Steeve Huang
 1. Propose Neural Collaborative Filtering (NCF) which models the user and item
interactions in the latent space effectively with a Neural Network.
 2. Show that NCF is a generalization of Matrix Factorization.
 3. Demonstrate that NCF outperforms the state-of-the-art models in two real-
world datasets.
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 0 0 0 0 0
User 2 0 0 0 0 0
User 3 0 0 0 0 0
User 4 0 0 0 0 0
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
Observed Interaction
Unobserved Interaction
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
0.7 0 0 1.1 0
0 0 0.5 0 0.4
0.5 0 0 0.7 0
0 0 0.6 0 0.5
Multiplication
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
0.7 0 0 1.1 0
0 0 0.5 0 0.4
0.5 0 0 0.7 0
0 0 0.6 0 0.5
Multiplication
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
0.7 0 0 1.1 0
0 0 0.5 0 0.4
0.5 0 0 0.7 0
0 0 0.6 0 0.5
Mean Squared Error
Multiplication
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
0.7 0 0 1.1 0
0 0 0.5 0 0.4
0.5 0 0 0.7 0
0 0 0.6 0 0.5
Mean Squared Error
Multiplication
k
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
0.7 0 0 1.1 0
0 0 0.5 0 0.4
0.5 0 0 0.7 0
0 0 0.6 0 0.5
Mean Squared Error
Multiplication
k
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
0.7 0 0 1.1 0
0 0 0.5 0 0.4
0.5 0 0 0.7 0
0 0 0.6 0 0.5
Mean Squared Error
Multiplication
k
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
0.7 0 0 1.1 0
0 0 0.5 0 0.4
0.5 0 0 0.7 0
0 0 0.6 0 0.5
Mean Squared Error
Multiplication
k
Item 1 Item 2 Item 3 Item 4 Item 5
User 1 1 0 0 1 0
User 2 0 0 0 0 1
User 3 0 0 0 1 0
User 4 0 0 1 0 0
0 1.3
-0.6 0
0 0.9
-0.8 0
0 0 -0.8 0 -0.6
0.5 0 0 0.8 0
≈ X
Item MatrixUser MatrixUtility
Matrix
0.7 0 0 1.1 0
0 0 0.5 0 0.4
0.5 0 0 0.7 0
0 0 0.6 0 0.5
Mean Squared Error
Multiplication
k
S23 > S12 > S13
S23 > S12 > S13
P1
P2
P3
S23 > S12 > S13
P1
P2
P3
S41 > S43 > S42
S23 > S12 > S13
P1
P2
P3
P4
S41 > S43 > S42
Multiplication
Unit Matrix JKx1
L(x) = x
𝑦 𝑢𝑖 = 𝐿 𝑝 𝑢 ⊙ 𝑞𝑖 × 𝐽 𝐾𝑥1
𝑦 𝑢𝑖 = 𝐿 𝑝 𝑢
𝑇 ∙ 𝑞𝑖
𝑦 𝑢𝑖 = 𝑝 𝑢
𝑇 ∙ 𝑞𝑖
Neural Collaborative Filtering Explanation & Implementation
Neural Collaborative Filtering Explanation & Implementation
Neural Collaborative Filtering Explanation & Implementation
Neural Collaborative Filtering Explanation & Implementation
Neural Collaborative Filtering Explanation & Implementation
Neural Collaborative Filtering Explanation & Implementation

Neural Collaborative Filtering Explanation & Implementation

  • 1.
  • 2.
     1. ProposeNeural Collaborative Filtering (NCF) which models the user and item interactions in the latent space effectively with a Neural Network.  2. Show that NCF is a generalization of Matrix Factorization.  3. Demonstrate that NCF outperforms the state-of-the-art models in two real- world datasets.
  • 3.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 0 0 0 0 0 User 2 0 0 0 0 0 User 3 0 0 0 0 0 User 4 0 0 0 0 0
  • 4.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0
  • 5.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 Observed Interaction Unobserved Interaction
  • 6.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix
  • 7.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix 0.7 0 0 1.1 0 0 0 0.5 0 0.4 0.5 0 0 0.7 0 0 0 0.6 0 0.5 Multiplication
  • 8.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix 0.7 0 0 1.1 0 0 0 0.5 0 0.4 0.5 0 0 0.7 0 0 0 0.6 0 0.5 Multiplication
  • 9.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix 0.7 0 0 1.1 0 0 0 0.5 0 0.4 0.5 0 0 0.7 0 0 0 0.6 0 0.5 Mean Squared Error Multiplication
  • 10.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix 0.7 0 0 1.1 0 0 0 0.5 0 0.4 0.5 0 0 0.7 0 0 0 0.6 0 0.5 Mean Squared Error Multiplication k
  • 11.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix 0.7 0 0 1.1 0 0 0 0.5 0 0.4 0.5 0 0 0.7 0 0 0 0.6 0 0.5 Mean Squared Error Multiplication k
  • 12.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix 0.7 0 0 1.1 0 0 0 0.5 0 0.4 0.5 0 0 0.7 0 0 0 0.6 0 0.5 Mean Squared Error Multiplication k
  • 13.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix 0.7 0 0 1.1 0 0 0 0.5 0 0.4 0.5 0 0 0.7 0 0 0 0.6 0 0.5 Mean Squared Error Multiplication k
  • 14.
    Item 1 Item2 Item 3 Item 4 Item 5 User 1 1 0 0 1 0 User 2 0 0 0 0 1 User 3 0 0 0 1 0 User 4 0 0 1 0 0 0 1.3 -0.6 0 0 0.9 -0.8 0 0 0 -0.8 0 -0.6 0.5 0 0 0.8 0 ≈ X Item MatrixUser MatrixUtility Matrix 0.7 0 0 1.1 0 0 0 0.5 0 0.4 0.5 0 0 0.7 0 0 0 0.6 0 0.5 Mean Squared Error Multiplication k
  • 16.
    S23 > S12> S13
  • 17.
    S23 > S12> S13 P1 P2 P3
  • 18.
    S23 > S12> S13 P1 P2 P3 S41 > S43 > S42
  • 19.
    S23 > S12> S13 P1 P2 P3 P4 S41 > S43 > S42
  • 21.
  • 22.
    𝑦 𝑢𝑖 =𝐿 𝑝 𝑢 ⊙ 𝑞𝑖 × 𝐽 𝐾𝑥1 𝑦 𝑢𝑖 = 𝐿 𝑝 𝑢 𝑇 ∙ 𝑞𝑖 𝑦 𝑢𝑖 = 𝑝 𝑢 𝑇 ∙ 𝑞𝑖