Revisiting the Model Parameters of an
Existing System Using the Photovoltaic
System Analysis Toolbox (PVSAT)
Kenneth J. Sauer, Ian C. Tse, and Ryan A. Desharnais
Originally Presented at the 42nd IEEE Photovoltaic Specialists Conference
June 17th, 2015
Original design plans / drawings
Manufacturer datasheets
3rd party test reports
Industry rules of thumb
Default parameters in software
Pro forma Energy Production Forecasts
2
Pro forma parameters come from:
How well do pro forma
parameters represent a
PV system as built?
Pro forma
Weather Data
Pro forma
Model
Parameters
Energy Simulation
Software (PVsyst,
PVWatts, SAM, etc.)
Pro forma
Energy Production
Forecast
Procurement Phase
Presentation Outline
3
Photovoltaic System Analysis Toolbox (PVSAT)
Precision of PVSAT validated with PVsyst
Accuracy of PVSAT checked against test array data
Executing a modern performance guarantee
Three levels of model parameter true-up
Evaluating the impact of true-up on forecast accuracy
Photovoltaic System Analysis Toolbox (PVSAT)
4
Performance
Metrics
Calculation
Energy Simulation
Model
Validation
Data Import
& Filtration
PVSAT
Sandia
PV_LIB v1.2
Irradiance transposition
Heat transfer (U values)
Diode circuitry (.PAN files)
Power loss mechanisms (e.g., IAM)
Energy Sim submodels
• PVSAT able to take sub-hourly data
• Also can analyze periods > 1 year
• Capable of degradation rate modeling
Measurement Data
5
Roof-mounted
mc-Si
11 modules in series
1 inverter
PV system specification
1-minute data
September 2013 – April 2015
Global horizontal irradiance
Diffuse horizontal irradiance
Ambient temperature
Wind speed
DC current and voltage
Clear sky filter applied
Measurements collected on-site
Validation Test I: PVSAT vs. PVsyst
6
Measured weather +
high-loss parameters
PVSAT PVsyst
Simulation
results
Simulation
results
Compare residuals
solar position algorithm error
PVSAT more precise and with less noise
Validation Test II: Model vs. Measurement
7
Measured weather +
ext. as-built parameters
Simulation
results
Simulation
results
Compare residuals
Energy forecasts from
PVSAT are as accurate as
those from PVSyst
Measured energy
production
PVSAT PVsyst
PVSAT PVsyst
RMSD 1.92%
<
1.94%
MBD -0.44% -0.47%
Energy
Production
Deviation
-0.67% -0.72%
Power Capacity Test
8
PPI > 100% = PASS
subset for
regression
GpoaEff_RC
Month GpoaEff_RC Tcell_RC PmpDC_RC
Jan 519 26 1312
Feb 610 30 1518
Mar 762 37 1839
Apr 870 38 2084
May 895 38 2139
Jun 924 40 2186
Jul 918 39 2181
Aug 891 41 2105
Sept 860 40 2044
Oct 703 37 1700
Nov 534 31 1324
Dec 534 28 1342
Monthly Guarantee Table (Ext. As-Built)
Degradation Test
9
from the Guarantee Table execution
GpoaEff_RC Tcell_RC PmpDC_RC PmpDC’
Sept 860 40 2044 2040
Oct 703 37 1700 1686
Nov 534 31 1324 1340
Dec 534 28 1342 1321
Jan 519 26 1312 1305
Feb 610 30 1518 1523
Mar 762 37 1839 1828
Apr 870 38 2084 2072
May 895 38 2139 2127
Jun 924 40 2186 2170
Jul 918 39 2181 2166
Aug 891 41 2105 2084
TimeinOperation
Power Capacity Test (1st month)
PPI
time
RDEG < 0.7 %/yr : PASS
0.7% annual degradation rate per
module manufacturer’s warranty
Energy Yield Test
10
EPI > 100% : PASS
Modeled RDEG = 0.7 %/yr
Typically run over one year period;
here all 20 months is used
weather-adjusted
Three Models
11
Model Sources and Attributes
Original Pro Forma Original system design plans
• Tilt: 12°
• Azimuth: 190°
Datasheet
• Power tolerances
• γPmp
Default .PAN, IAM, and U values
taken from PVsyst v6.38
Typical As-Built On-site survey
• Tilt: 13.87°
• Azimuth: 190.8°
Manufacturer flash test data
• Power tolerances
Extended As-Built Custom .PAN, IAM, U values
Levelofparametertrue-up
Model Parameter True-Up (1 of 2)
One-diode model optimization method from: Sauer et al., IEEE J. Photovoltaics, 2015.
12
Model Parameter True-Up (2 of 2)
Ex-post derivation of thermal parameters from:
Faiman, Prog. Photovolt: Res. Appl., 2008.
BOM-specific analytical modeling of IAM:
Fatehi & Sauer, Proc. 40th IEEE PVSC, 2014.
Orig. PF Ext. AB
UC [W/m2/°C] 20 19.9
UV [W/m2/°C/m/s] 0 2.4
13
Results (1 of 2)
Orig. PF Typ. AB Ext. AB
PPI [%] 107.50 105.82 99.81
Power Capacity Test for 1st month (Target = 100%):
Degradation Test over 20 months (Target = 0.7 %/year):
Orig. PF Typ. AB Ext. AB
RDEG [%/year] 1.27 1.14 1.15
Energy Production Test over 20 months (Target = 100%):
Orig. PF Typ. AB Ext. AB
EPI [%] 106.07 104.12 99.43
RMSD [% of nameplate] 4.53 3.57 1.10
MBD [% of nameplate] 4.15 2.87 -0.41
14
Results (2 of 2)
15
Presentation Summary
16
Fidelity of model parameters influences test results
Degradation test can detect long-term durability issues
Seasonal errors introduced or masked by inaccurate parameters
Possible to de-risk with efforts to true-up model parameters
Setting the right bar for performance is also useful for O&M
About Amplify Energy…
Our mission is to quantify and maximize the operating
performance and value of installed photovoltaic (PV) systems
We provide services to owners, buyers, and developers of
large commercial, industrial, and utility-scale systems
Customers choose us because our advanced diagnostics and
experience enable us to efficiently see things others cannot
An engineering services company focused on the
evaluation and improvement of PV systems
7/2/2015 18
Company at a Glance
Inspection & Testing
- Field / On-Site Testing
- In-House Laboratory
Performance Analysis
- System Rating
- Degradation Analysis
- As-Built Parameters
Consulting Services
- Forensic Engineering
- Repair and Warranty Administration
- Optimization and Repowering
Primary Services
Revisiting the Model Parameters of an Existing System Using the Photovoltaic System Analysis Toolbox (PVSAT)

More Related Content

PDF
Systematic Approaches to Ensure Correct Representation of Measured Multi-Irra...
PDF
Modeling the Incidence Angle Dependence of PV Modules in PVsyst
PDF
26 schweiger impact_of_spectral_irradiance_on_energy_yield
PDF
Modeling PV Module Power Degradation to Evaluate Performance Warranty Risks
PDF
2014 PV Performance Modeling Workshop: Optimizing PV Designs with HelioScope:...
PDF
Systematic Approaches to Ensure Correct Representation of Measured Multi-Irra...
PDF
04 winter(ptb), status and outlook of photo class
Systematic Approaches to Ensure Correct Representation of Measured Multi-Irra...
Modeling the Incidence Angle Dependence of PV Modules in PVsyst
26 schweiger impact_of_spectral_irradiance_on_energy_yield
Modeling PV Module Power Degradation to Evaluate Performance Warranty Risks
2014 PV Performance Modeling Workshop: Optimizing PV Designs with HelioScope:...
Systematic Approaches to Ensure Correct Representation of Measured Multi-Irra...
04 winter(ptb), status and outlook of photo class

What's hot (20)

PDF
Modeling the Irradiance and Temperature Dependence of PV Modules in PVsyst
PDF
62 friesen field_data_requirements_for_the_validation_of_pv_module_performanc...
PPTX
26 pvpmc presentation_mac_alpine_final
PPTX
13 2017.03.30 freeman 7th pvpmc iec 61853 presentation
PDF
65 sutterlueti using_advanced_pv_and_bo_s_modelling_and_algorithms_to_optimiz...
PDF
5 2 pro_sandia-epri regression based models_9_may2016
PDF
4 2 castillo- aguilella - annual bifacial energy yield best-fit model
PDF
63 matthiss comparison_of_pv_system_and_irradiation_models
PDF
41 corbellini analysis_and_modelling_of_bifacial_pv_modules
PDF
3 4 thevenard-pai epri-sandia 2016-05 presentation
PDF
66 ueda system_performance_and_degradation_analysis_of_different_pv_technologies
PDF
25 ben duck_improved_prediction_of_site_spectral_impact
Modeling the Irradiance and Temperature Dependence of PV Modules in PVsyst
62 friesen field_data_requirements_for_the_validation_of_pv_module_performanc...
26 pvpmc presentation_mac_alpine_final
13 2017.03.30 freeman 7th pvpmc iec 61853 presentation
65 sutterlueti using_advanced_pv_and_bo_s_modelling_and_algorithms_to_optimiz...
5 2 pro_sandia-epri regression based models_9_may2016
4 2 castillo- aguilella - annual bifacial energy yield best-fit model
63 matthiss comparison_of_pv_system_and_irradiation_models
41 corbellini analysis_and_modelling_of_bifacial_pv_modules
3 4 thevenard-pai epri-sandia 2016-05 presentation
66 ueda system_performance_and_degradation_analysis_of_different_pv_technologies
25 ben duck_improved_prediction_of_site_spectral_impact
Ad

Similar to Revisiting the Model Parameters of an Existing System Using the Photovoltaic System Analysis Toolbox (PVSAT) (20)

PDF
Revisiting the Model Parameters of an Existing System Using the Photovoltaic ...
PPTX
Study of Large Scale Grid interactive Solar PV power plant
PPTX
Session 19 project performance evaluation Operation & Maintenance planning
PDF
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
PDF
1kw 265invt
PPT
40 new microsoft office power point presentation
PPT
iPLON presentation at Intersolar Mumbai 15 Dec 2011
DOC
resume(Cheah Yaw Wah)
PPT
Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
PDF
LabVIEW Interface for Controlling a Test Bench for Photovoltaic Modules and E...
PDF
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
PDF
A Fuzzy Logic Control Strategy for Doubly Fed Induction Generator for Improve...
PDF
3 2 dobos - whats new in sam - pv modeling workshop may 2016
PDF
IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...
PDF
Multi-objective Optimization Scheme for PID-Controlled DC Motor
PPTX
Off grid pv system : Design and calculation in detail
PPTX
Performance Engineered: Mixtures and AASHTO PP 84: It's Time for a Change
PDF
Solar Energy Assessment Report for 100 kWp of Bengaluru, Karnataka created by...
PDF
Development of a solar PV energy assessment tool for EG-Audit Ltd.
PDF
J044046467
Revisiting the Model Parameters of an Existing System Using the Photovoltaic ...
Study of Large Scale Grid interactive Solar PV power plant
Session 19 project performance evaluation Operation & Maintenance planning
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
1kw 265invt
40 new microsoft office power point presentation
iPLON presentation at Intersolar Mumbai 15 Dec 2011
resume(Cheah Yaw Wah)
Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
LabVIEW Interface for Controlling a Test Bench for Photovoltaic Modules and E...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
A Fuzzy Logic Control Strategy for Doubly Fed Induction Generator for Improve...
3 2 dobos - whats new in sam - pv modeling workshop may 2016
IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...
Multi-objective Optimization Scheme for PID-Controlled DC Motor
Off grid pv system : Design and calculation in detail
Performance Engineered: Mixtures and AASHTO PP 84: It's Time for a Change
Solar Energy Assessment Report for 100 kWp of Bengaluru, Karnataka created by...
Development of a solar PV energy assessment tool for EG-Audit Ltd.
J044046467
Ad

Recently uploaded (20)

PDF
IMDb_Product_Teardown_product_management
PPTX
Embedded Systems Microcontrollers and Microprocessors.pptx
PDF
Application of smart robotics in the supply chain
PDF
Disaster Management_Lecture_ PPT_Dr. Kunjari Mog, NITH.pdf
PPTX
Cloud Security and Privacy-Module-2a.pptx
PDF
Water Supply and Sanitary Engineering Textbook
PPTX
PPT-HEART-DISEASE[1].pptx presentationss
PDF
Computer Networks and Internet Protocol Week-1
PPTX
Retail.pptx internet of things mtech 2 nd sem
PPTX
CC PPTS unit-I PPT Notes of Cloud Computing
PPTX
22ME926Introduction to Business Intelligence and Analytics, Advanced Integrat...
PPTX
Cloud Security and Privacy-Module-1.pptx
PPTX
sinteringn kjfnvkjdfvkdfnoeneornvoirjoinsonosjf).pptx
PDF
Water Industry Process Automation & Control Monthly - September 2025
PDF
BBC NW_Tech Facilities_30 Odd Yrs Ago [J].pdf
PDF
Operating systems-POS-U1.2.pdf cse gghhu
PDF
Human CELLS and structure in Anatomy and human physiology
PDF
Manual variador de corriente directa parker.pdf
PDF
The Journal of Finance - July 1993 - JENSEN - The Modern Industrial Revolutio...
PPT
linux chapter 1 learning operating system
IMDb_Product_Teardown_product_management
Embedded Systems Microcontrollers and Microprocessors.pptx
Application of smart robotics in the supply chain
Disaster Management_Lecture_ PPT_Dr. Kunjari Mog, NITH.pdf
Cloud Security and Privacy-Module-2a.pptx
Water Supply and Sanitary Engineering Textbook
PPT-HEART-DISEASE[1].pptx presentationss
Computer Networks and Internet Protocol Week-1
Retail.pptx internet of things mtech 2 nd sem
CC PPTS unit-I PPT Notes of Cloud Computing
22ME926Introduction to Business Intelligence and Analytics, Advanced Integrat...
Cloud Security and Privacy-Module-1.pptx
sinteringn kjfnvkjdfvkdfnoeneornvoirjoinsonosjf).pptx
Water Industry Process Automation & Control Monthly - September 2025
BBC NW_Tech Facilities_30 Odd Yrs Ago [J].pdf
Operating systems-POS-U1.2.pdf cse gghhu
Human CELLS and structure in Anatomy and human physiology
Manual variador de corriente directa parker.pdf
The Journal of Finance - July 1993 - JENSEN - The Modern Industrial Revolutio...
linux chapter 1 learning operating system

Revisiting the Model Parameters of an Existing System Using the Photovoltaic System Analysis Toolbox (PVSAT)

  • 1. Revisiting the Model Parameters of an Existing System Using the Photovoltaic System Analysis Toolbox (PVSAT) Kenneth J. Sauer, Ian C. Tse, and Ryan A. Desharnais Originally Presented at the 42nd IEEE Photovoltaic Specialists Conference June 17th, 2015
  • 2. Original design plans / drawings Manufacturer datasheets 3rd party test reports Industry rules of thumb Default parameters in software Pro forma Energy Production Forecasts 2 Pro forma parameters come from: How well do pro forma parameters represent a PV system as built? Pro forma Weather Data Pro forma Model Parameters Energy Simulation Software (PVsyst, PVWatts, SAM, etc.) Pro forma Energy Production Forecast Procurement Phase
  • 3. Presentation Outline 3 Photovoltaic System Analysis Toolbox (PVSAT) Precision of PVSAT validated with PVsyst Accuracy of PVSAT checked against test array data Executing a modern performance guarantee Three levels of model parameter true-up Evaluating the impact of true-up on forecast accuracy
  • 4. Photovoltaic System Analysis Toolbox (PVSAT) 4 Performance Metrics Calculation Energy Simulation Model Validation Data Import & Filtration PVSAT Sandia PV_LIB v1.2 Irradiance transposition Heat transfer (U values) Diode circuitry (.PAN files) Power loss mechanisms (e.g., IAM) Energy Sim submodels • PVSAT able to take sub-hourly data • Also can analyze periods > 1 year • Capable of degradation rate modeling
  • 5. Measurement Data 5 Roof-mounted mc-Si 11 modules in series 1 inverter PV system specification 1-minute data September 2013 – April 2015 Global horizontal irradiance Diffuse horizontal irradiance Ambient temperature Wind speed DC current and voltage Clear sky filter applied Measurements collected on-site
  • 6. Validation Test I: PVSAT vs. PVsyst 6 Measured weather + high-loss parameters PVSAT PVsyst Simulation results Simulation results Compare residuals solar position algorithm error PVSAT more precise and with less noise
  • 7. Validation Test II: Model vs. Measurement 7 Measured weather + ext. as-built parameters Simulation results Simulation results Compare residuals Energy forecasts from PVSAT are as accurate as those from PVSyst Measured energy production PVSAT PVsyst PVSAT PVsyst RMSD 1.92% < 1.94% MBD -0.44% -0.47% Energy Production Deviation -0.67% -0.72%
  • 8. Power Capacity Test 8 PPI > 100% = PASS subset for regression GpoaEff_RC Month GpoaEff_RC Tcell_RC PmpDC_RC Jan 519 26 1312 Feb 610 30 1518 Mar 762 37 1839 Apr 870 38 2084 May 895 38 2139 Jun 924 40 2186 Jul 918 39 2181 Aug 891 41 2105 Sept 860 40 2044 Oct 703 37 1700 Nov 534 31 1324 Dec 534 28 1342 Monthly Guarantee Table (Ext. As-Built)
  • 9. Degradation Test 9 from the Guarantee Table execution GpoaEff_RC Tcell_RC PmpDC_RC PmpDC’ Sept 860 40 2044 2040 Oct 703 37 1700 1686 Nov 534 31 1324 1340 Dec 534 28 1342 1321 Jan 519 26 1312 1305 Feb 610 30 1518 1523 Mar 762 37 1839 1828 Apr 870 38 2084 2072 May 895 38 2139 2127 Jun 924 40 2186 2170 Jul 918 39 2181 2166 Aug 891 41 2105 2084 TimeinOperation Power Capacity Test (1st month) PPI time RDEG < 0.7 %/yr : PASS 0.7% annual degradation rate per module manufacturer’s warranty
  • 10. Energy Yield Test 10 EPI > 100% : PASS Modeled RDEG = 0.7 %/yr Typically run over one year period; here all 20 months is used weather-adjusted
  • 11. Three Models 11 Model Sources and Attributes Original Pro Forma Original system design plans • Tilt: 12° • Azimuth: 190° Datasheet • Power tolerances • γPmp Default .PAN, IAM, and U values taken from PVsyst v6.38 Typical As-Built On-site survey • Tilt: 13.87° • Azimuth: 190.8° Manufacturer flash test data • Power tolerances Extended As-Built Custom .PAN, IAM, U values Levelofparametertrue-up
  • 12. Model Parameter True-Up (1 of 2) One-diode model optimization method from: Sauer et al., IEEE J. Photovoltaics, 2015. 12
  • 13. Model Parameter True-Up (2 of 2) Ex-post derivation of thermal parameters from: Faiman, Prog. Photovolt: Res. Appl., 2008. BOM-specific analytical modeling of IAM: Fatehi & Sauer, Proc. 40th IEEE PVSC, 2014. Orig. PF Ext. AB UC [W/m2/°C] 20 19.9 UV [W/m2/°C/m/s] 0 2.4 13
  • 14. Results (1 of 2) Orig. PF Typ. AB Ext. AB PPI [%] 107.50 105.82 99.81 Power Capacity Test for 1st month (Target = 100%): Degradation Test over 20 months (Target = 0.7 %/year): Orig. PF Typ. AB Ext. AB RDEG [%/year] 1.27 1.14 1.15 Energy Production Test over 20 months (Target = 100%): Orig. PF Typ. AB Ext. AB EPI [%] 106.07 104.12 99.43 RMSD [% of nameplate] 4.53 3.57 1.10 MBD [% of nameplate] 4.15 2.87 -0.41 14
  • 15. Results (2 of 2) 15
  • 16. Presentation Summary 16 Fidelity of model parameters influences test results Degradation test can detect long-term durability issues Seasonal errors introduced or masked by inaccurate parameters Possible to de-risk with efforts to true-up model parameters Setting the right bar for performance is also useful for O&M
  • 18. Our mission is to quantify and maximize the operating performance and value of installed photovoltaic (PV) systems We provide services to owners, buyers, and developers of large commercial, industrial, and utility-scale systems Customers choose us because our advanced diagnostics and experience enable us to efficiently see things others cannot An engineering services company focused on the evaluation and improvement of PV systems 7/2/2015 18 Company at a Glance Inspection & Testing - Field / On-Site Testing - In-House Laboratory Performance Analysis - System Rating - Degradation Analysis - As-Built Parameters Consulting Services - Forensic Engineering - Repair and Warranty Administration - Optimization and Repowering Primary Services