

PDF
Building a Graph-based Analytics Platform
PDF
An overview of Neo4j Internals
PDF
Scaling with Riak at Showyou
PDF
Redis : Play buzz uses Redis
PDF
Modelling Data as Graphs (Neo4j)
PDF
An intro to Neo4j and some use cases (JFokus 2011)
PDF
Riak Use Cases : Dissecting The Solutions To Hard Problems
PDF
Recommendations with Neo4j (FOSDEM 2015)
Building a Graph-based Analytics Platform
An overview of Neo4j Internals
Scaling with Riak at Showyou
Redis : Play buzz uses Redis
Modelling Data as Graphs (Neo4j)
An intro to Neo4j and some use cases (JFokus 2011)
Riak Use Cases : Dissecting The Solutions To Hard Problems
Recommendations with Neo4j (FOSDEM 2015)

Viewers also liked (20)

PDF
Advanced Neo4j Use Cases with the GraphAware Framework
PPT
Redis use cases
PDF
Best Buy Web 2.0
PPTX
Introduction to Redis Data Structures: Sorted Sets
PDF
Redis and its many use cases
PDF
Introduction to some top Redis use cases
PPTX
The BestBuy.com Cloud Architecture
PDF
Using Redis at Facebook
PDF
Bootstrapping Recommendations with Neo4j
PPTX
Neo4j GraphTalks - Einführung in Graphdatenbanken
PDF
GPSinsights poster
PPTX
Redis Use Patterns (DevconTLV June 2014)
PDF
Neo4j the Anti Crime Database
PDF
Neo4j GraphTalks Panama Papers
PDF
Intro to Neo4j and Graph Databases
PPTX
Introduction to Graph Databases
PDF
Everything you always wanted to know about Redis but were afraid to ask
PDF
Titan: The Rise of Big Graph Data
PDF
Neo4j - 5 cool graph examples
PDF
Graph database Use Cases
Advanced Neo4j Use Cases with the GraphAware Framework
Redis use cases
Best Buy Web 2.0
Introduction to Redis Data Structures: Sorted Sets
Redis and its many use cases
Introduction to some top Redis use cases
The BestBuy.com Cloud Architecture
Using Redis at Facebook
Bootstrapping Recommendations with Neo4j
Neo4j GraphTalks - Einführung in Graphdatenbanken
GPSinsights poster
Redis Use Patterns (DevconTLV June 2014)
Neo4j the Anti Crime Database
Neo4j GraphTalks Panama Papers
Intro to Neo4j and Graph Databases
Introduction to Graph Databases
Everything you always wanted to know about Redis but were afraid to ask
Titan: The Rise of Big Graph Data
Neo4j - 5 cool graph examples
Graph database Use Cases
Ad

Similar to Modelling Data in Neo4j (plus a few tips) (20)

PDF
Modelling Data in Neo4j (plus a few tips)
PDF
managing big data
PDF
Neo4j in Depth
PDF
Neo4j (Part 1)
PDF
Spring Data Neo4j: Graph Power Your Enterprise Apps
PPTX
Neo4j Training Introduction
PPTX
GraphTalks Rome - Selecting the right Technology
PPTX
Graph Databases
PPTX
Taming Large Databases
PDF
Introduction to Graph Databases with Neo4J
PDF
Training Series - Intro to Neo4j
PDF
Neo4j Introduction (for Techies)
PDF
Introduction to Graph Databases wth neo4J
PPTX
GraphTour - Closing Keynote
PDF
Neo4j Introduction Workshop for Partners
PDF
How Graph Databases efficiently store, manage and query connected data at s...
PDF
Modelling Data as Graphs (Neo4j)
PDF
Tackling Complex Data with Neo4j by Ian Robinson
PPTX
Graphs fun vjug2
PDF
Neo4j: Graph-like power
Modelling Data in Neo4j (plus a few tips)
managing big data
Neo4j in Depth
Neo4j (Part 1)
Spring Data Neo4j: Graph Power Your Enterprise Apps
Neo4j Training Introduction
GraphTalks Rome - Selecting the right Technology
Graph Databases
Taming Large Databases
Introduction to Graph Databases with Neo4J
Training Series - Intro to Neo4j
Neo4j Introduction (for Techies)
Introduction to Graph Databases wth neo4J
GraphTour - Closing Keynote
Neo4j Introduction Workshop for Partners
How Graph Databases efficiently store, manage and query connected data at s...
Modelling Data as Graphs (Neo4j)
Tackling Complex Data with Neo4j by Ian Robinson
Graphs fun vjug2
Neo4j: Graph-like power
Ad

More from Michal Bachman (6)

PDF
GraphAware Framework Intro
PDF
Intro to Neo4j (CZ)
PDF
(Big) Data Science
PPTX
Neo4j Introduction at Imperial College London
PPTX
Neo4j - Tales from the Trenches
PPTX
WebExpo Prague 2012 - Introduction to Neo4j (Czech)
GraphAware Framework Intro
Intro to Neo4j (CZ)
(Big) Data Science
Neo4j Introduction at Imperial College London
Neo4j - Tales from the Trenches
WebExpo Prague 2012 - Introduction to Neo4j (Czech)

Recently uploaded (20)

PDF
EIS-Webinar-Regulated-Industries-2025-08.pdf
PDF
The-Future-of-Automotive-Quality-is-Here-AI-Driven-Engineering.pdf
PDF
A hybrid framework for wild animal classification using fine-tuned DenseNet12...
PPTX
Blending method and technology for hydrogen.pptx
PDF
A symptom-driven medical diagnosis support model based on machine learning te...
PPTX
AQUEEL MUSHTAQUE FAKIH COMPUTER CENTER .
PPTX
Presentation - Principles of Instructional Design.pptx
PDF
Transform-Your-Factory-with-AI-Driven-Quality-Engineering.pdf
PDF
Connector Corner: Transform Unstructured Documents with Agentic Automation
PPTX
How to Convert Tickets Into Sales Opportunity in Odoo 18
PDF
Build Real-Time ML Apps with Python, Feast & NoSQL
PDF
NewMind AI Weekly Chronicles – August ’25 Week IV
PPTX
Build automations faster and more reliably with UiPath ScreenPlay
PDF
Co-training pseudo-labeling for text classification with support vector machi...
PDF
CXOs-Are-you-still-doing-manual-DevOps-in-the-age-of-AI.pdf
PDF
5-Ways-AI-is-Revolutionizing-Telecom-Quality-Engineering.pdf
PDF
Altius execution marketplace concept.pdf
PPTX
Rise of the Digital Control Grid Zeee Media and Hope and Tivon FTWProject.com
PDF
Examining Bias in AI Generated News Content.pdf
PDF
giants, standing on the shoulders of - by Daniel Stenberg
EIS-Webinar-Regulated-Industries-2025-08.pdf
The-Future-of-Automotive-Quality-is-Here-AI-Driven-Engineering.pdf
A hybrid framework for wild animal classification using fine-tuned DenseNet12...
Blending method and technology for hydrogen.pptx
A symptom-driven medical diagnosis support model based on machine learning te...
AQUEEL MUSHTAQUE FAKIH COMPUTER CENTER .
Presentation - Principles of Instructional Design.pptx
Transform-Your-Factory-with-AI-Driven-Quality-Engineering.pdf
Connector Corner: Transform Unstructured Documents with Agentic Automation
How to Convert Tickets Into Sales Opportunity in Odoo 18
Build Real-Time ML Apps with Python, Feast & NoSQL
NewMind AI Weekly Chronicles – August ’25 Week IV
Build automations faster and more reliably with UiPath ScreenPlay
Co-training pseudo-labeling for text classification with support vector machi...
CXOs-Are-you-still-doing-manual-DevOps-in-the-age-of-AI.pdf
5-Ways-AI-is-Revolutionizing-Telecom-Quality-Engineering.pdf
Altius execution marketplace concept.pdf
Rise of the Digital Control Grid Zeee Media and Hope and Tivon FTWProject.com
Examining Bias in AI Generated News Content.pdf
giants, standing on the shoulders of - by Daniel Stenberg

Modelling Data in Neo4j (plus a few tips)