Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Roots of Nonlinear Equations
Open Methods
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Be able to use the Newton Raphson
method to find a root of an equations
• Be able to use the Secant method to find a
root of an equations
• Write down an algorithm to outline the
method being used
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Fixed Point Iterations
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
 kk xgx 1
Fixed Point Iterations
• Solve   0xf
    0 xgxxf
• Rearrange terms:
• OR
 xgx 
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
In some cases you do not get a
solution!
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example
  22
 xxxf Which has the solutions -1 & 2
To get a fixed-point form, we may use:
  22
 xxg
  x
xg 21
  2 xxg
 
12
22



x
x
xg
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
First trial!
• No matter how close
your initial guess is,
the solution diverges!
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Second trial
• The solution converges
in this case!!
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Condition of Convergence
• For the fixed point iteration to ensure
convergence of solution from point xk we should
ensure that
  1' kxg
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Fixed Point Algorithm
1. Rearrange f(x) to get f(x)=x-g(x)
2. Start with a reasonable initial guess x0
3. If |g’(x0)|>=1, goto step 2
4. Evaluate xk+1=g(xk)
5. If (xk+1-xk)/xk+1< es; end
6. Let xk=xk+1; goto step 4
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Newton-Raphson Method
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Newton’s Method: Line Equation
 1
21
21
' xf
xx
yy
m 



The slope of the
line is given by:
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Newton’s Method: Line equation
   1
21
1
' xf
xx
xf


 
 1
1
12
' xf
xf
xx 
 
 k
k
kk
xf
xf
xx
'
1 
Newton-Raphson
Iterative method
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Newton’s Method: Taylor’s Series
     1121 ' xfxxxf 
 
 1
1
12
' xf
xf
xx 
 
 k
k
kk
xf
xf
xx
'
1 
Newton-Raphson
Iterative method
       11212 ' xfxxxfxf 
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Newton-Raphson Algorithm
1. From f(x) get f’(x)
2. Start with a reasonable initial guess x0
3. Evaluate xk+1=xk-f(xk)/f’(xk)
4. If (xk+1-xk)/xk+1< es; end
5. Let xk=xk+1; goto step 4
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Secant Method
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Secant Method
21
21
2
2
xx
yy
xx
yy





The line equation
is given by:
  
2
21
221 0
xx
yy
yxx



Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Secant Method
  
2
21
221 0
xx
yy
yxx



 
21
212
2
yy
xxy
xx



  
   kk
kkk
kk
xfxf
xxxf
xx






1
1
1
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Secant Algorithm
1. Select x1 and x2
2. Evaluate f(x1) and f(x2)
3. Evaluate xk+1
4. If (xk+1-xk)/xk+1< es; end
5. Let xk=xk+1; goto step 3
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Why Secant Method?
• The most important advantage over
Newton-Raphson method is that you do
not need to evaluate the derivative!
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Comparing with False-Position
• Actually, false
position ensures
convergence, while
secant method does
not!!!
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Conclusion
• The fixed point iteration, Newton-Raphson
method, and the secant method in general
converge faster than bisection and false position
methods
• On the other hand, these methods do not ensure
convergence!
• The secant method, in many cases, becomes
more practical than Newton-Raphson as
derivatives do not need to be evaluated
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Roots of Nonlinear System
of Equations
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Be able to use the fixed point method to
find a root of a set of equations
• Be able to use the Newton Raphson
method to find a root of a set equations
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Fixed Point Iterations
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
 kk xgx 1
Fixed Point Iterations
• Solve   0xf
    0 xgxxf
• Rearrange terms:
• OR
 xgx 
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
 
 kkk
kkk
yxgy
yxgx
,
,
21
11




Fixed Point Iterations (cont’d)
• Solve  
  0,
0,
2
1


yxf
yxf
   
    0,,
0,,
22
11


yxgyyxf
yxgxyxf• Rearrange terms:
• OR
 
 yxgy
yxgx
,
,
2
1


Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example
 
  0573
010
2
2
2
1


xyyxf
xyxxf
Which has a solution x=2 & y=3
To get a fixed-point form, we may use:
With initial values: x=1.5 and y=3.5
kkk
k
k
k
yxy
y
x
x
2
1
2
1
357
10





38.245.3*5.1*357
214.2
5.3
5.110
2
1
2
1




y
x
7.42938.24*214.2*357
209.0
38.24
214.210
2
2
2
2





y
x
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Diverging !
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Another trial
k
k
k
kkk
x
y
y
yxx
3
57
10
1
1





861.2
5.1*3
5.357
179.25.3*5.110
1
1




y
x
05.3
179.2*3
861.257
941.1861.2*179.210
2
2




y
x
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Condition of Convergence
• For the fixed point iteration to ensure
convergence of solution from point xk and yk we
should ensure that
1
1
21
21












y
g
y
g
and
x
g
x
g
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Newton-Raphson Method
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Newton’s Method: Taylor’s Series
   1
21
1
' xf
xx
xf


 
 1
1
12
' xf
xf
xx 
 
 k
k
kk
xf
xf
xx
'
1 
Newton-Raphson
Iterative method
     112 ' xxfxfxf 
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Taylor’s series in multiple variables
   
   
y
f
y
x
f
xyxfyxf
y
f
y
x
f
xyxfyxf












22
112222
11
111221
,,
,,
 
 112
22
111
11
,
,
yxf
y
f
y
x
f
x
yxf
y
f
y
x
f
x














Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Manipulating the equations
 
 




































112
111
22
11
,
,
yxf
yxf
y
x
y
f
x
f
y
f
x
f
Solve for x and y then evaluate:






















y
x
y
x
y
x
1
1
2
2
Repeat until convergence
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example
 
  0573
010
2
2
2
1


xyyxf
xyxxf
Which has a solution x=2 & y=3
With initial values: x=1.5 and y=3.5
Get the derivatives
xy
y
f
y
x
f
x
y
f
yx
x
f
613
2
222
11












Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example
Using initial values: x=1.5 and y=3.5
Get the derivatives
5.3275.36
5.15.6
22
11












y
f
x
f
y
f
x
f






















625.1
5.2
5.3275.36
5.15.6
y
x
















656.0
536.0
y
x













844.2
036.2
2
2
y
x
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Conclusion
• The fixed point iteration and Newton-
Raphson methods were used to find a
solution for a system of nonlinear
equations in a manner similar to that used
in single-variable problems
Roots of Non-Linear Equations
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Homework #2
• Chapter 6, p 171, numbers:
6.1,6.2,6.3,6.16,6.17
• Homework due next week

Roots of Nonlinear Equations - Open Methods

  • 1.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Roots of Nonlinear Equations Open Methods
  • 2.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Be able to use the Newton Raphson method to find a root of an equations • Be able to use the Secant method to find a root of an equations • Write down an algorithm to outline the method being used
  • 3.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Fixed Point Iterations
  • 4.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com  kk xgx 1 Fixed Point Iterations • Solve   0xf     0 xgxxf • Rearrange terms: • OR  xgx 
  • 5.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com In some cases you do not get a solution!
  • 6.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example
  • 7.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example   22  xxxf Which has the solutions -1 & 2 To get a fixed-point form, we may use:   22  xxg   x xg 21   2 xxg   12 22    x x xg
  • 8.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com First trial! • No matter how close your initial guess is, the solution diverges!
  • 9.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Second trial • The solution converges in this case!!
  • 10.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Condition of Convergence • For the fixed point iteration to ensure convergence of solution from point xk we should ensure that   1' kxg
  • 11.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Fixed Point Algorithm 1. Rearrange f(x) to get f(x)=x-g(x) 2. Start with a reasonable initial guess x0 3. If |g’(x0)|>=1, goto step 2 4. Evaluate xk+1=g(xk) 5. If (xk+1-xk)/xk+1< es; end 6. Let xk=xk+1; goto step 4
  • 12.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Newton-Raphson Method
  • 13.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Newton’s Method: Line Equation  1 21 21 ' xf xx yy m     The slope of the line is given by:
  • 14.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Newton’s Method: Line equation    1 21 1 ' xf xx xf      1 1 12 ' xf xf xx     k k kk xf xf xx ' 1  Newton-Raphson Iterative method
  • 15.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Newton’s Method: Taylor’s Series      1121 ' xfxxxf     1 1 12 ' xf xf xx     k k kk xf xf xx ' 1  Newton-Raphson Iterative method        11212 ' xfxxxfxf 
  • 16.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Newton-Raphson Algorithm 1. From f(x) get f’(x) 2. Start with a reasonable initial guess x0 3. Evaluate xk+1=xk-f(xk)/f’(xk) 4. If (xk+1-xk)/xk+1< es; end 5. Let xk=xk+1; goto step 4
  • 17.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Secant Method
  • 18.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Secant Method 21 21 2 2 xx yy xx yy      The line equation is given by:    2 21 221 0 xx yy yxx   
  • 19.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Secant Method    2 21 221 0 xx yy yxx      21 212 2 yy xxy xx          kk kkk kk xfxf xxxf xx       1 1 1
  • 20.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Secant Algorithm 1. Select x1 and x2 2. Evaluate f(x1) and f(x2) 3. Evaluate xk+1 4. If (xk+1-xk)/xk+1< es; end 5. Let xk=xk+1; goto step 3
  • 21.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Why Secant Method? • The most important advantage over Newton-Raphson method is that you do not need to evaluate the derivative!
  • 22.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Comparing with False-Position • Actually, false position ensures convergence, while secant method does not!!!
  • 23.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Conclusion • The fixed point iteration, Newton-Raphson method, and the secant method in general converge faster than bisection and false position methods • On the other hand, these methods do not ensure convergence! • The secant method, in many cases, becomes more practical than Newton-Raphson as derivatives do not need to be evaluated
  • 24.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Roots of Nonlinear System of Equations
  • 25.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Be able to use the fixed point method to find a root of a set of equations • Be able to use the Newton Raphson method to find a root of a set equations
  • 26.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Fixed Point Iterations
  • 27.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com  kk xgx 1 Fixed Point Iterations • Solve   0xf     0 xgxxf • Rearrange terms: • OR  xgx 
  • 28.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com    kkk kkk yxgy yxgx , , 21 11     Fixed Point Iterations (cont’d) • Solve     0, 0, 2 1   yxf yxf         0,, 0,, 22 11   yxgyyxf yxgxyxf• Rearrange terms: • OR    yxgy yxgx , , 2 1  
  • 29.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example     0573 010 2 2 2 1   xyyxf xyxxf Which has a solution x=2 & y=3 To get a fixed-point form, we may use: With initial values: x=1.5 and y=3.5 kkk k k k yxy y x x 2 1 2 1 357 10      38.245.3*5.1*357 214.2 5.3 5.110 2 1 2 1     y x 7.42938.24*214.2*357 209.0 38.24 214.210 2 2 2 2      y x
  • 30.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Diverging !
  • 31.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Another trial k k k kkk x y y yxx 3 57 10 1 1      861.2 5.1*3 5.357 179.25.3*5.110 1 1     y x 05.3 179.2*3 861.257 941.1861.2*179.210 2 2     y x
  • 32.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Condition of Convergence • For the fixed point iteration to ensure convergence of solution from point xk and yk we should ensure that 1 1 21 21             y g y g and x g x g
  • 33.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Newton-Raphson Method
  • 34.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Newton’s Method: Taylor’s Series    1 21 1 ' xf xx xf      1 1 12 ' xf xf xx     k k kk xf xf xx ' 1  Newton-Raphson Iterative method      112 ' xxfxfxf 
  • 35.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Taylor’s series in multiple variables         y f y x f xyxfyxf y f y x f xyxfyxf             22 112222 11 111221 ,, ,,    112 22 111 11 , , yxf y f y x f x yxf y f y x f x              
  • 36.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Manipulating the equations                                         112 111 22 11 , , yxf yxf y x y f x f y f x f Solve for x and y then evaluate:                       y x y x y x 1 1 2 2 Repeat until convergence
  • 37.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example     0573 010 2 2 2 1   xyyxf xyxxf Which has a solution x=2 & y=3 With initial values: x=1.5 and y=3.5 Get the derivatives xy y f y x f x y f yx x f 613 2 222 11            
  • 38.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example Using initial values: x=1.5 and y=3.5 Get the derivatives 5.3275.36 5.15.6 22 11             y f x f y f x f                       625.1 5.2 5.3275.36 5.15.6 y x                 656.0 536.0 y x              844.2 036.2 2 2 y x
  • 39.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Conclusion • The fixed point iteration and Newton- Raphson methods were used to find a solution for a system of nonlinear equations in a manner similar to that used in single-variable problems
  • 40.
    Roots of Non-LinearEquations Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Homework #2 • Chapter 6, p 171, numbers: 6.1,6.2,6.3,6.16,6.17 • Homework due next week