barakaloibanguti@gmail.com
ADVANCED MATHEMATICS
TRIGONOMETRY
7
BARAKA
LO1BANGUT1
sec2
(X) - tan2
(X) = 1
barakaloibanguti@gmail.com
The author
Name: Baraka Loibanguti
Email: barakaloibanguti@gmail.com
Tel: +255 621 842525 or +255 719 842525
barakaloibanguti@gmail.com
Read this!
▪ This book is not for sale.
▪ It is not permitted to reprint this book without prior written
permission from the author.
▪ It is not permitted to post this book on a website or blog for the
purpose of generating revenue or followers or for similar purposes.
In doing so you will be violating the copyright of this book.
▪ This is the book for learners and teachers and its absolutely free.
barakaloibanguti@gmail.com
To all my friends
BARAKA LO1BANGUT1
5 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
TRIGONOMETRY
The word trigonometric is derived from two Greek
words trigon, which means triangles, and metric,
which means measures. Knowledge of the trigonometrical ratios is vital in very
many fields of engineering, mathematics and physics.
Trigonometry, as the word implies, is concerned with the measurement of the parts,
sides and angles, of a triangle. The early applications of the trigonometric functions
were to surveying, navigation, and engineering. These functions also play an
important role in the study of all sorts of vibratory phenomena-sound, light,
electricity, etc. Therefore, a considerable portion of the subject matter is concerned
with a study of the properties of and relations among the trigonometric functions.
Trigonometric ratios as ratios of a right-angled triangle
c
a
=
=
Hypotenuse
opposite
θ
sin
c
b
=
=
Hypotenuse
Adjacent
θ
cos
cosθ
θ
sin
Adjacent
Opposite
θ
tan =
=
=
b
a
θ
A
C
B
b
c
a
Chapter
7
BARAKA LO1BANGUT1
6 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Reciprocal of trigonometric ratios
Reciprocal of sine is cosecant,
sine
1
cosecant = which is abbreviated as
cosec or csc
Reciprocal of cosine is secant,
cosine
1
secant = , which is abbreviated as
sec.
Reciprocal of tangent is cotangent,
tangent
1
cotangent = , this is
abbreviated as cot
Therefore,









=
=
=
x
x
x
x
x
x
tan
cot
sin
cosec
cos
sec
1
1
1
Trigonometric identities
Consider the triangle ABC given
c
a
θ
sin = and
c
b
θ
cos =
2
2
2






+






=
+
c
b
c
a
θ
cos
θ
sin 2
2
2
2
2
c
b
a
θ
cos
θ
sin
+
=
+
2
By Pythagoras theorem
2
2
2
c
b
a =
+
θ
A
C
B
b
c
a
BARAKA LO1BANGUT1
7 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
1
2
=
=
+ 2
2
2
c
c
θ
cos
θ
sin , therefore 1
θ
cos
θ
sin =
+ 2
2
Using 1
θ
cos
θ
sin =
+ 2
2
divide throughout by θ
cos2
θ
cos
θ
cos
θ
sin
θ
cos
θ
cos
2
2
2
2
2
1
=
+ therefore θ
sec
θ
tan 2
=
+ 2
1
Using 1
θ
cos
θ
sin =
+ 2
2
divide throughout by θ
sin 2
θ
sin
θ
sin
θ
sin
θ
sin
θ
cos
2
2 2
2
2
1
=
+ therefore θ
cosec
1
θ
cot 2
=
+
2
SIMPLIFYING TRIGONOMETRIC IDENTITIES
This means to write the compound trigonometric given in a most simplified
form with one or two trigonometric functions.
Simplify



2
cosec
tan
tan 1
2
+
Solution
Given



2
cosec
tan
tan 1
2
+
from θ
sec
θ
tan 2
=
+ 2
1 then
















2
2
1
sin
cos
sin
sec
=
=



sin
cos
sec
1
2
( )



sin
cos
cos

2
1


cos
sin
=
Example 1
BARAKA LO1BANGUT1
8 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Therefore, 



tan
cosec
tan
tan
2
=
+1
2
Simplify x
x
x sin
cos
cosec 2
+
Solution
Given x
x
x sin
cos
cosec 2
+
x
x
x
sin
cos
sin
+





 2
1
x
x
x
x
x
cosec
sin
sin
sin
cos
=
=
+ 1
2
2
Therefore, x
x
x
x cosec
sin
cos
cosec 2
=
+
Simplify
1
1
1
1
+
+
− x
x sec
sec
Solution
Given
1
1
1
1
+
+
− x
x sec
sec
( ) ( )
( )( )
1
1
1
1
+
−
−
+
+
=
x
x
x
x
sec
sec
sec
sec
1
2
2
−
=
x
x
sec
sec
x
x
2
2
tan
sec
=
x
x
x
x
x
x
x
cot
cosec
sin
cos
sin
cos
cos
2
2
2
2
2
2
=
=














=
Therefore, x
x
x
x
cot
cosec
sec
sec
2
1
1
1
1
=
+
+
−
Example 2
Example 3
BARAKA LO1BANGUT1
9 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
EXERCISE 1
(a) Simplify the following trigonometric identities
1.
x
x
x
csc
sin
tan +
2.
θ
θ
θ
2
cot
sin
csc −
3. ( )
x
x
x
x sin
tan
cos
cot + 4. 

 tan
sin
cos +
5. x
x
x 2
2
2
sin
cos
sin − 6.
x
x
x
x
sin
cos
cos
sin
+
+
+
1
1
7.
x
x
x
tan
csc
sec
+
+
1
8. ( )( )
x
x
x tan
sec
sin +
−
1
9. ( ) ( )2
2
x
x
x
x cos
sin
cos
sin −
+
+
10. ( )( )
1
+
− x
x
x csc
tan
sec 11. ( ) ( )2
2
1
1 x
x tan
tan −
+
+
12. ( ) ( )2
2
3
3 x
x
x
x sin
cos
sin
cos −
+
+
13. ( ) ( )2
2
3
4
4
3 x
x
x
x sin
cos
sin
cos −
+
+
14. x
x 2
2
sin
tan − 15.
x
x
x
2
2
2
tan
cot
csc −
16.
x
x
x
2
1 cos
cos
sin
−
17. x
x
x cos
sin
tan −
18.
x
x 2
2
1
1
tan
sin
−
19. ( )
x
x
x sin
csc
sin −
20.
x
x
x
x
csc
sin
sec
cos
+
(b) From each of equation set given eliminate 
21. 
sin
3
=
x and 
cosec
=
y 22. 
sin
+
= 3
x and 
tan
=
y
23. 
sin
=
x
5 and 
cos
2
=
y 24. 
sin
2
=
x and 
cos
=
y
3
25. 
sin
+
= 3
x and 
cosec
=
y 26. θ
x cot
= and 
sec
+
= a
y
BARAKA LO1BANGUT1
10 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
PROOF OF TRIGONOMETRIC IDENTITIES
The first part above was to simplify trigonometric identities, in this part, we
are required to verify that the right-hand side is equals to the left hand side.
We are required to simplify one side to be the same as the other side. To
verify, we can start with either side.
Show that x
x
x
x cos
tan
sin
sec =
−
Solution
x
x
x
x cos
tan
sin
sec =
−
Consider left hand side






−
x
x
x
x cos
sin
sin
cos
1
x
x
cos
sin 2
1−
= x
x
x
cos
cos
cos
=
=
2
, hence LHs become as
RHs, hence shown.
Prove that x
x
x
x cosec
sec
cot
tan =
+
Solution
Consider left hand side
x
x cot
tan +
x
x
x
x
sin
cos
cos
sin
+ x
x
x
x
x
x
x
x
sec
csc
cos
sin
cos
sin
cos
sin
=
=
+
=
1
2
2
hence shown.
Prove that
x
x
x
x
sin
cos
cos
sin −
=
+
1
1
Solution
Consider left hand side
Example 4
Example 5
Example 6
BARAKA LO1BANGUT1
11 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
x
x
x
x
cos
cos
cos
sin
−
−

+ 1
1
1
(Multiplying by x
cos
−
1 in numerator and
denominator)
( ) ( )
x
x
x
x
x
x
2
2
1
1
1
sin
cos
sin
cos
cos
sin −
=
−
−
x
x
sin
cos
−
=
1
hence shown
Prove that
x
x
x
x
x
cos
sin
cos
tan
cot
1
2 2
−
=
−
Solution
Consider the left hand side
x
x tan
cot −
x
x
x
x
x
x
x
x
cos
sin
sin
cos
cos
sin
sin
cos 2
2
−
=
−
( )
x
x
x
x
x
x
x
cos
sin
cos
cos
sin
cos
cos 1
2
1 2
2
2
−
=
−
−
EXERCISE 2
Prove each of the following identities
1. x
x
x
x csc
tan
cos
csc =
+
2
2. 



tan
cos
tan
sin
=
+
+
1
3.








cos
sin
sin
cos
sin
cos
tan
cot −
=
+
−
4.




tan
sec
cos
sin
+
=
− 1
1
5. 



 2
2
1 cos
cot
tan
cot
tan
−
=
+
−
6. ( )2
1
1
x
x
x
x
tan
sec
csc
csc
+
=
−
+
7. ( )( ) ( )2
1
1 x
x
x
x tan
cos
sin
csc +
=
+
− 8. x
x
x
x 2
2
2
2
csc
sec
cot
sin =
+
+
9. ( ) 1
1 2
2
2
−
=
+ x
x
x sec
tan
sin 10. 1
2 2
2
2
−
=
− x
x
x cos
sin
cos
Example 7
BARAKA LO1BANGUT1
12 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
11.
x
x
x
x 2
2
2
2
sin
sec
csc
sec =
+
12. x
x
x
x tan
sin
cos
sec =
−
13. 


 cot
cos
sin
csc =
− 14. x
x
x
x 2
2
2
2
sin
tan
sin
tan =
−
15. 


 2
2
sec
cot
tan
tan =
+
16. x
x
x
x
sec
tan
sin
sin
2
1
1
1
1
=
+
−
−
17.
1
1
1
1
+
−
=
+
−




cot
cot
tan
tan
18.
1
1
+
=
−
x
x
x
x
sec
tan
tan
sec
19. x
x
x
x
cot
csc
cos
cos
−
=
+
−
1
1
20. 



sin
tan
sec
cos
−
=
+
1
21.




sec
sec
sin
sec
+
=
−
1
1 2
2
22. ( ) ( ) 2
2
2
2
b
a
a
b
b
a +
=
+
+
+ 


 sin
cos
sin
cos
23.
x
x
x
x
x
sec
cos
sin
cos
sin
−
=
−
+
−
+
1
1
3
3
1
2
2
2
24. If 
sin
+
= 2
x and 
cos
=
+1
y show that 0
4
2
4
2
2
=
+
+
−
+ y
x
y
x
TRIGONOMETRIC EQUATION
Trigonometric equations may have infinity solutions; to be specific the range
of the solution should be given. The range may be 


 360
0  ,




− 360
360  or 



− 180
180  etc. if not given we give out the
general solution. Note that, this range may also be given in radians. We shall
also refer the four quadrants of the xy-plane to get the required principal
solutions.
Solve for x from 


 360
0 x ; ( ) 3
0
15 .
sin −
=

+
x
Solution
Example 8
BARAKA LO1BANGUT1
13 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Given ( ) 3
0
15 .
sin −
=

+
x
( )
3
.
0
sin
15 1
−
=

+
x

−
=

+ 46
17
15 .
x


=

+ 342.54
,
.46
197
15
x


= 327.54
,
.46
182
x
Solve ( ) 5
0
10 .
sin −
=

+
x from 


 360
0 x
Solution
( ) 5
0
10 .
sin −
=

+
x
( )
5
0
10 1
.
sin−
−
=

+
x

−
=

+ 30
10
x then 

=

+ 330
210
10 ,
x
Therefore 

= 320
,
200
x
Solve 4
0.
cos −
=
x from 



− 180
180 x
Solution
4
0.
cos −
=
x
( )
4
0
1
.
cos −
= −
x

= 58
113.
x , or 
−
= 58
113.
x
Solve 0
1
3 =
+

tan from 



− 180
180 
Solution
Example 9
Example 10
Example 11
BARAKA LO1BANGUT1
14 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Given 0
1
3 =
+

tan
3
1
−
=

tan






−
= −
3
1
1
tan


−
= 43
18.
 or 
= 57
161.

Solve 0
2
=
+ x
x
x cos
sin
sin from 


 360
0 x
Solution
0
2
=
+ x
x
x cos
sin
sin
( ) 0
=
+ x
x
x cos
sin
sin
Case 1: 0
=
x
sin
( )
0
sin 1
−
=
x

= 0
x , 
180 or 
360
Case 2: 0
=
+ x
x cos
sin
x
x cos
sin −
= therefore 1
−
=
x
tan
( )
1
1
−
= −
tan
x

=135
x or 
315
Therefore, 
= 0
x , 
135 , 
180 , 
315 or 
360
Solve 0
1
6 2
=
−
− x
x sin
cos from 


 360
0 x
Solution
Example 12
Example 13
BARAKA LO1BANGUT1
15 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
0
1
6 2
=
−
− x
x sin
cos
( ) 0
1
sin
sin
1
6 2
=
−
−
− x
x
0
1
sin
sin
6
6 2
=
−
−
− x
x
0
5
sin
sin
6 2
=
+
−
− x
x
( )( ) 0
1
sin
5
sin
6 =
+
− x
x
Case 1: 0
5
sin
6 =
−
x
6
5
sin =
x  





= −
6
5
sin 1
x

= 44
.
56
x or 
56
.
123
Case 2: 1
sin −
=
x
( )
1
sin 1
−
= −
x

= 270
x
Therefore, 
= 44
.
56
x , 
56
.
123 or 
270
Solve x
x
x cos
3
cos
sin
4 = for 


 360
0 x
Solution
x
x
x cos
3
cos
sin
4 =
0
cos
3
cos
sin
4 =
− x
x
x
( ) 0
3
cos
4
sin =
−
x
x
Case 1: 0
sin =
x
Example 14
BARAKA LO1BANGUT1
16 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( )
0
sin 1
−
=
x

= 0
x , 
180 or 
360
Case 2: 0
3
cos
4 =
−
x
4
3
cos =
x






= −
4
3
cos 1
x

= 59
.
48
x or 
41
.
131
The solutions are 
= 0
x , 
59
.
48 , 
41
.
131 , 
180 or 
360
Solve 1
tan
1
tan
2 =
−

 from 


 360
0 
Solution

 tan
1
tan
2 2
=
−
0
1
tan
tan
2 2
=
−
− 

( )( ) 0
1
tan
2
1
tan =
+
− 

Case 1: 1
tan =

( )
1
tan 1
−
=

Example 15
1
tan
1
tan
2 =
−


BARAKA LO1BANGUT1
17 | b a r a k a l o i b a n g u t i @ g m a i l . c o m

= 45
 or 
225
Case 2:
2
1
tan −
=







−
= −
2
1
tan 1


= 44
.
153
 or 
56
.
206
The solution are 
= 45
 
44
.
153 , 
225 , 
56
.
206 or 
225
Solve 

 cos
sin
2
sin
3 2
= from 


 360
0 
Solution


 cos
sin
2
sin
3 2
=
0
cos
sin
2
sin
3 2
=
− 


( ) 0
cos
2
sin
3
sin =
− 


Case 1: 0
sin =


= 0
 , 
180 or 
360
Case 2: 
 cos
2
sin
3 =
3
2
tan =







= −
3
2
tan 1


= 69
.
33
 or 
31
.
146
The solutions are 
= 0
 , 
69
.
33 , 
31
.
146 , 
180 or 
360
Example 16
BARAKA LO1BANGUT1
18 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
EXERCISE 3
(a) Solve the following from 
0 to 
360 inclusive
1. 7
.
0
2
cos =
x
2. 0
1
3
tan
2 =
−
x
3. 0
cos
sin
cos2
=
− 


4. 0
1
sin
2
sin
5 2
=
−
− 

5. 0
cos
3
sin
2 =
− 

6. 0
3
cos
5 =
+

7. ( ) 0
cos
sin
2
cos =
+ 


8. x
x
x sin
3
cos
sin
4 =
9. ( )( ) 0
1
sin
1
sin
2 =
+
− 

10. 0
cos
sin
2
sin =
− 


11. ( ) 2
30
tan =

+
x
12. 

 csc
cos
cos
4 2
=
13. 7
sec
3
tan 2
2
=
+ 

14. 0
2
sin
5
sin
2 2
=
+
− x
x
15. x
x 2
tan
8
1
tan
2 =
+
(b) Solve the following from 
−180 to 
180 inclusive
16. x
x 3
cos
2
sin =
17. 0
1
sin
4
sin
2 2
=
+
− x
x
18. x
x
x cos
sin
2
sin
3 2
=
19. ( )
2
1
30
cos =

−
x
20. x
x
x tan
2
sec
3
cos
4 =
−
21. 0
1
cos
sin2
=
+
+ x
x
22. x
x 2
cos
4
sin
4 =
−
23. x
x 2
sin
3
cos
5
5 =
−
24. 3
cos
7
cos2
=
+ x
x
25. x
x
x sin
cos
3
tan
8 =
COMPOUND ANGLES
BARAKA LO1BANGUT1
19 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
COMPOUND ANGLES, NATURAL SINE ( )
B
A
sin 
Before we proceed with the compound angles, we need first to recall the
sine rule
Consider the triangle below
Area of triangle ABC, bh
A
2
1
=
c
h
Hyp
opp
sin =
=
A A
c
h sin
=

A
bc
A sin
2
1
=
Using this area formula, we can deduce the sine rule as follows
B
ac
A
bc
C
ab
A sin
2
1
sin
2
1
sin
2
1
=
=
=
Simplifying
B
ac
A
bc
C
ab sin
2
1
sin
2
1
sin
2
1
=
=
Divide throughout by abc,
B
ac
A
bc
C
ab sin
sin
sin =
=
abc
B
ac
abc
A
bc
abc
C
ab sin
sin
sin
=
=
This is sine rule
Sine rule is used to solve triangle problem of the two cases below
(a) Solving ASA (Angle, Side, Angle) and AAS (Angle, Angle, Side) Cases
(b) Solving the Ambiguous SSA (Side, Side, Angle) Case
b
B
a
A
c
C sin
sin
sin
=
=
A
B
C
h
BARAKA LO1BANGUT1
20 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Using the above sine rule
Consider again the triangle ABC below
Area of triangle ABC = Area of triangle ADB + Area of triangle DBC
Area of ABC, ( )
B
A
ac
A +
= sin
2
1
Area of triangle ADB, A
hc
A sin
2
1
= but A
c
h
c
h
A cos
cos =

=
Area of triangle DBC, B
ah
A sin
2
1
= but B
a
h
a
h
B cos
cos =

=
Area of triangle ABC = Area of triangle ADB + Area of triangle DBC
( ) B
ah
A
hc
B
A
ac
A sin
2
1
sin
2
1
sin
2
1
+
=
+
=
( ) B
ah
A
hc
B
A
ac sin
sin
sin +
=
+
( ) ( )( ) ( )( )
A
c
B
a
A
c
B
a
B
A
ac cos
sin
sin
cos
sin +
=
+
( ) B
A
ac
B
A
ac
B
A
ac sin
cos
cos
sin
sin +
=
+
( ) B
A
B
A
B
A sin
cos
cos
sin
sin +
=
+
Therefore,
A
B
C
h
D
A B
c
a
b
( ) B
A
B
A
B
A sin
cos
cos
sin
sin +
=
+
BARAKA LO1BANGUT1
21 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Sine and Tangent are odd functions, thus ( ) A
A sin
sin −
=
− and
( ) A
A tan
tan −
=
− while cosine is an even function, thus
( ) A
A cos
cos =
− , this apply to secant, cosecant and cotangent.
Using the concept of odd function of sine, we can proof ( )
B
A
sin −
Replace, B with B
− ,
( )
( ) ( ) ( )
B
A
B
A
B
A −
+
−
=
−
+ sin
cos
cos
sin
sin
( ) B
A
B
A
B
A sin
cos
cos
sin
sin −
=
−
Therefore,
COMPOUND ANGLES, NATURAL COSINE ( )
B
A
cos 
Before showing these compound angles, we shall first derive the cosine
formula, which will be our base in proving the cosine compound angles
Consider the triangle ABC below
Using Pythagoras theorem, in triangle DBC
( ) 2
2
2
a
h
x
b =
+
−
2
2
2
2
2 a
h
x
bx
b =
+
+
−
( ) B
A
B
A
B
A sin
cos
cos
sin
sin −
=
−
A C
h
D
B
c a
b – x
x
BARAKA LO1BANGUT1
22 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
A
c
x
c
x
A cos
cos =

=
A
c
h
c
h
A sin
sin =

=
( ) ( ) ( ) 2
2
2
2
sin
cos
cos
2 a
A
c
A
c
A
c
b
b =
+
+
−
2
2
2
2
2
2
sin
cos
cos
2 a
A
c
A
c
A
bc
b =
+
+
−
( ) 2
2
2
2
2
sin
cos
cos
2 a
A
A
c
A
bc
b =
+
+
−
A
bc
c
b
a cos
2
2
2
2
−
+
=
This is cosine rule,
Note that, cosine rule is used in two cases
(a) Solving the SAS (Side, Angle, Side) Case
(b) Solving the SSS (Side, Side, Side) Case
Now, consider the triangle ABC, let b – x be y
( ) ( )
B
A
ab
b
a
y
x +
−
+
=
+ cos
2
2
2
2
( )
B
A
ab
b
a
y
xy
x +
−
+
=
+
+ cos
2
2 2
2
2
2
In triangle ADC: 2
2
2
y
b
h −
=
(Pythagoras theorem)
In triangle DBC: 2
2
2
x
a
h −
=
( ) ( ) ( )
B
A
ab
xy
b
y
a
x +
−
=
−
−
−
+
−
− cos
2
2
2
2
2
2
( )
B
A
ab
xy
h
h +
−
=
+
−
− cos
2
2
2
2
A
bc
c
b
a cos
2
2
2
2
−
+
=
BARAKA LO1BANGUT1
23 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( )
B
A
ab
xy
h +
−
=
+
− cos
2
2
2 2
( )
B
A
ab
xy
h +
−
=
+
− cos
2
( ) 2
cos h
xy
B
A
ab −
=
+
( )
ab
h
ab
xy
B
A
2
cos −
=
+
( ) 











−












=
+
b
h
a
h
b
y
a
x
B
A
cos
But
b
y
A =
cos ,
a
x
B =
cos ,
b
h
A =
sin and
a
h
B =
sin
( ) B
A
B
A
B
A sin
sin
cos
cos
cos −
=
+
Therefore,
Using the concept of odd and even functions, we deduce the formula
By replacing B with B
− ,
( ) B
A
B
A
B
A sin
sin
cos
cos
cos +
=
−
From the compound angles ( )
B
A
sin and ( )
B
A
cos we deduce the
compound angles of ( )
B
A
tan
( ) ( )
( )
B
A
B
A
B
A
+
+
=
+
cos
sin
tan
( ) B
A
B
A
B
A sin
sin
cos
cos
cos +
=
−
( ) B
A
B
A
B
A sin
sin
cos
cos
cos −
=
+
BARAKA LO1BANGUT1
24 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( )
B
A
B
A
B
A
B
A
B
A
sin
sin
cos
cos
sin
cos
cos
sin
tan
−
+
=
+
( )
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
cos
cos
sin
sin
cos
cos
cos
cos
cos
cos
sin
cos
cos
cos
cos
sin
tan
−
+
=
+
( )












−






+






=
+
B
B
A
A
B
B
A
A
B
A
cos
sin
cos
sin
1
cos
sin
cos
sin
tan
( )
B
A
B
A
B
A
tan
tan
1
tan
tan
tan
−
+
=
+
Therefore,
For ( )
B
A−
tan
( ) ( )
( )
B
A
B
A
B
A
−
−
=
−
cos
sin
tan
( )
B
A
B
A
B
A
B
A
B
A
sin
sin
cos
cos
sin
cos
cos
sin
tan
+
−
=
−
( )
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
cos
cos
sin
sin
cos
cos
cos
cos
cos
cos
sin
cos
cos
cos
cos
sin
tan
+
−
=
+
( )
B
A
B
A
B
A
tan
tan
1
tan
tan
tan
−
+
=
+
BARAKA LO1BANGUT1
25 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( )












+






−






=
−
B
B
A
A
B
B
A
A
B
A
cos
sin
cos
sin
1
cos
sin
cos
sin
tan
( )
B
A
B
A
B
A
tan
tan
1
tan
tan
tan
+
−
=
−
Therefore,
PROVING TRIGONOMETRIC IDENTITIES
Show that ( ) ( ) B
A
B
A
B
A 2
2
cos
cos
cos
cos −
=
−
+
Solution
( ) ( ) B
A
B
A
B
A 2
2
cos
cos
cos
cos −
=
−
+
( )( )
B
A
B
A
B
A
B
A sin
sin
cos
cos
sin
sin
cos
cos +
−
B
A
B
A 2
2
2
2
sin
sin
cos
cos −
( ) ( ) B
A
B
A 2
2
2
2
sin
cos
1
sin
1
cos −
−
−
B
A
B
B
A
A 2
2
2
2
2
2
sin
cos
sin
sin
cos
cos +
−
−
B
A 2
2
sin
cos − , hence proved
( )
B
A
B
A
B
A
tan
tan
1
tan
tan
tan
+
−
=
−
Example 17
Example 18
BARAKA LO1BANGUT1
26 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Show that ( ) A
A cos
90
sin =
−

Solution
( ) A
A cos
90
sin =
−

( ) A
A
A sin
90
cos
cos
90
sin
90
sin 
−

=
−

But 1
90
sin =
 and 0
90
cos =

( ) ( ) ( ) A
A
A sin
0
cos
1
90
sin −
=
−

( ) A
A cos
90
sin =
−
 , Hence shown.
Show that
( )
( ) B
A
B
A
B
A
B
A
tan
tan
tan
tan
sin
sin
−
+
=
−
+
Solution
Consider the left hand side
( )
( ) B
A
B
A
B
A
B
A
B
A
B
A
sin
cos
cos
sin
sin
cos
cos
sin
sin
sin
−
+
=
−
+
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
cos
cos
sin
cos
cos
cos
cos
sin
cos
cos
sin
cos
cos
cos
cos
sin
−
+
=
B
B
A
A
B
B
A
A
cos
sin
cos
sin
cos
sin
cos
sin
−
+
=
Example 19
BARAKA LO1BANGUT1
27 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
B
A
B
A
tan
tan
tan
tan
−
+
= Hence shown
EXERCISE 4
(a) Prove the following identities
1. ( ) ( ) B
A
B
A
B
A cos
sin
2
sin
sin =
−
+
+
2.
( )
( ) B
A
B
A
B
A
B
A
tan
tan
1
tan
tan
1
cos
cos
−
+
=
−
+
3.
( ) ( ) ( )
C
A
C
A
C
B
C
B
B
A
B
A
cos
cos
sin
cos
cos
sin
cos
cos
sin −
=
−
+
−
4. ( ) A
A cos
π
cos −
=
−
5. A
A cos
2
π
sin −
=






+
6. If C
B
A =
+ , B
p
A tan
tan = , show that ( ) C
p
p
B
A sin
1
1
sin
+
−
=
−
7. If a
y
x =
+ sin
sin and b
y
x =
+ cos
cos show that
( ) 1
2
2
cos
2
2
−
+
=
−
b
a
y
x
8. The roots of the equation 0
15
26
8 2
=
+
− x
x are A
tan and B
tan find
(a) ( )
B
A+
cos and (b) ( )
B
A−
sin .
(b) Prove the following
9.
( )
( )
A
B
B
A
B
B
A
tan
tan
tan
1
tan
tan
=
+
+
−
+
10.
( )
( ) B
A
B
A
B
A
B
A
cot
cot
1
cot
cot
cos
sin
+
+
=
−
+
11.
( )
( ) B
A
B
A
B
A
B
A
tan
tan
tan
tan
sin
sin
−
+
=
−
+
BARAKA LO1BANGUT1
28 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
SIMPLIFYING TRIGONOMETRIC IDENTITIES
Simplify
( )
y
x
y
x
cos
cos
sin −
Solution
( )
y
x
y
x
cos
cos
sin −
y
x
y
x
y
x
cos
cos
sin
cos
cos
sin −
=
y
x
y
x
y
x
y
x
cos
cos
sin
cos
cos
cos
cos
sin
−
=
( ) y
x
y
x
y
x
tan
tan
cos
cos
sin
−
=
−
Simplify
( ) ( )
B
B
A
B
B
A
cos
cos
sin
sin −
+
−
Solution
( ) ( )
B
B
A
B
B
A
cos
cos
sin
sin −
+
−
B
B
A
B
A
B
B
A
B
A
cos
sin
sin
cos
cos
sin
sin
cos
cos
sin +
+
−
=
B
B
A
A
A
B
B
A
cos
sin
sin
cos
cos
sin
cos
sin
+
+
−
=
Example 20
Example 21
BARAKA LO1BANGUT1
29 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
B
B
A
B
B
A
cos
sin
sin
sin
cos
sin
+
=
B
B
B
A
B
A
cos
sin
sin
sin
cos
sin 2
2
+
=
( )
B
B
B
B
A
cos
sin
sin
cos
sin 2
2
+
=
B
B
A
sin
cos
sin
=
Simplify


−

+

15
tan
30
tan
1
15
tan
30
tan
Solution


−

+

15
tan
30
tan
1
15
tan
30
tan
Recall that ( )
B
A
B
A
B
A
tan
tan
1
tan
tan
tan
−
+
=
+
( )

+

=


−

+

15
30
tan
15
tan
30
tan
1
15
tan
30
tan

=


−

+

45
tan
15
tan
30
tan
1
15
tan
30
tan
1
15
tan
30
tan
1
15
tan
30
tan
=


−

+

Example 22
BARAKA LO1BANGUT1
30 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Simplify ( ) ( )
x
y
y
x −
−
− tan
tan
Solution
Tangent is an odd function, this mean that ( ) ( )
A
A tan
tan −
=
−
( ) ( )
x
y
y
x −
−
− tan
tan
( ) ( )
( )
y
x
y
x −
−
−
−
= tan
tan
( ) ( )
y
x
y
x −
+
−
= tan
tan
( )
y
x−
= tan
2
y
x
y
x
tan
tan
1
tan
tan
2
+
−
=
Deriving double angles from compound angles
From ( ) B
A
B
A
B
A sin
cos
cos
sin
sin +
=
+
Let A
B =
( ) A
A
A
A
A
A sin
cos
cos
sin
sin +
=
+
Therefore, A
A
A cos
sin
2
2
sin =
From ( ) B
A
B
A
B
A sin
sin
cos
cos
cos −
=
+
Let A
B =
( ) A
A
A
A
A
A sin
sin
cos
cos
cos −
=
+
DOUBLE ANGLES FORMULAE
Example 23
BARAKA LO1BANGUT1
31 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Therefore, A
A
A 2
2
sin
cos
2
cos −
=
From ( )
B
A
B
A
B
A
tan
tan
1
tan
tan
tan
−
+
=
+
( )
A
A
A
A
A
A
tan
tan
1
tan
tan
tan
−
+
=
+
A
A
A 2
tan
1
tan
2
2
tan
−
=
From the double angle formulae, we deduce the half angles.
From A
A
A cos
sin
2
2
sin = replace A by
2
A
The half angle formula for sine, 











=
2
cos
2
sin
2
sin
A
A
A
From A
A
A 2
2
sin
cos
2
cos −
=
Half angle for cosine, 





−






=
2
sin
2
cos
cos 2
2 A
A
A
From
A
A
A 2
tan
1
tan
2
2
tan
−
= replace A by
2
A
Half angle formula for tangent






−






=
2
tan
1
2
tan
2
tan
2 A
A
A
HALF ANGLE FORMULA
BARAKA LO1BANGUT1
32 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Prove that A
A
A
2
cos
tan
1
tan
1
2
2
=
+
−
Solution
A
A
A
2
cos
tan
1
tan
1
2
2
=
+
−
( )
( ) A
A
A
A
A
A
A
A
A
A
2
2
2
2
2
2
2
2
2
2
cos
sin
cos
cos
sin
cos
cos
sin
1
cos
sin
1
+
−
=
+
−
=
A
A
A
A
2
2
2
2
sin
cos
sin
cos
+
−
=
A
A
A 2
cos
sin
cos 2
2
=
−
= , hence shown
Show that 

 2
tan
2
cos
1
2
cos
1
=
+
−
Solution


 2
tan
2
cos
1
2
cos
1
=
+
−



2
2
2
2
sin
cos
1
sin
cos
1
−
+
+
−
=
Example 24
Example 25
BARAKA LO1BANGUT1
33 | b a r a k a l o i b a n g u t i @ g m a i l . c o m



2
2
2
cos
1
cos
1
sin
2
+
−
+
=


 2
2
2
tan
cos
2
sin
2
=
= shown
Prove that 

 cot
2
cot
2
csc =
+
Solution


 cot
2
cot
2
csc =
+

 2
tan
1
2
sin
1
+
=


 2
sin
2
cos
2
sin
1
+
=


2
sin
2
cos
1+
=




cos
sin
2
sin
cos
1 2
2
−
+
=
( )




sin
cos
2
cos
1
cos
1 2
2
−
−
+
=






cot
sin
cos
cos
sin
2
cos
2 2
=
=
= Shown
Example 26
BARAKA LO1BANGUT1
34 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Prove that 


tan
2
cos
1
2
sin
=
+
Solution



tan
2
cos
1
2
sin
=
+




2
2
sin
cos
1
cos
sin
2
−
+
= thus
( )




2
2
cos
1
cos
1
cos
sin
2
−
−
+
=



2
cos
2
cos
sin
2
=



tan
cos
sin
=
= , Shown.
Show that x
x
x 2
2
sin
3
2
2
cos
cos −
=
+
Solution
x
x
x 2
2
sin
3
2
2
cos
cos −
=
+
x
x 2
cos
cos2
+
x
x
x 2
2
2
sin
cos
cos −
+
=
x
x
x 2
2
2
sin
sin
1
sin
1 −
−
+
−
=
x
2
sin
3
2 −
= , Hence shown
Example 27
Example 28
BARAKA LO1BANGUT1
35 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
EXERCISE 5
Prove the following identities
1.
A
A
A
cos
1
sin
2
tan
+
=






2.






+






=
2
tan
1
2
tan
2
sin
2 


3. 

 tan
cot
2
csc
2 =
−
4. 


 2
sin
sin
2
tan
2
2
tan 2
=
−
5. 




tan
2
cos
cos
1
2
sin
sin
=
+
+
+
6. 

 4
4
sin
cos
2
cos −
=
7. 

 tan
2
cot
2
cot =
−
8. x
x
x
x
x
sin
cos
sin
cos
2
cos
+
=
−
9.
( ) ( )
y
x
y
y
x
y
y
x
2
sin
sin
2
cos
cos
sin
sin
=
−
+
−
10.
( ) y
x
y
x
y
x
cot
tan
cos
cos
cos
+
=
−
11. 

 3
sin
4
sin
3
3
sin −
=
12. 

 3
cos
4
cos
3
3
cos =
+
13. ( ) 3
cot
sin
csc
sin 2
2
2
+
+
=
+ A
A
A
A
14. ( )



 2
2
sin
cos
3
sin
3
sin −
=
15. 

 2
cot
2
tan
cot =
−
16. ( )
B
A
B
A
B
A
tan
tan
1
sec
sec
sec
−
=
+
BARAKA LO1BANGUT1
36 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
17. If 
=
+ 45
2 B
A prove that
A
A
A
A
B
tan
2
tan
1
tan
2
tan
1
tan 2
2
+
−
−
−
=
18. If ( ) ( )
y
x
y
x −
=
+ cos
2
sin show that
y
y
x
tan
2
1
tan
2
tan
−
−
=
19.



sin
cos
1
2
tan
−
=






20. If
12
5
tan =
 find (a) 
2
tan (b) 
3
tan
21. If 
=
+ 45
B
A show that
B
B
B
B
A
sin
cos
sin
cos
tan
+
−
=
SIMPLIFYING TRIGONOMETRIC IDENTITIES INVOLVING
DOUBLE ANGLES
Simplify
A
A
2
sin
1
2
sin
1
−
+
Solution
A
A
2
sin
1
2
sin
1
−
+
A
A
A
A
2
sin
1
2
sin
1
2
sin
1
2
sin
1
+
+

−
+
=
( )
A
A
2
sin
1
2
sin
1
2
2
−
+
=
( )
A
A
A
A
2
cos
2
sin
1
2
cos
2
sin
1
2
2
+
=
+
=
Example 29
BARAKA LO1BANGUT1
37 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
A
A
A
A
2
2
sin
cos
cos
sin
2
1
−
+
=
A
A
A
A
A
A
2
2
2
2
sin
cos
cos
sin
2
sin
cos
−
+
+
=
( ) ( )( )
( )( )
A
A
A
A
A
A
A
A
A
A
A
A
sin
cos
sin
cos
sin
cos
sin
cos
sin
cos
sin
cos
2
2
2
−
+
+
+
=
−
+
=
A
A
A
A
A
A
tan
1
tan
1
sin
cos
sin
cos
−
+
=
−
+
=
Simplify
x
x
sin
2
sin
Solution
x
x
x
x
cos
2
sin
cos
sin
2
=
Simplify ( ) ( ) y
y
x
y
y
x sin
cos
cos
sin −
+
−
Solution
( ) ( ) y
y
x
y
y
x sin
cos
cos
sin −
+
−
Let A
y
x =
−
Example 30
Example 31
x
x
sin
2
sin
BARAKA LO1BANGUT1
38 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
y
A
y
A sin
cos
cos
sin +
=
( )
y
A+
= sin but A
y
x =
−
( )
y
y
x +
−
= sin
x
sin
=
EXERCISE 6
Simplify the following questions
1.
A
A
cos
2
sin
2. A
A 2
cos
tan
2
3. A
A 2
cos
sin
2 2
+
4. A
A sin
4
2
cos
3 +
5.
x
x
x
x
sin
cos
1
cos
1
sin +
+
+
6.
x
x
x
x
2
cos
cos
3
1
2
sin
sin
3
+
+
+
7. A
A
A cos
6
π
sin
6
π
sin =






−
−






+
8.
2
cos
1 A
−
9.
A
A
cos
1
cos
1
−
+
10. A
A 2
tan
cos2
+
BARAKA LO1BANGUT1
39 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
SOLVING EQUATION INVOLVING DOUBLE ANGLE
Solve 0
cos
2
sin
3 =
+ x
x from 


 360
0 x
Solution
0
cos
2
sin
3 =
+ x
x
0
cos
cos
sin
6 =
+ x
x
x
( ) 0
1
sin
6
cos =
+
x
x
Case 1: 0
cos =
x
( )
0
cos 1
−
=
x

=90
x or 
270
Case 2: 0
1
sin
6 =
+
x
6
1
sin −
=
x






= −
6
1
sin 1
x

= 59
.
189
x or 
41
.
350
Therefore, 
=90
x , 
59
.
189 , 
270 or 
41
.
350
Solve 0
sin
2
sin =
− x
x
Solution
0
sin
2
sin =
− x
x
Example 32
Example 33
BARAKA LO1BANGUT1
40 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
0
sin
cos
sin
2 =
− x
x
x
( ) 0
1
cos
2
sin =
−
x
x
Case 1: 0
sin =
x
( )
0
sin 1
−
=
x

= 0
x , 
180 , 
360
Case 2: 0
1
cos
2 =
−
x
5
.
0
cos =
x
( )
5
.
0
cos 1
−
=
x

= 60
x or 
300
The solution set is 
= 0
x , 
60 , 
180 , 
300 and 
360
Solve 1
cot
2
cot
3 =
+ x
x from 



− 180
180 x
Solution
1
cot
2
cot
3 =
+ x
x
1
tan
1
2
tan
1
3 =
+






x
x
1
tan
1
tan
2
tan
3
3 2
=
+
−
x
x
x
x
x tan
2
2
tan
3
3 2
=
+
−
0
5
tan
2
tan
3 2
=
−
+ x
x
Example 34
BARAKA LO1BANGUT1
41 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( )( ) 0
1
tan
5
tan
3 =
−
+ x
x
Case 1: 0
5
tan
3 =
+
x
3
5
tan −
=
x






−
= −
3
5
tan 1
x


−
= 96
.
120
,
04
.
59
x
Case 2: 1
tan =
x
( )
1
tan 1
−
=
x

= 45
x
The solution set is 


−
= 96
.
120
,
45
,
04
.
59
x
EXERCISE 7
Solve the following from 


 360
0 
1. 3
sin
2
cos +
= 

2. ( )

+
= 10
sin
3
cos 

3. 1
sin
cos
2
sin 2
=
+ 


4. 1
2
cos
2
2
cos
3 2
=
+ 

5. 2
3
cot
3
cot
5 2
=
− 

6. 1
2
tan
tan
2 2
+
= 

7. 1
2
cos
2
sin +
= 

8. 
 cot
tan =
9. 4
2
sec4
=

10. 0
2
3
sin
5
3
sin
3 2
=
+
− 

BARAKA LO1BANGUT1
42 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
SOLUTION OF EQUATIONS OF THE FORM c
b
a =
+ θ
sin
θ
cos
(a) From the half angle formula, we derive the so called t formula,
( ) ( )
2
cos
2
sin
2
sin A
A
A =
( ) ( )
( ) ( )
2
sin
2
cos
2
cos
2
sin
2
sin 2
2 A
A
A
A
A
+
=
( )
( )
2
tan
1
2
tan
2
sin 2 A
A
A
+
=
Let ( )
2
tan A
t =
Therefore,
2
1
2
sin
t
t
A
+
=
(b) ( ) ( )
2
sin
2
cos
cos 2
2 A
A
A −
=
( ) ( )
( ) ( )
2
sin
2
cos
2
sin
2
cos
cos 2
2
2
2
A
A
A
A
A
+
−
=
( )
( )
2
tan
1
2
tan
1
cos 2
2
A
A
A
+
−
=
Let ( )
2
tan A
t =
Therefore, 2
2
1
1
cos
t
t
A
+
−
=
BARAKA LO1BANGUT1
43 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
(c)
( )
( )
2
tan
1
2
tan
2
tan 2 A
A
A
−
=
Let ( )
2
tan A
t =
Then,
2
1
2
tan
t
t
A
−
=
Solve 0
1
sin
cos
2 =
−
+ 
 from 


 360
0 
Solution
0
1
sin
cos
2 =
−
+ 

0
1
1
2
1
1
2 2
2
2
=
−






+
+








+
−
t
t
t
t
( ) 0
1
2
2
2 2
2
=
+
−
+
− t
t
t
0
1
2
3 2
=
−
− t
t
( )( ) 0
1
3
1 =
+
− t
t
1
=
t or
3
1
−
=
t
But ( )
2
tan 
=
t
Case 1: ( ) 1
2
tan =

( )
1
tan
2
1
−
=

 


= 225
,
45
2



= 450
,
90

Case 2: ( ) 3
1
2
tan −
=

( )
3
1
tan
2
1
−
= −

 


= 341.57
,
57
.
161
2

Example 35
BARAKA LO1BANGUT1
44 | b a r a k a l o i b a n g u t i @ g m a i l . c o m


= 683.14
,
14
.
323

The solution is 

= 14
.
323
,
90

Note that, other solutions are out of range given.
Solve equation 2
sin
4
cos
3 =
+ 
 from 


 360
0 
Solution
2
sin
4
cos
3 =
+ 

2
1
2
4
1
1
3 2
2
2
=






+
+








+
−
t
t
t
t
2
2
2
2
8
3
3 t
t
t +
=
+
−
0
1
8
5 2
=
−
− t
t
7165
.
1
=
t or 1165
.
0
−
=
t
( ) 7165
.
1
2
tan =

( )
7165
.
1
tan
2
1
−
=

 


= 239.77
,
77
.
59
2



= 479.54
,
54
.
119

( ) 1165
.
0
2
tan −
=

( )
1165
.
0
tan
2
1
−
= −

Example 36
BARAKA LO1BANGUT1
45 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
 


= 36
.
353
,
36
.
173
2



= 706.72
,
72
.
346

The solution set is 

= 72
.
346
,
54
.
119

Solve 1
sin
cos
3 =
+ 
 form 


 360
0 
Solution
1
sin
cos
3 =
+ 

1
1
2
1
1
3 2
2
2
=






+
+








+
−
t
t
t
t
( ) 2
2
1
2
1
3 t
t
t +
=
+
−
0
2
3
1
3 2
2
=
+
−
−
− t
t
t
( ) 0
1
3
2
1
3 2
=
−
+
+
+
− t
t
1
=
t or 2679
.
0
−
=
t
( ) 1
2
tan =

( )
1
tan
2
1
−
=

 


= 225
,
45
2



= 450
,
90

Example 37
BARAKA LO1BANGUT1
46 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( ) 2679
.
0
2
tan −
=

( )
2679
.
0
tan
2
1
−
= −

 


= 345
,
165
2



= 690
,
330



=
 330
,
90

Solution of equations of the form c
b
a =
+ θ
sin
θ
cos :
(a) Expressing equation of the form c
b
a =
+ θ
sin
θ
cos into the form
( )
α
θ
cos
θ
sin
θ
cos −
=
+ R
b
a





 sin
sin
cos
cos
sin
cos R
R
b
a +
=
+


 cos
cos
cos R
a =

cos
R
a = (1)


 sin
sin
sin R
b =

sin
R
b = (2)

 2
2
2
2
2
2
sin
cos R
R
b
a +
=
+ (Square and add equation 1 and 2)
( )

 2
2
2
2
2
sin
cos +
=
+ R
b
a
The value of R is 2
2
b
a
R +
=


cos
sin
R
R
a
b
= (Divide equation 1 and 2)
BARAKA LO1BANGUT1
47 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
a
b
=

tan
Therefore, 





= −
a
b
1
tan

(b) EXPRESSING EQUATION OF THE FORM c
b
a =
+ θ
sin
θ
cos
INTO THE FORM ( )
α
θ
sin
θ
sin
θ
cos +
=
+ R
b
a
( )



 +
=
+ sin
sin
cos R
b
a





 sin
cos
cos
sin
sin
cos R
R
b
a +
=
+
Compare


 sin
cos
cos R
a =

sin
R
a =
(1)


 cos
sin
sin R
b =

cos
R
b =
(2)

 2
2
2
2
2
2
cos
sin R
R
b
a +
=
+ (Square and add equation 1 and 2)
( )

 2
2
2
2
2
cos
sin +
=
+ R
b
a
2
2
2
2
2
b
a
R
R
b
a +
=

=
+
b
a
R
R
=


cos
sin
(Divide equation 1 by 2)
b
a
=

tan
BARAKA LO1BANGUT1
48 | b a r a k a l o i b a n g u t i @ g m a i l . c o m






= −
b
a
1
tan















+
+
=
+ −
b
a
b
a
b
a 1
2
2
tan
cos
sin
cos 


Express 
 sin
4
cos
3 + in the form ( )

 −
cos
R
Solution
Compare and expand ( )

 −
cos
R





 sin
sin
cos
cos
sin
4
cos
3 R
R +
=
+


 cos
cos
cos
3 R
=

cos
3 R
=
(1)


 sin
sin
sin
4 R
=

sin
4 R
=
(2)

 2
2
2
2
2
2
sin
cos
4
3 R
R +
=
+
1. Express c
b
a =
− 
 sin
cos in the form ( )

 −
sin
R
2. Express c
b
a =
− 
 sin
cos in the form ( )

 +
cos
R
Questions
Example 38
BARAKA LO1BANGUT1
49 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( )

 2
2
2
sin
cos
16
9 +
=
+ R
2
25 R
= 5

=
 R


cos
sin
3
4
R
R
=
3
4
tan =
 

=






= −
1
.
53
3
4
tan 1

Therefore, ( )

−

=
+ 1
.
53
cos
5
sin
4
cos
3 


Express 39
cos
12
sin
5 =
− 
 in the form ( )

 −
sin
R
Solution
Compare and expand ( )



 −
=
− sin
cos
12
sin
5 R





 sin
cos
cos
sin
cos
12
sin
5 R
R −
=
−


 cos
sin
sin
5 R
=

cos
5 R
=
(1)


 sin
cos
cos
12 R
=

sin
12 R
=
(2)

 2
2
2
2
2
2
sin
cos
12
5 R
R +
=
+
( )

 2
2
2
sin
cos
144
25 +
=
+ R
2
169 R
= 13

=
 R
Example 40
BARAKA LO1BANGUT1
50 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
5
12
cos
sin
=


R
R
( )
4
.
2
tan
5
12
tan 1
−
=

=
 


= 4
.
67

( )

−

=
− 4
.
67
sin
13
cos
12
sin
5 

 but 39
cos
12
sin
5 =
− 

( ) 39
4
.
67
sin
13 =

−
 
( ) 3
4
.
67
sin 
=

−

Write 3
sin
cos
2 =
− 
 in the form ( )

 +
cos determine the
maximum and minimum value.
Solution
Compare and expand
( )



 +
=
− cos
sin
cos
2 R





 sin
sin
cos
cos
sin
cos
2 R
R −
=
−


 cos
cos
cos
2 R
=

cos
2 R
=


 sin
sin
sin R
=

sin
1 R
=
( ) 
 2
2
2
2
1
2
sin
cos
1
2 R
R +
=
+
( )

 2
2
2
sin
cos
1
2 +
=
+ R
Example 41
BARAKA LO1BANGUT1
51 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
3
2
=
R 3

=
 R
2
1
tan
cos
sin
=
= 


R
R

=






= −
3
.
35
2
1
tan 1

( ) 3
3
.
35
cos
3
sin
cos
2 =

+

=
− 


( ) 3
3
.
35
cos
3 =

+
 
Therefore, ( )
3
3
3
.
35
cos 
=

+
 , Maximum is
3
3
=
R and minimum
is
3
3
−
=
R
QUESTIONS
(a) Express each of the following in the form ( )

 
sin
R
1. 2
sin
3
cos =
+ 

2. 5
cos
4
sin
3 =
− 

3. 1
sin
5
cos
4 =
− 

4. 3
sin
9
cos
10 =
− 

(b) Express each of the following in the form ( )

 
cos
R
5. 
 sin
cos
2 −
6. 5
sin
10
cos
7 =
− 

7. 9
sin
cos
4 =
+ 

8. 4
cos
2
sin
3 =
+ 

BARAKA LO1BANGUT1
52 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
We now clearly know how to express the function c
b
a =
 
 sin
cos in
the form of ( )

 
cos
R or ( )

 
sin
R . This concept is useful in solving
trigonometric equation of the form c
b
a =
 
 sin
cos .
Solve 2
sin
4
cos
3 =
+ 
 for  from 


 360
0 
Solution
( )



 −
=
+ cos
sin
4
cos
3 R





 sin
sin
cos
cos
sin
4
cos
3 R
R −
=
+


 cos
cos
cos
3 R
=

cos
3 R
=


 sin
sin
sin
4 R
=

sin
4 R
=
3
4
tan
cos
sin
=
= 


R
R

=






= −
1
.
53
3
4
tan 1


 2
2
2
2
2
2
sin
cos
4
3 R
R +
=
+
5
25 2
=

= R
R
USING R-FORMULA TO SOLVE TRIGONOMETRIC
EQUATION OF THE FORM c
b
a =
+ θ
sin
θ
cos
Example 41
BARAKA LO1BANGUT1
53 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( ) 2
1
.
53
cos
5
sin
4
cos
3 =

−
=
+ 


( )
5
2
1
.
53
cos =

−

( )
4
.
0
cos
1
.
53 1
−
=

−

 


=

− 6
.
293
,
4
.
66
1
.
53

Solution 

= 7
.
346
,
5
.
119

Find the maximum and minimum value of 
 cos
4
sin
2 − and the
corresponding values of  between 
0 to 
360 inclusive.
Solution
( )



 −
=
− sin
cos
4
sin
2 R





 sin
cos
cos
sin
cos
4
sin
2 R
R −
=
−


 cos
sin
sin
2 R
=

cos
2 R
=


 sin
cos
cos
4 R
=

sin
4 R
=
( )

 2
2
2
2
2
sin
cos
4
2 +
=
+ R
5
2
20 =
=
R
The minimum value is 5
2
− and the maximum value is 5
2
Example 42
BARAKA LO1BANGUT1
54 | b a r a k a l o i b a n g u t i @ g m a i l . c o m



tan
cos
sin
2
4
=
=
R
R
( )
2
tan 1
−
=
 
=
 4
.
63

( )

− 4
.
63
sin
5
2 
At maximum, ( ) 5
2
4
.
63
sin
5
2 =

−

( )
1
sin
4
.
63 1
−
=

−
 
=

−
 90
4
.
63
 
=

+

=
 4
.
153
4
.
63
90

At minimum, ( ) 5
2
4
.
63
sin
5
2 −
=

−

( )
1
sin
4
.
63 1
−
=

− −
 
=


=

−
 4
.
333
270
4
.
63 

Therefore the solutions are ( )

4
.
153
,
5
2 and ( )

− 4
333
,
5
2 .
Solve 1
sin
5
cos =
+ 
 from 


 360
0 
Solution
( )



 −
=
+ cos
sin
5
cos R





 sin
sin
cos
cos
sin
5
cos R
R +
=
+


 cos
cos
cos R
= 1
cos =
 
R


 sin
sin
sin
5 R
= 
sin
5 R
=

( ) ( )

 2
2
2
2
2
sin
cos
5
1 +
=
+ R
6
6 2
=

= R
R
Example 43
BARAKA LO1BANGUT1
55 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
5
tan
5
cos
sin
=

= 


R
R
( ) 
=
= −
9
.
65
5
tan 1

( ) ( )

−
=
− 9
.
65
cos
6
cos 


R
( ) 1
9
.
65
cos
6 =

−







=

− −
6
1
cos
9
.
65 1


=

− 9
.
65
9
.
65

The solution, 

= 360
,
0

EXERCISE 8
(a) Solve each of the following using R-formula from 
0 to 
360 inclusive
1. 5
sin
2
cos
3 =
+ 

2. 3
cos
2
sin
2 =
+ 

3. 1
3
sin
3
cos =
+ 

4. 7
2
cos
12
2
sin
5 =
− 

5. ( ) ( ) 2
sin
3
cos 2
1
2
1 =
− x
x
6. 7
sin
3
cos
2 =
+ 

7. 1
sin
3
1
cos
4
1
=
+ 

8. 0
2
2
sin
3
2
cos =
+
+ 

9. ( ) 3
sin
3
cos
2 2
=
− 

10. ( ) 10
2
sin
5
2
cos
3 =
+ 

11. 4
cos
sin =


12. 0
3
cos
3
sin =


BARAKA LO1BANGUT1
56 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
13. 6
cos
12
sin
5 =
− 

14.
2
1
cos
sin =
+ 

15. 2
sin
7
cos =
− 

16. 4
cos
7
sin
2 =
+ 

17. 4
sec
2
tan
3 =
− 

18. 10
2
cos
15
cos
sin
4 =
+ 


19. 0
sin
2
cos =
+ 

20. 1
cos
sin
3 =
+ 

(b) Find the maximum and minimum value of the expressions below and find
the corresponding value of 
21. 
 sin
cos +
22. 
 sin
3
cos
2 +
23. 
 sin
cos
2 −
24. 
 sin
5
cos −
25. 
 sin
3
cos
2 −
26. 
 sin
2
cos
3 −
BARAKA LO1BANGUT1
57 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
The solution of trigonometric equations are divided into two major parts
1. Principal solution, are the solution which take an angle form 
0 to 
360
inclusively.
2. General solution, these are all possible solution of the trigonometric
equations
(a) If α
θ sin
sin = , then ( ) α
1
πn n
−
+
=
θ
(b) If α
θ cos
cos = , then α
πn
θ 
= 2
(c) If α
θ tan
tan = , then α
πn+
=
θ
For all three cases above, 

n (n is any integer)
Find the general solution of 1
sin −
=

Solution
Given 1
sin −
=

( )
1
sin
1
sin 1
−
=

−
= −


2
π
90 −
=

−
=

( ) α
1
-
πn
θ n
+
=
The general solution is ( ) 





−
=
2
1

 n
-
πn
Find the general solution of 3
tan =
x
Solution
GENERAL SOLUTION TO THE TRIGONOMETRIC
EQUATIONS
Example 44
Example 45
BARAKA LO1BANGUT1
58 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
3
tan =
x
( )
3
tan 1
−
=
x
3

=
x
The general solution is
3
2


 +
= n , for Z
n
Find the general solution
2
1
4
sin =






+

x
Solution
2
1
4
sin =






+

x






=
+ −
2
1
sin
4
1

x
4
4


=
+
x
0
=
x
The general solution is n

 =
Find the general solution of 2
sin
3
cos =
+ x
x
Solution
Example 46
Example 47
BARAKA LO1BANGUT1
59 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
2
sin
3
cos =
+ x
x
( )

−
=
+ x
R
x
x cos
sin
3
cos

 sin
sin
cos
cos
sin
3
cos x
R
x
R
x
x +
=
+

cos
cos
cos x
R
x =
1
cos =

R

sin
sin
sin
3 x
R
x =
3
sin =

R
2
2
3
1 +
=
R  10
=
R
( )
3
tan
3
tan 1
−
=

= x


= 56
.
71

( )

−
=
+ 56
.
71
cos
10
sin
3
cos x
x
x
( ) 2
56
.
71
cos
10 =

−
x
( )
10
2
56
.
71
cos =

−
x






=

− −
10
2
cos
56
.
71 1
x
The general solution is 

=

− 77
.
50
2
56
.
71 n
x 

+
= 33
.
122
2 n
x  or 
−
= 79
.
20
2 n
x 
BARAKA LO1BANGUT1
60 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
EXERCISE 9
Find the general solution of the following trigonometric equations
1.
2
1
sin −
=
x
2.
2
1
2
cos =
x
3. 1
tan −
=
x
4.
2
1
3
sin −
=






−

x
5. 





=






+
3
tan
3
tan


x
6. 3
tan =
x
7.
2
1
sin2
=
x
8.
2
3
2
cos =






−

x
9.
2
3
4
cos −
=






+

x
10. 2
sin
2
cos =
+ x
x
Consider the sine compound angles
( )
( )



−
=
−
+
=
+
+
B
A
B
A
B
A
B
A
B
A
B
A
sin
cos
cos
sin
sin
sin
cos
cos
sin
sin
( ) ( ) B
A
B
A
B
A cos
sin
2
sin
sin =
−
+
+
FACTOR FORMULA
BARAKA LO1BANGUT1
61 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Let C
B
A =
+ and D
B
A =
−



=
−
=
+

D
B
A
C
B
A
Then
2
D
C
A
+
= and
2
D
C
B
−
=
The equation become, 




 −





 +
=
+
2
cos
2
sin
2
sin
sin
D
C
D
C
D
C
Also, from
( )
( )



−
=
−
+
=
+
−
B
A
B
A
B
A
B
A
B
A
B
A
sin
cos
cos
sin
sin
sin
cos
cos
sin
sin
( ) ( ) B
A
B
A
B
A sin
cos
2
sin
sin =
−
−
+
Substituting the values of B
A+ and B
A− ,





 −





 +
=
−
2
sin
2
cos
2
sin
sin
D
C
D
C
D
C
Consider the cosine compound angles
( )
( )



+
=
−
−
=
+
+
B
A
B
A
B
A
B
A
B
A
B
A
sin
sin
cos
cos
cos
sin
sin
cos
cos
cos
( ) ( ) B
A
B
A
B
A cos
cos
2
cos
cos =
−
+
+





 −





 +
=
+
2
cos
2
cos
2
cos
cos
D
C
D
C
D
C
Also, from
( )
( )



+
=
−
−
=
+
−
B
A
B
A
B
A
B
A
B
A
B
A
sin
sin
cos
cos
cos
sin
sin
cos
cos
cos
( ) ( ) B
A
B
A
B
A sin
sin
2
cos
cos −
=
−
−
+
BARAKA LO1BANGUT1
62 | b a r a k a l o i b a n g u t i @ g m a i l . c o m





 −





 +
−
=
−
2
sin
2
sin
2
cos
cos
D
C
D
C
D
C
PROVING IDENTITIES INVOLVING FACTOR FORMULA
Prove that 




 −





 +
=
+
−
2
tan
2
cot
sin
sin
sin
sin C
B
C
B
C
B
C
B
Solution





 −





 +





 −





 +
=
+
−
2
cos
2
sin
2
2
sin
2
cos
2
sin
sin
sin
sin
C
B
C
B
C
B
C
B
C
B
C
B
FACTOR FORMULA SUMMARY
Sine





 −





 +
=
+
2
cos
2
sin
2
sin
sin
D
C
D
C
D
C and





 −





 +
=
−
2
sin
2
cos
2
sin
sin
D
C
D
C
D
C
Cosine





 −





 +
=
+
2
cos
2
cos
2
cos
cos
D
C
D
C
D
C and





 −





 +
−
=
−
2
sin
2
sin
2
cos
cos
D
C
D
C
D
C
Example 48
BARAKA LO1BANGUT1
63 | b a r a k a l o i b a n g u t i @ g m a i l . c o m

















 −





 −

















 +





 +
=
2
cos
2
sin
2
sin
2
cos
C
B
C
B
C
B
C
B





 −





 +
=
2
tan
2
cot
C
B
C
B
hence shown
Prove that ( )
1
cos
2
2
sin
3
sin
2
sin
sin +
=
+
+ A
A
A
A
A
Solution
( )
A
A
A 3
sin
sin
2
sin +
+





 −





 +
+
2
3
cos
2
3
sin
2
2
sin
A
A
A
A
A
A
A
A cos
2
sin
2
2
sin +
( )
A
A cos
2
1
2
sin +
Prove that A
A
A
A sin
3
cos
2
4
sin
2
sin −
=
−
Solution
A
A
A
A sin
3
cos
2
4
sin
2
sin −
=
−





 −





 +
=
−
2
4
2
sin
2
4
2
cos
2
4
sin
2
sin
A
A
A
A
A
A
( ) ( )
A
A −
= sin
3
cos
2
A
Asin
3
cos
2
−
=
Remember that
( ) ( )
A
A cos
cos =
−
Example 49
Example 50
BARAKA LO1BANGUT1
64 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Show that 





=
+
+
−
+
2
tan
cos
sin
1
cos
sin
1 A
A
A
A
A
(not concerned with factor
formula)
Solution
( )
( ) A
A
A
A
A
A
A
A
sin
cos
1
sin
cos
1
cos
sin
1
cos
sin
1
+
+
+
−
=
+
+
−
+


















+












−






+


















+












+






−
=
2
cos
2
sin
2
2
sin
2
cos
1
2
cos
2
sin
2
2
sin
2
cos
1
2
2
2
2
A
A
A
A
A
A
A
A


















+






























+












=
2
cos
2
sin
2
2
cos
2
2
cos
2
sin
2
2
sin
2
2
2
A
A
A
A
A
A
















































=
2
cos
2
sin
2
cos
2
2
cos
2
sin
2
sin
2
A
A
A
A
A
A






=












=
2
tan
2
cos
2
sin
A
A
A
Hence shown
Example 51
BARAKA LO1BANGUT1
65 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Prove that ( ) ( ) A
A
A cos
150
sin
150
sin =
−

+
+

Solution
Left hand side
( ) ( ) A
A
A cos
150
sin
150
sin =
−

+
+

( ) ( ) ( ) ( )





 −

−
+






 −

+
+

2
150
150
cos
2
150
150
sin
2
A
A
A
A











 
=
2
2
cos
2
300
sin
2
A
( ) A
cos
150
sin
2 
=
A
A cos
cos
2
1
2 =






= Hence shown.
Prove that A
A
A
A
A
tan
5
cos
3
cos
3
sin
5
sin
=
+
−
Solution
Consider left hand side





 −





 +





 −





 +
=
+
−
2
5
3
cos
2
5
3
cos
2
2
3
5
sin
2
3
5
cos
2
5
cos
3
cos
3
sin
5
sin
A
A
A
A
A
A
A
A
A
A
A
A
( ) ( )
( ) ( )
A
A
A
A
A
A
A
tan
cos
sin
cos
4
cos
sin
4
cos
=
=
=
Example 52
Example 53
BARAKA LO1BANGUT1
66 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
If π
C
B
A =
+
+ , show that


















+
=
+
+
2
sin
2
sin
2
sin
4
1
cos
cos
cos
C
B
A
C
B
A
Solution
Consider left hand side














−






+





 −





 +
=
+
+
2
sin
2
cos
2
cos
2
cos
2
cos
cos
cos 2
2 C
C
B
A
B
A
C
B
A














−
+





 −





 +

2
sin
2
1
2
cos
2
cos
2 2 C
B
A
B
A
But
2
π
2
C
B
A −
=
+






−
+





 −





 −

2
sin
2
1
2
cos
2
π
cos
2 2 C
B
A
C






−





 −






−
+

2
sin
2
2
cos
2
2
π
cos
2
1 2 C
B
A
C






−





 −






+

2
sin
2
2
cos
2
sin
2
1 2 C
B
A
C












−





 −






+

2
sin
2
cos
2
sin
2
1
C
B
A
C
But 




 +
−
=

=
+
+
2
2
π
2
2
π
2
2
B
A
C
C
B
A
Example 54
BARAKA LO1BANGUT1
67 | b a r a k a l o i b a n g u t i @ g m a i l . c o m



















 +
−
−





 −






+

2
2
π
sin
2
cos
2
sin
2
1
B
A
B
A
C











 +
−





 −






+

2
cos
2
cos
2
sin
2
1
B
A
B
A
C












−






−






+

2
sin
2
sin
2
2
sin
2
1
B
A
C
























+

2
sin
2
sin
2
2
sin
2
1
B
A
C


















+

2
sin
2
sin
2
sin
4
1
C
B
A
SIMPLIFYING TRIGONOMETRIC IDENTITIES INVOLVING
FACTOR FORMULA
Simplify
A
A
A
A
A
A
A
A
4
sin
3
sin
cos
2
cos
3
cos
6
sin
cos
8
sin
−
−
Solution
( ) ( )
  ( ) ( )
 
( ) ( )
  ( ) ( )
 
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
4
3
cos
4
3
cos
2
1
2
cos
2
cos
2
1
3
6
sin
3
6
sin
2
1
8
sin
8
sin
2
1
−
−
+
+
−
+
+
−
+
+
−
−
+
+
=
A
A
A
A
A
A
A
A
cos
7
cos
cos
3
cos
3
sin
9
sin
7
sin
9
sin
−
+
+
−
−
+
=
A
A
A
A
3
cos
7
cos
3
sin
7
sin
+
−
=
Example 55
BARAKA LO1BANGUT1
68 | b a r a k a l o i b a n g u t i @ g m a i l . c o m





 −





 +





 −





 +
=
2
3
7
cos
2
3
7
cos
2
2
3
7
sin
2
3
7
cos
2
A
A
A
A
A
A
A
A
A
A
A
2
tan
2
cos
2
sin
=
=
Simplify ( ) ( )2
2
sin
sin
cos
cos B
A
B
A +
+
+
Solution
( ) ( )2
2
sin
sin
cos
cos B
A
B
A +
+
+
( ) ( )2
2
sin
sin
cos
cos B
A
B
A +
+
+
2
2
2
cos
2
sin
2
2
cos
2
cos
2 












 −





 +
+













 −





 +
=
B
A
B
A
B
A
B
A





 −





 +
+





 −





 +
=
2
cos
2
sin
4
2
cos
2
cos
4 2
2
2
2 B
A
B
A
B
A
B
A











 +
+





 +





 −
=
2
sin
2
cos
2
cos
4 2
2
2 B
A
B
A
B
A





 −
=
2
cos
4 2 B
A
Example 56
BARAKA LO1BANGUT1
69 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
EXERCISE 10
1. Prove that
( ) ( )
( ) ( )
A
A
A
A
A
tan
2
sin
4
sin
2
cos
4
cos
−
=
+
−
2. Show that A
A
A
A
A
3
tan
2
cos
4
cos
2
sin
4
sin
=
+
+
3. Show that
( )
( )
B
A
B
A
B
A
B
A
+
−
=
+
−
2
1
2
1
tan
tan
sin
sin
sin
sin
4. Show that 
=

+
 5
cos
2
40
sin
50
sin
5. Prove that ( )
B
A
B
A
B
A
+
=
+
+
2
1
tan
cos
cos
sin
sin
6. Show that ( )
A
A
A
A
A 5
cos
3
cos
cos
2
16
1
sin
cos 2
3
−
−
=
7. Prove that ( ) ( ) ( ) ( ) ( ) ( )
A
A
A
A
A
A 3
cos
2
cos
cos
4
6
cos
4
cos
2
cos
1 =
+
+
+
8. Show that ( )




 cos
2
1
2
sin
3
sin
2
sin
sin +
=
+
+
9. Simplify








9
cos
7
cos
5
cos
3
cos
9
sin
7
sin
5
sin
3
sin
+
+
+
+
+
+
10. Simplify (a)
A
A
A
cos
2
sin
4
sin +
(b)
A
A
A
3
sin
2
2
9
cos
2
3
cos 





−






11. Simplify
A
A
A
A
2
sin
5
cos
3
sin
7
sin −
12. Prove that 3
50
sin
70
sin
70
cos
50
cos
=

−


−

13. Simplify

+


+

50
sin
70
sin
70
cos
50
cos
BARAKA LO1BANGUT1
70 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Find the general solution of 0
5
sin
3
sin
sin =
+
+ 


Solution
0
5
sin
3
sin
sin =
+
+ 


( ) 0
3
sin
5
sin
sin =
+
+ 


0
3
sin
2
5
cos
2
5
sin
2 =
+





 −





 +





0
3
sin
2
cos
3
sin
2 =
+ 


( ) 0
1
2
cos
2
3
sin =
+


0
3
sin =

( )
0
sin
3 1
−
=

( ) 
 n
1
πn
3 −
+
=
πn
3 =

3
πn
=
 
2
1
2
cos −
=

( )
5
.
0
cos
2 1
−
= −

3
2
120
2

 =

=


 
= n
2
2
Example 57
SOLVING TRIGONOMETRIC INVOLVING FACTOR FORMULA
BARAKA LO1BANGUT1
71 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
3


 
= n
The general solution set is
3


 
= n or
3
πn
=

Find the general solution of 0
5
sin
sin =
+ 

Solution
Given 0
5
sin
sin =
+ 

0
2
5
cos
2
5
sin
2
5
sin
sin =





 −





 +
=
+






0
2
cos
3
sin
2 =
= 

Case 1: 0
3
sin =

( )
0
sin
3 1
−
=
= 

 n
=
3
The general solution is
3


n
=
Case 2: 0
2
cos =

( )
0
cos
2 1
−
=

2
2

 =
2
2
2


 
= n
Example 58
BARAKA LO1BANGUT1
72 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
The general solution set is
4


 
= n
Find the general solution of ( ) ( ) 0
40
cos
20
cos =

−
−

+ x
x
Solution
( ) ( ) 0
40
cos
20
cos =

−
−

+ x
x
( ) ( ) 0
2
60
sin
2
20
2
sin
2
40
cos
20
cos =





 





 
−
−
=

−
−

+
x
x
x
( ) 0
10
sin
2
1
2 =

−






−
= x
( ) 0
10
sin =

−
x
( )
0
sin
10 1
−
=

−
x

n
x =

−10
The general solution is
18

 +
= n
x
Find the general solution of ( ) ( ) 0
20
2
cos
70
2
cos =

−
+

+ 

Solution
( ) ( ) 0
20
2
cos
70
2
cos =

−
+

+ 

Example 59
Example 60
BARAKA LO1BANGUT1
73 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( ) ( ) 




 





 
−
−
=

−
+

+
2
90
sin
2
50
4
sin
2
40
2
cos
20
2
cos



( ) 0
25
2
sin
45
sin
2 =

−

− 
( ) 0
25
2
sin =

−

( )
0
sin
25
2 1
−
=

−


 n
=

−25
2

+
= 25
2 
 n
The general solution is
72
5
2


 +
=
n
EXERCISE 11
1. Given that x
B
A =
+ 2
sin
2
sin and y
B
A =
+ 2
cos
2
cos , show that
( )
B
A
y
x +
= tan . Prove that
( )
B
A
B
A
y
y
x
x
cos
cos
sin
2
4
2
2
+
=
+
+
and deduce an
expression for B
Atan
tan in terms of x and y
2. Show that if
y
y
+
−
=
1
1
sin then y
=






−
2
4
tan


3. If 2
3
tan =
A simplify
A
A
A
A
A
A
5
cos
3
cos
cos
5
sin
3
sin
sin
+
+
+
+
4. If p
B
A =
+sin
sin and q
B
A =
+ cos
cos , show that
(a) ( ) 2
2
2
sin
q
p
pq
B
A
+
=
+
BARAKA LO1BANGUT1
74 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
(b) ( ) 2
2
2
2
cos
p
q
p
q
B
A
+
−
=
+
(c) 2
2
3
8
tan
tan
p
q
pq
B
A
−
=
+
(d)
( )( )
2
2
2
2
2
2
2
2
cos
2
cos
q
p
q
p
p
q
B
A
+
−
+
−
=
+
5. Find the general solution of each of the following
(a) 0
cos
3
cos =
+ 

(b) 

 6
cos
4
cos
2
cos =
+
(c) ( ) ( ) 0
10
3
sin
10
3
sin =

−
+

+ 

(d) 0
5
cos
cos =
− 

(e) 0
5
sin
3
sin
sin =
+
+ 


(f) 0
cos
cos
2
cos 2
5
2
3
2
1 =
+
+ 


An angle can be measured in degree or radians.
Consider the diagrams below
RADIANS AND SMALL ANGLES

r
r
L
O
Using ration theorem

=
360

c
l
But r
c 
2
=

=
360
2

r
l

r
l 2
360 =


=
180

r
l

=
180
rad
r

BARAKA LO1BANGUT1
75 | b a r a k a l o i b a n g u t i @ g m a i l . c o m

=
=
180
rad
r
r
l 
The radian formula
Express the following in radians
(a) 
45 (b) 
60 (c) 
70
Solution
(a)

=
180
rad
r

( )
4
180
45
45


=


=

(b)
( )
3
180
60
60


=


=

(c)
( )
18
7
180
70
70


=


=

Express the following in degree
(a)
3
2
(b)
8

(c)
7
5
Solution

rad
180
deg

=
(a) 
=











 
= 120
3
2
180
deg


Example 61
Example 62
BARAKA LO1BANGUT1
76 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
(b) 
=











 
= 5
.
22
8
180
deg


(c) '
34
128
7
5
180
deg 
=











 
=


SMALL ANGLES
Let refer the Maclaurin’s series for sine, cosine and tangent, through these
series we deduce the approximations for small angles as 0
→
 .
Sine
...
!
7
!
5
!
3
sin
7
5
3
+
−
+
−
=





( ) 







+
−
+
−
=
→
→
...
!
7
!
5
!
3
lim
sin
lim
7
5
3
0
0







Ignoring third and higher derivatives, we get
( ) 



→
sin
lim
0
Cosine
...
!
6
!
4
!
2
1
cos
6
4
2
+
−
+
−
=




( ) 







+
−
+
−
=
→
→
...
!
6
!
4
!
2
1
lim
cos
lim
6
4
2
0
0






Ignoring the higher powers
( ) 



→
sin
lim
0
BARAKA LO1BANGUT1
77 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( )
!
2
1
cos
lim
2
0



−

→
Tangent
...
315
17
15
2
3
1
tan 7
5
3
+
+
+
+
= 




( ) 





+
+
+
+
=
→
→
...
315
17
15
2
3
1
lim
tan
lim 7
5
3
0
0







Ignoring the higher power
( ) 



→
tan
lim
0
Simplify



tan
sin
4
cos
1−
if  is small
Solution
( )
8
2
16
2
4
1
1
tan
sin
4
cos
1
2
2
2
2
=
=








−
−
=
−







( )
2
1
cos
lim
2
0



−

→
( ) 



→
tan
lim
0
Example 63
BARAKA LO1BANGUT1
78 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Evaluate the following as 0
→

(a)



2
cos
1
tan
−
(b)
( )




sin
sin
sin +
+
Solution
(a)
( ) 2
1
2
2
2
1
1
2
cos
1
tan
lim 2
2
2
2
0
=
=








−
−
=






−
→ 







2
1
2
cos
1
tan
lim
0







−
→ 



(b)
( ) 
















 +
=





 +
+
→ sin
sin
cos
cos
sin
sin
sin
sin
lim
0




























−
+
=
sin
2
1
cos
2
( ) 






cos
sin
sin
sin
lim
0






 +
+
→
Example 64
BARAKA LO1BANGUT1
79 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
BARAKA LO1BANGUT1
80 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
As other functions, in trigonometric functions we can also determine domain
and range of a function. Were x being values which gives out an output of
the function.
Consider the function ( ) x
x
f cos
=
Domain of ( ) x
x
f cos
= is the set of all real numbers (x is in radian) and
range is any number in the intervals, 1
1 

− y thus 1

y . The domain
and range of cosine are the same for sine.
For tangent, domain are all values except ( )
2
1
2

+
n , where n is any integer,
range is a set of all real numbers.
Graph of sine and cosine
TRIGONOMETRIC FUNCTION
x
y sin
=
x
y cos
=
BARAKA LO1BANGUT1
81 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Graph of tangent
Asymptote
Asymptotes, ( ) 2
π
1
2 +
= n
x
BARAKA LO1BANGUT1
82 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Graph of secant
Asymptotes, ( ) 2
π
1
2 +
= n
x
Asymptote
BARAKA LO1BANGUT1
83 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Graph of cosecant
Asymptotes, π
=
x Asymptote
BARAKA LO1BANGUT1
84 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Graph of cotangent
Determine the domain and range of x
y cos
2
3+
= hence sketch the graph.
Solution
Using the standard domain and range
Range: 1
1 

− y this is the standard range
x
y cos
2
3+
=
1
cos
1 

− x
Multiply by 2 through out
2
cos
2
2 

− x
Asymptote
Asymptotes, π
=
x
Example 65
BARAKA LO1BANGUT1
85 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Add 3 both sides
3
2
cos
2
3
3
2 +

+

+
−
The range becomes
5
1
5
cos
2
3
1 



+
 y
x
The range set is 5
1 
 y
Domain  


= x
x:
Determine the domain and range of the function ( ) x
x
f 2
sin
4+
−
=
Solution
Given, ( ) x
x
f 2
sin
4+
−
=
Domain  


= x
x:
Graph of x
y cos
2
3+
=
Example 66
BARAKA LO1BANGUT1
86 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Range
Standard range, 1
1 

− y
( ) x
x
f
y 2
sin
4+
−
=
=
1
2
sin
1 

− x
Subtract 4 both sides
4
1
2
sin
4
4
4 −

+
−

−
− x
3
sin
4
5 −

+
−

− x
3
5 −


− y
Range  
3
5
: −


−
= y
y
( ) x
x
f 2
sin
4+
−
=
BARAKA LO1BANGUT1
87 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Sketch the graph of ( ) x
x
x
f cos
sin +
=
Solution
Table of values
x -4 -3 -2 -1 0 1 2 3 4
y 0.10 -1.13 -1.33 -0.30 1.00 1.38 0.49 -0.85 -1.41
( ) x
x
f sin
=
Example 67
BARAKA LO1BANGUT1
88 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
PROVING EQUATION INVOLVING INVERSE OF
TRIGONOMETRIC FUNCTIONS
Prove that ( )
3
tan
5
3
tan
2
3
tan 1
1
1 −
−
−
=








+








Solution
Given ( )
3
tan
5
3
tan
2
3
tan 1
1
1 −
−
−
=








+








Let
2
3
tan
2
3
tan 1
=









= −
A
A and
5
3
tan
5
3
tan 1
=









= −
B
B
Therefore, ( )
3
tan 1
−
=
+ B
A
Introducing tan
( )
B
A
B
A
B
A
tan
tan
1
tan
tan
tan
−
+
=
+
( )
















−








+








=
+
5
3
2
3
1
5
3
2
3
tan B
A
( ) 3
7
10
10
3
7
10
7
10
3
7
10
3
1
10
3
2
3
5
tan =

=
=
−
+
=
+ B
A
( ) 3
tan =
+ B
A
Example 68
BARAKA LO1BANGUT1
89 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
Then ( )
3
tan 1
−
=
+ B
A
But A and B are








= −
2
3
tan 1
A and








= −
5
3
tan 1
B
Hence, ( )
3
tan
5
3
tan
2
3
tan 1
1
1 −
−
−
=








+








Prove that 





=






+





 −
−
−
65
63
sin
5
4
sin
13
5
sin 1
1
1
Solution
Let
13
5
sin
13
5
sin 1
=

=






−
A
A and
5
4
sin
5
4
sin 1
=

=






−
B
B






=
+ −
65
63
sin 1
B
A
( ) B
A
B
A
B
A sin
cos
cos
sin
sin +
=
+
( ) B
A
B
A
B
A sin
sin
1
sin
1
sin
sin 2
2
−
+
−
=
+
( ) 





















−
+
















−






=
+
5
4
13
5
1
5
4
1
13
5
sin
2
2
B
A
( ) 











+












=
+
13
12
5
4
5
3
13
5
sin B
A
( )
65
48
65
15
sin +
=
+ B
A
Example 69
BARAKA LO1BANGUT1
90 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( )
65
63
sin =
+ B
A






=
+ −
65
63
sin 1
B
A
But A
=






−
13
5
sin 1
and B
=






−
5
4
sin 1






=






+





 −
−
−
65
63
sin
5
4
sin
13
5
sin 1
1
1
Hence shown.
SOLVING EQUATIONS INVOLVING INVERSES OF
TRIGONOMETRIC FUNCTIONS
Solve for x from ( ) 2
2
cos
cos 1
1 
=
+ −
−
x
x
Solution
( ) 2
2
cos
cos 1
1 
=
+ −
−
x
x
Let x
A
x
A =

= −
cos
cos 1
and ( ) 2
cos
2
cos 1
x
B
x
B =

= −
Then
2

=
+ B
A
( ) 





=
+
2
cos
cos

B
A
( ) 0
sin
sin
cos
cos
cos =
−
=
+ B
A
B
A
B
A
Example 70
BARAKA LO1BANGUT1
91 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
0
cos
1
cos
1
cos
cos 2
2
=





 −





 −
− B
A
B
A
( )( ) 0
2
1
1
2 2
2
=





 −





 −
− x
x
x
x
( )( ) 0
2
1
1
2 2
2
2
=
−
−
− x
x
x
( )( )
2
2
2
2
1
1
2 x
x
x −
−
=
( )( )
2
2
4
2
1
1
2 x
x
x −
−
=
4
2
2
4
2
2
1
2 x
x
x
x +
−
−
=
0
1
3 2
=
−
x
3
3
3
1

=

=
x
Solve for x from
2
4
tan
2
tan 1
1 
=
+ −
−
x
x
Solution
2
4
tan
2
tan 1
1 
=
+ −
−
x
x
Let x
A
x
A 2
tan
2
tan 1
=

= −
and x
B
x
B 4
tan
4
tan 1
=

= −
2

=
+ B
A
Example 71
BARAKA LO1BANGUT1
92 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
( ) 





=
+
2
tan
tan

B
A
3
tan
tan
1
tan
tan
=
−
+
B
A
B
A
( )( )
3
4
2
1
4
2
=
−
+
x
x
x
x
3
8
1
6
2
=
− x
x
2
3
8
3
6 x
x −
=
0
3
6
3
8 2
=
−
+ x
x
The solution is 198
.
0
=
x or 631
.
0
−
=
x
BARAKA LO1BANGUT1
93 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
1. Draw the graph of x
y cos
4
2+
= and state domain and range of y.
2. Evaluate the following
(a) 




 −
→ 


 5
sin
1
2
cos
lim
0
(b) 




 +
→ 


 2
5
tan
3
sin
lim
0
(c) 





+
−
+
→ 


 2
sin
1
cos
20
tan
7
21
lim
0
(d) 





→ 

 sin
4
lim
0
(e) 





→ 

 sin
2
tan
lim
0
(f) 





−
→ 

 2
cos
1
sin
lim
0
(g) 




 +
→ 


 2
cos
tan
3
sin
lim
0
(h) ( )

+
→
45
sin
lim
0


(i) ( )

+
→
30
cos
lim
0


(j) 





−
+
+
→ 


 cos
3
tan
3
5
sin
1
lim
0
3. Prove the following
(a) 





=






−





 −
−
−
425
297
cos
25
7
cos
17
15
cos 1
1
1
(b)







 −
=






−





 −
−
−
6
6
2
1
sin
3
1
cos
2
1
sin 1
1
1
MISCELLANEOUS EXERCISE
BARAKA LO1BANGUT1
94 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
(c) 





=






+





 −
−
−
36
77
tan
8
15
cot
4
3
tan 1
1
1
(d) 





=






−






− −
−
−
16
63
tan
13
5
cos
5
3
sin 1
1
1
(e) 





−
=






+





 −
−
−
204
253
tan
13
12
cos
5
4
sin
2 1
1
1
(f) 





=






+





 −
−
−
2
1
12
tan
5
7
tan
5
3
tan 1
1
1
(g) 





=






−





 −
−
−
325
323
sin
13
12
cos
5
4
sin
2 1
1
1
4. Solve the following
(a) 
=






+





 −
−
45
3
1
tan
2
1
tan 1
1
(b)
2
5
3
tan
5
4
sin 1
1 
=






+





 −
−
(c)
4
7
1
tan
3
4
tan 1
1 
=






−





 −
−
(d)
4
7
1
tan
3
1
tan
2 1
1 
=






+





 −
−
(e)
3
4
1
tan
13
12
cos 1
1 
=






+





 −
−
5. Find the general solution of the following
(a) 0
1
sin
3
2
cos =
+
− x
x
(b) 2
cos
4
sin
3 =
+ x
x
(c)
2
1
cos
sin =
x
x
(d) ( ) 1
cos
sin 2
1 =
+ x
x
(e) ( )( ) 0
1
sin
2
1
tan =
+
− x
x
6. Prove the following
BARAKA LO1BANGUT1
95 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
(a) x
x cos
2
8
cos
2
2
2
2 =
+
+
+
(b) 





= −
−
x
x
1
cos
sec 1
1
(c) 





= −
−
x
x
1
sin
csc 1
1
(d) 





= −
−
x
x
1
tan
cot 1
1
(e) x
x
x 2
2
2
sin
2
1
cot
1
1
cot
−
=
+
−
(f) x
x
x
x
x
x
sec
csc
cos
sin
sin
cos 2
2
−
=
−
(g)
A
A
A
A
cot
1
csc
1
csc
cot −
=
−
7. If π
=
+
+ C
B
A show that
C
B
A
C
B
A cos
cos
cos
2
1
cos
cos
cos 2
2
2
−
=
+
+
8. Simplify
(a)


−

+

30
tan
15
tan
1
30
tan
15
tan
(b) 

+

 40
cos
50
sin
50
cos
40
sin
9. Solve for x: ( ) ( )

+
=

+ 30
cos
30
sin x
x from 
0 to 
360 inclusive
10. Prove that
(a)
x
x
x
x
x
2
cos
cos
3
1
2
sin
sin
3
tan
+
+
+
=
(b) A
A
A
A
A
sin
cos
sin
cos
2
cos
+
=
−
11. Solve for  between 



− 180
180  from 1
6
tan
3 =

12. Draw the graph of
(a) x
y sin
= from 


 180
0 x
(b) x
y tan
= from
2
2




− x
BARAKA LO1BANGUT1
96 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
13. Without using the table find the value of
(a) 
18
sin ,
(b) 
18
cos
(c) 
18
tan
Hint: let 
=18
x , 
= 36
2x then 
= 90
5x ]
14. Prove the identity
(a) ( )





 4
sin
2
sin
cos
2
5
sin
3
sin
2
sin +
=
+
+
(b) Given that 1
sec
tan
3 =
− 
 find the possible value of 
 tan
sec
3 +
15. If 
=
+ 45
2 y
x show that








−
+
−
−
= −
x
x
x
x
y 2
2
1
tan
tan
2
1
tan
tan
2
1
tan
16. Evaluate 













→ x
x
x
1
sin
lim
0
17. Simplify
(a) ( )
x
x 1
1
cos
sin
sin −
−
+
(b)
















−





 −
−
2
3
tan
2
1
cos
tan 1
1
18. Use t substitution, to solve 0
2
cos
4
sin
3 =
−
+ x
x for x between 0 and
2π inclusive.
19. Prove that for any triangle
(a) ( ) A
a
c
b
C
B 2
1
2
1 cos
sin
−
=
−
(b) ( ) A
C
B
a
c
b 2
1
2
1 csc
cos −
=
+ , where a, b and c are sides of the
triangle.
20. Prove that
(a)
A
A
A
A
A
A
A
A
csc
sec
cot
tan
cot
tan
csc
sec
+
+
=
−
−
(b)
( )
B
B
A
A
A
A
A
2
sin
cos
2
cos
sin
sin
cos +
=
−
21. Solve the trigonometric equation 0
1
tan
sec2
=
−
+ 
 for 
 2
0 

22. Factorize 


 7
cos
5
cos
3
cos
cos +
−
−
BARAKA LO1BANGUT1
97 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
23. Prove that





cos
1
cos
2
sin
2
cos
3
cos
2
2
+
−
=
+
−
24. Show that A
A
A
A
A
A
A
A
A
5
tan
2
cos
sin
6
cos
3
sin
2
sin
sin
6
sin
3
sin
=
+
+
25. Show that






2
2
2
2
sin
sin
1
cos
cos
1
sin
2
sin
+
−
=
+
+
26. (a) Prove that
cos2θ
1
sin2θ
θ
tan
+
= and hence obtain 
15
tan and 
2
1
67
tan
as surds, in their simplest forms.
(b) Prove that A
A
A sin
1
cos
sin 2
1
2
1 −

=
− determining for what range
of angles A between 0 and 4π the positive sign is to be taken.
27. A line AP is drawn through the vertex A of a triangle ABC, so that P and C
are on opposite sides of AB, and angle θ
=
BAP . By projecting the sides
of the triangle ABC on AP, prove that
( ) ( )
θ
cos
θ
cos
θ
cos +
+
−
= A
b
B
a
c . Deduce from this result the two
formulae, A
b
B
a
c cos
cos +
= and A
b
B
a sin
sin = . Further, by
considering the special case B
A=
=
 , deduce that
1
cos
2
2
cos 2
−
= A
A A.E.B
28. (a) Find the solution between 
0 and 
360 inclusive of the equations
i) 
= 171
tan
2
3
cot
x
ii) 3
sin
2
cos
3
3
sin =
+
+ x
x
x
(b) Find the solution in radians between 0 and 2π of the equation
x
x sin
3
cos =
29. From a point A of a straight level road which runs due north, a peak bears
due west. A man walks along the road, starting from A and going at a
steady speed. After 10 min. the elevation of the peak is  ; after a further
20 min. it is  . If the elevation of the peak from A is  , prove that


 2
2
2
cot
cot
9
cot
8 −
= . If the man’s speed is 4m per hour and  ,
BARAKA LO1BANGUT1
98 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
 are '
18
17 and '
24
10 respectively, calculate the height of the peak
above the level of the road, to the nearest 50 m.
30. (a) Show that 3
tan =
A if ( )
A
A
A
A cos
sin
2
cos
sin −
=
+ , hence solve
( ) 0
cos
sin
2
cos
sin =
−
−
+ A
A
A
A for 


 360
0 A
(b) A function f is defined by x
x
f sin
2
3
)
( −
= for 


 360
0 x find
(i) The range of )
(x
f
(ii) Sketch the graph of )
(x
f
31. When a motor-cyclist is travelling along a straight stretch of road from
south to north at a steady speed of 30 km per hour, the wind appears to him
to come from a direction E
N 
40 . When he returns along the same road at
the same speed the wind appears to come from a direction E
S 
30 . Find,
by drawing or otherwise the true magnitude and direction of the wind.
32. Prove that ( )( )
1
2
sin
2
cos
sin
3
cos
3
sin −
+
=
− A
A
A
A
A , hence or
otherwise, find the value of A such that 


 180
0 A for which
( ) ( )
A
A
A
A cos
sin
2
3
cos
3
sin
3 +
=
− .
33. In the quadrilateral ABCD, 13
=
AB cm, 20
=
BC cm, 48
=
CD cm and
DBC
BAC 
=
 . Without using tables
(a) Show that
13
5
cos =
BAC
(b) Show that
5
4
cos =
ACB
(c) Show that AD
AB =
(d) Calculate the area of the quadrilateral ABCD.
34. (a) Express 
 sin
2
cos
3 + in the form ( )
A
R −

cos , where 0

R and



 90
0 A , state the value of R
(b) Solve the equation 5
.
3
sin
2
cos
3 =
+ 
 giving your answer in the
interval 


 180
0 
(c) Sketch the graph of 
 sin
2
cos
3 +
=
y for 


 180
0 
35. (a) From a point P in a horizontal plane a man observes the summit S of a
mountain to bear due north at an elevation  When the man has walked a
distance 2a on a bearing  east of north to a point Q in the horizontal
BARAKA LO1BANGUT1
99 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
plane he observes that the elevation of S from Q is again  . If h is the
height of S above the horizontal plane containing P and Q show that

sec
θ
tan
a
h =
(c) When the man has walked a further distance a in the same plane and in the
same direction to a point R he observes that the elevation of S from R is  .
Show that ( ) 

 2
2
2
cot
1
cos
3
cot +
= and that the distance RS is
( )
3
sec
sec 2
3
+


a
36. (a) Solve the equation 5
tan
sec
2 2
=
− x
x for 


 360
0 x
(b) Show that
x
x
x
x
cos
cos
1
tan
sin
2
−
= hence or otherwise solve
3
tan
sin
2 =
x
x for 


 360
0 x
37. Prove that ( )
A
A
A 4
cos
1
8
1
cos
sin 2
2
−
= hence find  

 d
2
2
cos
sin
38. Find all real values of x and y that satisfy the simultaneous equations





=
+
=
+
259
tan
27
sin
64
35
tan
9
sin
16
2
2
y
x
y
x
where x, y are the measures of the angles
expressed in degrees.
39. Prove that A
A
A 2
cosec
2
cot
cot =
−
40. Prove that 
4
1
8
1
tan
2
7
1
tan
5
1
tan
2 1
1
1
=






+






+





 −
−
−
41. (a) If ( ) ( ) 

 2
tan
2
45
tan
45
tan =
−

−
+
 (b) Prove that
2
2
2
cot
1
tan
1
cot
1
tan
1






−
−
=
+
+
x
x
x
x
42. (a) Prove that
4
π
239
1
tan
119
120
tan
239
1
tan
5
1
tan
4 1
1
1
1
=






−






=






−





 −
−
−
−
(b) Using the expansion ...
5
1
3
1
tan 5
3
1
+
+
−
=
−
x
x
x
x evaluate π to five
decimal places.
BARAKA LO1BANGUT1
100 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
43. Given that
2
3
=
x
cos and 


 360
0 x . Find without using calculator or
table the value of x
tan and x
sin
44. (a) Prove that
4
π
239
1
tan
119
120
tan
239
1
tan
5
1
tan
4 1
1
1
1
=






−






=






−





 −
−
−
−
(b) Using the expansion ...
5
1
3
1
tan 5
3
1
+
+
−
=
−
x
x
x
x evaluate π to five
decimal places.
45. Let 
sin
=
x or otherwise, show that i
x
x
x
x
−
=
−
−
+
−
+
+
2
2
2
2
1
1
1
1
46. (a) Solve for x if 0
1
2
2
4 =
+
+
+ x
x
x
x cos
sin
cos
sin
(b) Find the least difference between the roots, in the first quadrant of the
equation ( ) ( ) 0
1
2
3
2
4 2
=
+
+
− x
x
x cos
sin
cos
(c) Simplify








−
−
−
−
+
+
−
x
x
x
x
sin
sin
sin
sin
cot
1
1
1
1
1
(d) Given 
=
+
+ −
−
−
180
1
1
1
z
y
x sin
sin
sin show that
( ) ( )
2
2
2
2
2
2
2
4
4
4
2
4 x
z
z
y
y
x
xyz
z
y
x +
+
=
+
+
+
(e) By expressing A
A sin
cos 2
+ in the form of ( )
B
A
Q +
sin where B is an
acute angle, find the minimum and maximum values of the expression and
hence find the values of A and B.
(f) Show that ( )
B
A
C
A
C
B
C
B
A
C
B
A
C
B
A
tan
tan
tan
tan
tan
tan
tan
tan
tan
tan
tan
tan
tan
−
−
−
−
+
+
=
+
+
1
hence show that C
B
A
C
B
A tan
tan
tan
tan
tan
tan =
+
+ if A, B and C are
angles of the triangles.
47. (a) If ( )
4
3
arcsin
2 =
A , without using a calculator show that
2
1
cos
sin 
=
− A
A
(b) Prove the following identities
i) 



cot
cosec
cos
1
cos
1
+
=
−
+
BARAKA LO1BANGUT1
101 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
ii)
( )
A
A
A
A
A
cot
cos
1
sin
sin
cos
1 2
=
+
−
+
(c) Express 
 sin
3
cos
2 + in the form of ( )

 +
sin
R then find
i) Maximum and minimum values
ii) The value of  for which the maximum and minimum values
occur.
(d) If B
A
p cos
cos −
= and B
A
q sin
sin −
= , express ( )
B
A −
cos and
( )
B
A +
sin in terms of p and q.
BARAKA LO1BANGUT1
102 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
TRIGONOMETRY
7
BARAKA LO1BANGUT1
Email: barakaloibanguti@gmail.com
Tel: +255 621842525

More Related Content

PDF
Calculus Integration.pdf
PPTX
linear equations in two variables
PPTX
Ppt geometri analit ruang
PDF
Differentiation.pdf
PPT
Real numbers system
PDF
3.7 Inverse Functions
PPTX
Lecture 5 (solving simultaneous equations)
PPT
Linear equations in two variables
Calculus Integration.pdf
linear equations in two variables
Ppt geometri analit ruang
Differentiation.pdf
Real numbers system
3.7 Inverse Functions
Lecture 5 (solving simultaneous equations)
Linear equations in two variables

What's hot (20)

PPT
Quadratic Equations (Quadratic Formula) Using PowerPoint
PPTX
1 2 solving multi-step equations
DOC
Bahan kuliah 1 metoda numerik
PPTX
Polynomial equations
PPTX
Addition and subtraction of rational expression
PDF
INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1
PPT
Properties Of Exponents
PPTX
Section 9: Equivalence Relations & Cosets
DOCX
ANALISIS RIIL 1 3.1 ROBERT G BARTLE
PPT
Square roots
PDF
Matematika Diskrit - 05 rekursi dan relasi rekurens - 04
PPT
Algebra Tiles Pp Version 2
PPTX
5.1 sequences and summation notation t
PPTX
2.8 Absolute Value Functions
DOCX
Sejarah aljabar
PPTX
Pairs of linear equation in two variable by asim rajiv shandilya 10th a
PPT
Ch- 6 Linear inequalities of class 11
PPT
Factorising Quadratics
PPT
Section 7.3 trigonometric equations
PDF
Bilangan Pi
Quadratic Equations (Quadratic Formula) Using PowerPoint
1 2 solving multi-step equations
Bahan kuliah 1 metoda numerik
Polynomial equations
Addition and subtraction of rational expression
INVERSE TRIGONOMETRIC FUNCTIONS - CLASS XII MODULE 1
Properties Of Exponents
Section 9: Equivalence Relations & Cosets
ANALISIS RIIL 1 3.1 ROBERT G BARTLE
Square roots
Matematika Diskrit - 05 rekursi dan relasi rekurens - 04
Algebra Tiles Pp Version 2
5.1 sequences and summation notation t
2.8 Absolute Value Functions
Sejarah aljabar
Pairs of linear equation in two variable by asim rajiv shandilya 10th a
Ch- 6 Linear inequalities of class 11
Factorising Quadratics
Section 7.3 trigonometric equations
Bilangan Pi
Ad

Similar to trigonometry.pdf (20)

PDF
Module 5 circular functions
PDF
Trigonometry 10th edition larson solutions manual
PDF
Lesson 2.4.1 Fundamental Trigonometric Identities.pdf
PDF
Correlation: Powerpoint 2- Trigonometry (1).pdf
PPTX
Proving-Trigonomddggjhgdsetric-Identities.pptx
PPTX
Lesson-6-Trigonometric-Identities.pptx
PPT
Trigonometric ratios and identities 1
PDF
Trigonometry identities for higher mathematics
PPTX
Introduction_to_trigonometry_final ppt..pptx
PPTX
TRIGONOMETRIC IDENTITIES.pptx
DOCX
TRIGONOMETRY
DOCX
Trigonometry for class xi
PDF
Trigonometry 10th edition larson solutions manual
PDF
Trigonometry 10th Edition Larson Solutions Manual
PDF
Identities
PDF
Plugin identities
PPT
Algebra 2 unit 10.6
PPT
Algebra 2 unit 10.7
PPT
Section 7.4 trigonometric identities
Module 5 circular functions
Trigonometry 10th edition larson solutions manual
Lesson 2.4.1 Fundamental Trigonometric Identities.pdf
Correlation: Powerpoint 2- Trigonometry (1).pdf
Proving-Trigonomddggjhgdsetric-Identities.pptx
Lesson-6-Trigonometric-Identities.pptx
Trigonometric ratios and identities 1
Trigonometry identities for higher mathematics
Introduction_to_trigonometry_final ppt..pptx
TRIGONOMETRIC IDENTITIES.pptx
TRIGONOMETRY
Trigonometry for class xi
Trigonometry 10th edition larson solutions manual
Trigonometry 10th Edition Larson Solutions Manual
Identities
Plugin identities
Algebra 2 unit 10.6
Algebra 2 unit 10.7
Section 7.4 trigonometric identities
Ad

More from Jihudumie.Com (20)

PDF
Logic.pdf
PDF
The Earth as a sphere_025327.pdf
PDF
The circle third edition_025338.pdf
DOCX
resume template
DOCX
resume_010.docx
DOCX
resume_002.docx
DOCX
resume_009.docx
DOCX
resume_001.docx
DOCX
cv_with_photo_02.docx
DOCX
resume_005.docx
DOCX
resume_003.docx
DOCX
resume template 2
PDF
Mathematics - Functions.pdf
PDF
Linear programming.pdf
PDF
mathematical sets.pdf
PDF
Discrete Mathematics
PDF
Algebra.pdf
PDF
Coordinate 1.pdf
PDF
Calculating devices.pdf
PPTX
NUMERIC PATTERN.pptx
Logic.pdf
The Earth as a sphere_025327.pdf
The circle third edition_025338.pdf
resume template
resume_010.docx
resume_002.docx
resume_009.docx
resume_001.docx
cv_with_photo_02.docx
resume_005.docx
resume_003.docx
resume template 2
Mathematics - Functions.pdf
Linear programming.pdf
mathematical sets.pdf
Discrete Mathematics
Algebra.pdf
Coordinate 1.pdf
Calculating devices.pdf
NUMERIC PATTERN.pptx

Recently uploaded (20)

PDF
Chevening Scholarship Application and Interview Preparation Guide
PDF
Physical pharmaceutics two in b pharmacy
PPTX
Theoretical for class.pptxgshdhddhdhdhgd
PPTX
Thinking Routines and Learning Engagements.pptx
PDF
Unleashing the Potential of the Cultural and creative industries
PDF
POM_Unit1_Notes.pdf Introduction to Management #mba #bba #bcom #bballb #class...
PPTX
Math 2 Quarter 2 Week 1 Matatag Curriculum
PDF
FYJC - Chemistry textbook - standard 11.
PPTX
pharmaceutics-1unit-1-221214121936-550b56aa.pptx
PPTX
IT infrastructure and emerging technologies
PPT
hemostasis and its significance, physiology
DOCX
THEORY AND PRACTICE ASSIGNMENT SEMESTER MAY 2025.docx
PDF
FAMILY PLANNING (preventative and social medicine pdf)
PPTX
Neurology of Systemic disease all systems
PPTX
Neurological complocations of systemic disease
PDF
GSA-Past-Papers-2010-2024-2.pdf CSS examination
PPTX
4. Diagnosis and treatment planning in RPD.pptx
PDF
WHAT NURSES SAY_ COMMUNICATION BEHAVIORS ASSOCIATED WITH THE COMP.pdf
PDF
Horaris_Grups_25-26_Definitiu_15_07_25.pdf
PDF
faiz-khans about Radiotherapy Physics-02.pdf
Chevening Scholarship Application and Interview Preparation Guide
Physical pharmaceutics two in b pharmacy
Theoretical for class.pptxgshdhddhdhdhgd
Thinking Routines and Learning Engagements.pptx
Unleashing the Potential of the Cultural and creative industries
POM_Unit1_Notes.pdf Introduction to Management #mba #bba #bcom #bballb #class...
Math 2 Quarter 2 Week 1 Matatag Curriculum
FYJC - Chemistry textbook - standard 11.
pharmaceutics-1unit-1-221214121936-550b56aa.pptx
IT infrastructure and emerging technologies
hemostasis and its significance, physiology
THEORY AND PRACTICE ASSIGNMENT SEMESTER MAY 2025.docx
FAMILY PLANNING (preventative and social medicine pdf)
Neurology of Systemic disease all systems
Neurological complocations of systemic disease
GSA-Past-Papers-2010-2024-2.pdf CSS examination
4. Diagnosis and treatment planning in RPD.pptx
WHAT NURSES SAY_ COMMUNICATION BEHAVIORS ASSOCIATED WITH THE COMP.pdf
Horaris_Grups_25-26_Definitiu_15_07_25.pdf
faiz-khans about Radiotherapy Physics-02.pdf

trigonometry.pdf

  • 2. [email protected] The author Name: Baraka Loibanguti Email: [email protected] Tel: +255 621 842525 or +255 719 842525
  • 3. [email protected] Read this! ▪ This book is not for sale. ▪ It is not permitted to reprint this book without prior written permission from the author. ▪ It is not permitted to post this book on a website or blog for the purpose of generating revenue or followers or for similar purposes. In doing so you will be violating the copyright of this book. ▪ This is the book for learners and teachers and its absolutely free.
  • 5. BARAKA LO1BANGUT1 5 | b a r a k a l o i b a n g u t i @ g m a i l . c o m TRIGONOMETRY The word trigonometric is derived from two Greek words trigon, which means triangles, and metric, which means measures. Knowledge of the trigonometrical ratios is vital in very many fields of engineering, mathematics and physics. Trigonometry, as the word implies, is concerned with the measurement of the parts, sides and angles, of a triangle. The early applications of the trigonometric functions were to surveying, navigation, and engineering. These functions also play an important role in the study of all sorts of vibratory phenomena-sound, light, electricity, etc. Therefore, a considerable portion of the subject matter is concerned with a study of the properties of and relations among the trigonometric functions. Trigonometric ratios as ratios of a right-angled triangle c a = = Hypotenuse opposite θ sin c b = = Hypotenuse Adjacent θ cos cosθ θ sin Adjacent Opposite θ tan = = = b a θ A C B b c a Chapter 7
  • 6. BARAKA LO1BANGUT1 6 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Reciprocal of trigonometric ratios Reciprocal of sine is cosecant, sine 1 cosecant = which is abbreviated as cosec or csc Reciprocal of cosine is secant, cosine 1 secant = , which is abbreviated as sec. Reciprocal of tangent is cotangent, tangent 1 cotangent = , this is abbreviated as cot Therefore,          = = = x x x x x x tan cot sin cosec cos sec 1 1 1 Trigonometric identities Consider the triangle ABC given c a θ sin = and c b θ cos = 2 2 2       +       = + c b c a θ cos θ sin 2 2 2 2 2 c b a θ cos θ sin + = + 2 By Pythagoras theorem 2 2 2 c b a = + θ A C B b c a
  • 7. BARAKA LO1BANGUT1 7 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 1 2 = = + 2 2 2 c c θ cos θ sin , therefore 1 θ cos θ sin = + 2 2 Using 1 θ cos θ sin = + 2 2 divide throughout by θ cos2 θ cos θ cos θ sin θ cos θ cos 2 2 2 2 2 1 = + therefore θ sec θ tan 2 = + 2 1 Using 1 θ cos θ sin = + 2 2 divide throughout by θ sin 2 θ sin θ sin θ sin θ sin θ cos 2 2 2 2 2 1 = + therefore θ cosec 1 θ cot 2 = + 2 SIMPLIFYING TRIGONOMETRIC IDENTITIES This means to write the compound trigonometric given in a most simplified form with one or two trigonometric functions. Simplify    2 cosec tan tan 1 2 + Solution Given    2 cosec tan tan 1 2 + from θ sec θ tan 2 = + 2 1 then                 2 2 1 sin cos sin sec = =    sin cos sec 1 2 ( )    sin cos cos  2 1   cos sin = Example 1
  • 8. BARAKA LO1BANGUT1 8 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Therefore,     tan cosec tan tan 2 = +1 2 Simplify x x x sin cos cosec 2 + Solution Given x x x sin cos cosec 2 + x x x sin cos sin +       2 1 x x x x x cosec sin sin sin cos = = + 1 2 2 Therefore, x x x x cosec sin cos cosec 2 = + Simplify 1 1 1 1 + + − x x sec sec Solution Given 1 1 1 1 + + − x x sec sec ( ) ( ) ( )( ) 1 1 1 1 + − − + + = x x x x sec sec sec sec 1 2 2 − = x x sec sec x x 2 2 tan sec = x x x x x x x cot cosec sin cos sin cos cos 2 2 2 2 2 2 = =               = Therefore, x x x x cot cosec sec sec 2 1 1 1 1 = + + − Example 2 Example 3
  • 9. BARAKA LO1BANGUT1 9 | b a r a k a l o i b a n g u t i @ g m a i l . c o m EXERCISE 1 (a) Simplify the following trigonometric identities 1. x x x csc sin tan + 2. θ θ θ 2 cot sin csc − 3. ( ) x x x x sin tan cos cot + 4.    tan sin cos + 5. x x x 2 2 2 sin cos sin − 6. x x x x sin cos cos sin + + + 1 1 7. x x x tan csc sec + + 1 8. ( )( ) x x x tan sec sin + − 1 9. ( ) ( )2 2 x x x x cos sin cos sin − + + 10. ( )( ) 1 + − x x x csc tan sec 11. ( ) ( )2 2 1 1 x x tan tan − + + 12. ( ) ( )2 2 3 3 x x x x sin cos sin cos − + + 13. ( ) ( )2 2 3 4 4 3 x x x x sin cos sin cos − + + 14. x x 2 2 sin tan − 15. x x x 2 2 2 tan cot csc − 16. x x x 2 1 cos cos sin − 17. x x x cos sin tan − 18. x x 2 2 1 1 tan sin − 19. ( ) x x x sin csc sin − 20. x x x x csc sin sec cos + (b) From each of equation set given eliminate  21.  sin 3 = x and  cosec = y 22.  sin + = 3 x and  tan = y 23.  sin = x 5 and  cos 2 = y 24.  sin 2 = x and  cos = y 3 25.  sin + = 3 x and  cosec = y 26. θ x cot = and  sec + = a y
  • 10. BARAKA LO1BANGUT1 10 | b a r a k a l o i b a n g u t i @ g m a i l . c o m PROOF OF TRIGONOMETRIC IDENTITIES The first part above was to simplify trigonometric identities, in this part, we are required to verify that the right-hand side is equals to the left hand side. We are required to simplify one side to be the same as the other side. To verify, we can start with either side. Show that x x x x cos tan sin sec = − Solution x x x x cos tan sin sec = − Consider left hand side       − x x x x cos sin sin cos 1 x x cos sin 2 1− = x x x cos cos cos = = 2 , hence LHs become as RHs, hence shown. Prove that x x x x cosec sec cot tan = + Solution Consider left hand side x x cot tan + x x x x sin cos cos sin + x x x x x x x x sec csc cos sin cos sin cos sin = = + = 1 2 2 hence shown. Prove that x x x x sin cos cos sin − = + 1 1 Solution Consider left hand side Example 4 Example 5 Example 6
  • 11. BARAKA LO1BANGUT1 11 | b a r a k a l o i b a n g u t i @ g m a i l . c o m x x x x cos cos cos sin − −  + 1 1 1 (Multiplying by x cos − 1 in numerator and denominator) ( ) ( ) x x x x x x 2 2 1 1 1 sin cos sin cos cos sin − = − − x x sin cos − = 1 hence shown Prove that x x x x x cos sin cos tan cot 1 2 2 − = − Solution Consider the left hand side x x tan cot − x x x x x x x x cos sin sin cos cos sin sin cos 2 2 − = − ( ) x x x x x x x cos sin cos cos sin cos cos 1 2 1 2 2 2 − = − − EXERCISE 2 Prove each of the following identities 1. x x x x csc tan cos csc = + 2 2.     tan cos tan sin = + + 1 3.         cos sin sin cos sin cos tan cot − = + − 4.     tan sec cos sin + = − 1 1 5.      2 2 1 cos cot tan cot tan − = + − 6. ( )2 1 1 x x x x tan sec csc csc + = − + 7. ( )( ) ( )2 1 1 x x x x tan cos sin csc + = + − 8. x x x x 2 2 2 2 csc sec cot sin = + + 9. ( ) 1 1 2 2 2 − = + x x x sec tan sin 10. 1 2 2 2 2 − = − x x x cos sin cos Example 7
  • 12. BARAKA LO1BANGUT1 12 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 11. x x x x 2 2 2 2 sin sec csc sec = + 12. x x x x tan sin cos sec = − 13.     cot cos sin csc = − 14. x x x x 2 2 2 2 sin tan sin tan = − 15.     2 2 sec cot tan tan = + 16. x x x x sec tan sin sin 2 1 1 1 1 = + − − 17. 1 1 1 1 + − = + −     cot cot tan tan 18. 1 1 + = − x x x x sec tan tan sec 19. x x x x cot csc cos cos − = + − 1 1 20.     sin tan sec cos − = + 1 21.     sec sec sin sec + = − 1 1 2 2 22. ( ) ( ) 2 2 2 2 b a a b b a + = + + +     sin cos sin cos 23. x x x x x sec cos sin cos sin − = − + − + 1 1 3 3 1 2 2 2 24. If  sin + = 2 x and  cos = +1 y show that 0 4 2 4 2 2 = + + − + y x y x TRIGONOMETRIC EQUATION Trigonometric equations may have infinity solutions; to be specific the range of the solution should be given. The range may be     360 0  ,     − 360 360  or     − 180 180  etc. if not given we give out the general solution. Note that, this range may also be given in radians. We shall also refer the four quadrants of the xy-plane to get the required principal solutions. Solve for x from     360 0 x ; ( ) 3 0 15 . sin − =  + x Solution Example 8
  • 13. BARAKA LO1BANGUT1 13 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Given ( ) 3 0 15 . sin − =  + x ( ) 3 . 0 sin 15 1 − =  + x  − =  + 46 17 15 . x   =  + 342.54 , .46 197 15 x   = 327.54 , .46 182 x Solve ( ) 5 0 10 . sin − =  + x from     360 0 x Solution ( ) 5 0 10 . sin − =  + x ( ) 5 0 10 1 . sin− − =  + x  − =  + 30 10 x then   =  + 330 210 10 , x Therefore   = 320 , 200 x Solve 4 0. cos − = x from     − 180 180 x Solution 4 0. cos − = x ( ) 4 0 1 . cos − = − x  = 58 113. x , or  − = 58 113. x Solve 0 1 3 = +  tan from     − 180 180  Solution Example 9 Example 10 Example 11
  • 14. BARAKA LO1BANGUT1 14 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Given 0 1 3 = +  tan 3 1 − =  tan       − = − 3 1 1 tan   − = 43 18.  or  = 57 161.  Solve 0 2 = + x x x cos sin sin from     360 0 x Solution 0 2 = + x x x cos sin sin ( ) 0 = + x x x cos sin sin Case 1: 0 = x sin ( ) 0 sin 1 − = x  = 0 x ,  180 or  360 Case 2: 0 = + x x cos sin x x cos sin − = therefore 1 − = x tan ( ) 1 1 − = − tan x  =135 x or  315 Therefore,  = 0 x ,  135 ,  180 ,  315 or  360 Solve 0 1 6 2 = − − x x sin cos from     360 0 x Solution Example 12 Example 13
  • 15. BARAKA LO1BANGUT1 15 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 0 1 6 2 = − − x x sin cos ( ) 0 1 sin sin 1 6 2 = − − − x x 0 1 sin sin 6 6 2 = − − − x x 0 5 sin sin 6 2 = + − − x x ( )( ) 0 1 sin 5 sin 6 = + − x x Case 1: 0 5 sin 6 = − x 6 5 sin = x        = − 6 5 sin 1 x  = 44 . 56 x or  56 . 123 Case 2: 1 sin − = x ( ) 1 sin 1 − = − x  = 270 x Therefore,  = 44 . 56 x ,  56 . 123 or  270 Solve x x x cos 3 cos sin 4 = for     360 0 x Solution x x x cos 3 cos sin 4 = 0 cos 3 cos sin 4 = − x x x ( ) 0 3 cos 4 sin = − x x Case 1: 0 sin = x Example 14
  • 16. BARAKA LO1BANGUT1 16 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( ) 0 sin 1 − = x  = 0 x ,  180 or  360 Case 2: 0 3 cos 4 = − x 4 3 cos = x       = − 4 3 cos 1 x  = 59 . 48 x or  41 . 131 The solutions are  = 0 x ,  59 . 48 ,  41 . 131 ,  180 or  360 Solve 1 tan 1 tan 2 = −   from     360 0  Solution   tan 1 tan 2 2 = − 0 1 tan tan 2 2 = − −   ( )( ) 0 1 tan 2 1 tan = + −   Case 1: 1 tan =  ( ) 1 tan 1 − =  Example 15 1 tan 1 tan 2 = −  
  • 17. BARAKA LO1BANGUT1 17 | b a r a k a l o i b a n g u t i @ g m a i l . c o m  = 45  or  225 Case 2: 2 1 tan − =        − = − 2 1 tan 1   = 44 . 153  or  56 . 206 The solution are  = 45   44 . 153 ,  225 ,  56 . 206 or  225 Solve    cos sin 2 sin 3 2 = from     360 0  Solution    cos sin 2 sin 3 2 = 0 cos sin 2 sin 3 2 = −    ( ) 0 cos 2 sin 3 sin = −    Case 1: 0 sin =   = 0  ,  180 or  360 Case 2:   cos 2 sin 3 = 3 2 tan =        = − 3 2 tan 1   = 69 . 33  or  31 . 146 The solutions are  = 0  ,  69 . 33 ,  31 . 146 ,  180 or  360 Example 16
  • 18. BARAKA LO1BANGUT1 18 | b a r a k a l o i b a n g u t i @ g m a i l . c o m EXERCISE 3 (a) Solve the following from  0 to  360 inclusive 1. 7 . 0 2 cos = x 2. 0 1 3 tan 2 = − x 3. 0 cos sin cos2 = −    4. 0 1 sin 2 sin 5 2 = − −   5. 0 cos 3 sin 2 = −   6. 0 3 cos 5 = +  7. ( ) 0 cos sin 2 cos = +    8. x x x sin 3 cos sin 4 = 9. ( )( ) 0 1 sin 1 sin 2 = + −   10. 0 cos sin 2 sin = −    11. ( ) 2 30 tan =  + x 12.    csc cos cos 4 2 = 13. 7 sec 3 tan 2 2 = +   14. 0 2 sin 5 sin 2 2 = + − x x 15. x x 2 tan 8 1 tan 2 = + (b) Solve the following from  −180 to  180 inclusive 16. x x 3 cos 2 sin = 17. 0 1 sin 4 sin 2 2 = + − x x 18. x x x cos sin 2 sin 3 2 = 19. ( ) 2 1 30 cos =  − x 20. x x x tan 2 sec 3 cos 4 = − 21. 0 1 cos sin2 = + + x x 22. x x 2 cos 4 sin 4 = − 23. x x 2 sin 3 cos 5 5 = − 24. 3 cos 7 cos2 = + x x 25. x x x sin cos 3 tan 8 = COMPOUND ANGLES
  • 19. BARAKA LO1BANGUT1 19 | b a r a k a l o i b a n g u t i @ g m a i l . c o m COMPOUND ANGLES, NATURAL SINE ( ) B A sin  Before we proceed with the compound angles, we need first to recall the sine rule Consider the triangle below Area of triangle ABC, bh A 2 1 = c h Hyp opp sin = = A A c h sin =  A bc A sin 2 1 = Using this area formula, we can deduce the sine rule as follows B ac A bc C ab A sin 2 1 sin 2 1 sin 2 1 = = = Simplifying B ac A bc C ab sin 2 1 sin 2 1 sin 2 1 = = Divide throughout by abc, B ac A bc C ab sin sin sin = = abc B ac abc A bc abc C ab sin sin sin = = This is sine rule Sine rule is used to solve triangle problem of the two cases below (a) Solving ASA (Angle, Side, Angle) and AAS (Angle, Angle, Side) Cases (b) Solving the Ambiguous SSA (Side, Side, Angle) Case b B a A c C sin sin sin = = A B C h
  • 20. BARAKA LO1BANGUT1 20 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Using the above sine rule Consider again the triangle ABC below Area of triangle ABC = Area of triangle ADB + Area of triangle DBC Area of ABC, ( ) B A ac A + = sin 2 1 Area of triangle ADB, A hc A sin 2 1 = but A c h c h A cos cos =  = Area of triangle DBC, B ah A sin 2 1 = but B a h a h B cos cos =  = Area of triangle ABC = Area of triangle ADB + Area of triangle DBC ( ) B ah A hc B A ac A sin 2 1 sin 2 1 sin 2 1 + = + = ( ) B ah A hc B A ac sin sin sin + = + ( ) ( )( ) ( )( ) A c B a A c B a B A ac cos sin sin cos sin + = + ( ) B A ac B A ac B A ac sin cos cos sin sin + = + ( ) B A B A B A sin cos cos sin sin + = + Therefore, A B C h D A B c a b ( ) B A B A B A sin cos cos sin sin + = +
  • 21. BARAKA LO1BANGUT1 21 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Sine and Tangent are odd functions, thus ( ) A A sin sin − = − and ( ) A A tan tan − = − while cosine is an even function, thus ( ) A A cos cos = − , this apply to secant, cosecant and cotangent. Using the concept of odd function of sine, we can proof ( ) B A sin − Replace, B with B − , ( ) ( ) ( ) ( ) B A B A B A − + − = − + sin cos cos sin sin ( ) B A B A B A sin cos cos sin sin − = − Therefore, COMPOUND ANGLES, NATURAL COSINE ( ) B A cos  Before showing these compound angles, we shall first derive the cosine formula, which will be our base in proving the cosine compound angles Consider the triangle ABC below Using Pythagoras theorem, in triangle DBC ( ) 2 2 2 a h x b = + − 2 2 2 2 2 a h x bx b = + + − ( ) B A B A B A sin cos cos sin sin − = − A C h D B c a b – x x
  • 22. BARAKA LO1BANGUT1 22 | b a r a k a l o i b a n g u t i @ g m a i l . c o m A c x c x A cos cos =  = A c h c h A sin sin =  = ( ) ( ) ( ) 2 2 2 2 sin cos cos 2 a A c A c A c b b = + + − 2 2 2 2 2 2 sin cos cos 2 a A c A c A bc b = + + − ( ) 2 2 2 2 2 sin cos cos 2 a A A c A bc b = + + − A bc c b a cos 2 2 2 2 − + = This is cosine rule, Note that, cosine rule is used in two cases (a) Solving the SAS (Side, Angle, Side) Case (b) Solving the SSS (Side, Side, Side) Case Now, consider the triangle ABC, let b – x be y ( ) ( ) B A ab b a y x + − + = + cos 2 2 2 2 ( ) B A ab b a y xy x + − + = + + cos 2 2 2 2 2 2 In triangle ADC: 2 2 2 y b h − = (Pythagoras theorem) In triangle DBC: 2 2 2 x a h − = ( ) ( ) ( ) B A ab xy b y a x + − = − − − + − − cos 2 2 2 2 2 2 ( ) B A ab xy h h + − = + − − cos 2 2 2 2 A bc c b a cos 2 2 2 2 − + =
  • 23. BARAKA LO1BANGUT1 23 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( ) B A ab xy h + − = + − cos 2 2 2 2 ( ) B A ab xy h + − = + − cos 2 ( ) 2 cos h xy B A ab − = + ( ) ab h ab xy B A 2 cos − = + ( )             −             = + b h a h b y a x B A cos But b y A = cos , a x B = cos , b h A = sin and a h B = sin ( ) B A B A B A sin sin cos cos cos − = + Therefore, Using the concept of odd and even functions, we deduce the formula By replacing B with B − , ( ) B A B A B A sin sin cos cos cos + = − From the compound angles ( ) B A sin and ( ) B A cos we deduce the compound angles of ( ) B A tan ( ) ( ) ( ) B A B A B A + + = + cos sin tan ( ) B A B A B A sin sin cos cos cos + = − ( ) B A B A B A sin sin cos cos cos − = +
  • 24. BARAKA LO1BANGUT1 24 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( ) B A B A B A B A B A sin sin cos cos sin cos cos sin tan − + = + ( ) B A B A B A B A B A B A B A B A B A cos cos sin sin cos cos cos cos cos cos sin cos cos cos cos sin tan − + = + ( )             −       +       = + B B A A B B A A B A cos sin cos sin 1 cos sin cos sin tan ( ) B A B A B A tan tan 1 tan tan tan − + = + Therefore, For ( ) B A− tan ( ) ( ) ( ) B A B A B A − − = − cos sin tan ( ) B A B A B A B A B A sin sin cos cos sin cos cos sin tan + − = − ( ) B A B A B A B A B A B A B A B A B A cos cos sin sin cos cos cos cos cos cos sin cos cos cos cos sin tan + − = + ( ) B A B A B A tan tan 1 tan tan tan − + = +
  • 25. BARAKA LO1BANGUT1 25 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( )             +       −       = − B B A A B B A A B A cos sin cos sin 1 cos sin cos sin tan ( ) B A B A B A tan tan 1 tan tan tan + − = − Therefore, PROVING TRIGONOMETRIC IDENTITIES Show that ( ) ( ) B A B A B A 2 2 cos cos cos cos − = − + Solution ( ) ( ) B A B A B A 2 2 cos cos cos cos − = − + ( )( ) B A B A B A B A sin sin cos cos sin sin cos cos + − B A B A 2 2 2 2 sin sin cos cos − ( ) ( ) B A B A 2 2 2 2 sin cos 1 sin 1 cos − − − B A B B A A 2 2 2 2 2 2 sin cos sin sin cos cos + − − B A 2 2 sin cos − , hence proved ( ) B A B A B A tan tan 1 tan tan tan + − = − Example 17 Example 18
  • 26. BARAKA LO1BANGUT1 26 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Show that ( ) A A cos 90 sin = −  Solution ( ) A A cos 90 sin = −  ( ) A A A sin 90 cos cos 90 sin 90 sin  −  = −  But 1 90 sin =  and 0 90 cos =  ( ) ( ) ( ) A A A sin 0 cos 1 90 sin − = −  ( ) A A cos 90 sin = −  , Hence shown. Show that ( ) ( ) B A B A B A B A tan tan tan tan sin sin − + = − + Solution Consider the left hand side ( ) ( ) B A B A B A B A B A B A sin cos cos sin sin cos cos sin sin sin − + = − + B A B A B A B A B A B A B A B A cos cos sin cos cos cos cos sin cos cos sin cos cos cos cos sin − + = B B A A B B A A cos sin cos sin cos sin cos sin − + = Example 19
  • 27. BARAKA LO1BANGUT1 27 | b a r a k a l o i b a n g u t i @ g m a i l . c o m B A B A tan tan tan tan − + = Hence shown EXERCISE 4 (a) Prove the following identities 1. ( ) ( ) B A B A B A cos sin 2 sin sin = − + + 2. ( ) ( ) B A B A B A B A tan tan 1 tan tan 1 cos cos − + = − + 3. ( ) ( ) ( ) C A C A C B C B B A B A cos cos sin cos cos sin cos cos sin − = − + − 4. ( ) A A cos π cos − = − 5. A A cos 2 π sin − =       + 6. If C B A = + , B p A tan tan = , show that ( ) C p p B A sin 1 1 sin + − = − 7. If a y x = + sin sin and b y x = + cos cos show that ( ) 1 2 2 cos 2 2 − + = − b a y x 8. The roots of the equation 0 15 26 8 2 = + − x x are A tan and B tan find (a) ( ) B A+ cos and (b) ( ) B A− sin . (b) Prove the following 9. ( ) ( ) A B B A B B A tan tan tan 1 tan tan = + + − + 10. ( ) ( ) B A B A B A B A cot cot 1 cot cot cos sin + + = − + 11. ( ) ( ) B A B A B A B A tan tan tan tan sin sin − + = − +
  • 28. BARAKA LO1BANGUT1 28 | b a r a k a l o i b a n g u t i @ g m a i l . c o m SIMPLIFYING TRIGONOMETRIC IDENTITIES Simplify ( ) y x y x cos cos sin − Solution ( ) y x y x cos cos sin − y x y x y x cos cos sin cos cos sin − = y x y x y x y x cos cos sin cos cos cos cos sin − = ( ) y x y x y x tan tan cos cos sin − = − Simplify ( ) ( ) B B A B B A cos cos sin sin − + − Solution ( ) ( ) B B A B B A cos cos sin sin − + − B B A B A B B A B A cos sin sin cos cos sin sin cos cos sin + + − = B B A A A B B A cos sin sin cos cos sin cos sin + + − = Example 20 Example 21
  • 29. BARAKA LO1BANGUT1 29 | b a r a k a l o i b a n g u t i @ g m a i l . c o m B B A B B A cos sin sin sin cos sin + = B B B A B A cos sin sin sin cos sin 2 2 + = ( ) B B B B A cos sin sin cos sin 2 2 + = B B A sin cos sin = Simplify   −  +  15 tan 30 tan 1 15 tan 30 tan Solution   −  +  15 tan 30 tan 1 15 tan 30 tan Recall that ( ) B A B A B A tan tan 1 tan tan tan − + = + ( )  +  =   −  +  15 30 tan 15 tan 30 tan 1 15 tan 30 tan  =   −  +  45 tan 15 tan 30 tan 1 15 tan 30 tan 1 15 tan 30 tan 1 15 tan 30 tan =   −  +  Example 22
  • 30. BARAKA LO1BANGUT1 30 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Simplify ( ) ( ) x y y x − − − tan tan Solution Tangent is an odd function, this mean that ( ) ( ) A A tan tan − = − ( ) ( ) x y y x − − − tan tan ( ) ( ) ( ) y x y x − − − − = tan tan ( ) ( ) y x y x − + − = tan tan ( ) y x− = tan 2 y x y x tan tan 1 tan tan 2 + − = Deriving double angles from compound angles From ( ) B A B A B A sin cos cos sin sin + = + Let A B = ( ) A A A A A A sin cos cos sin sin + = + Therefore, A A A cos sin 2 2 sin = From ( ) B A B A B A sin sin cos cos cos − = + Let A B = ( ) A A A A A A sin sin cos cos cos − = + DOUBLE ANGLES FORMULAE Example 23
  • 31. BARAKA LO1BANGUT1 31 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Therefore, A A A 2 2 sin cos 2 cos − = From ( ) B A B A B A tan tan 1 tan tan tan − + = + ( ) A A A A A A tan tan 1 tan tan tan − + = + A A A 2 tan 1 tan 2 2 tan − = From the double angle formulae, we deduce the half angles. From A A A cos sin 2 2 sin = replace A by 2 A The half angle formula for sine,             = 2 cos 2 sin 2 sin A A A From A A A 2 2 sin cos 2 cos − = Half angle for cosine,       −       = 2 sin 2 cos cos 2 2 A A A From A A A 2 tan 1 tan 2 2 tan − = replace A by 2 A Half angle formula for tangent       −       = 2 tan 1 2 tan 2 tan 2 A A A HALF ANGLE FORMULA
  • 32. BARAKA LO1BANGUT1 32 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Prove that A A A 2 cos tan 1 tan 1 2 2 = + − Solution A A A 2 cos tan 1 tan 1 2 2 = + − ( ) ( ) A A A A A A A A A A 2 2 2 2 2 2 2 2 2 2 cos sin cos cos sin cos cos sin 1 cos sin 1 + − = + − = A A A A 2 2 2 2 sin cos sin cos + − = A A A 2 cos sin cos 2 2 = − = , hence shown Show that    2 tan 2 cos 1 2 cos 1 = + − Solution    2 tan 2 cos 1 2 cos 1 = + −    2 2 2 2 sin cos 1 sin cos 1 − + + − = Example 24 Example 25
  • 33. BARAKA LO1BANGUT1 33 | b a r a k a l o i b a n g u t i @ g m a i l . c o m    2 2 2 cos 1 cos 1 sin 2 + − + =    2 2 2 tan cos 2 sin 2 = = shown Prove that    cot 2 cot 2 csc = + Solution    cot 2 cot 2 csc = +   2 tan 1 2 sin 1 + =    2 sin 2 cos 2 sin 1 + =   2 sin 2 cos 1+ =     cos sin 2 sin cos 1 2 2 − + = ( )     sin cos 2 cos 1 cos 1 2 2 − − + =       cot sin cos cos sin 2 cos 2 2 = = = Shown Example 26
  • 34. BARAKA LO1BANGUT1 34 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Prove that    tan 2 cos 1 2 sin = + Solution    tan 2 cos 1 2 sin = +     2 2 sin cos 1 cos sin 2 − + = thus ( )     2 2 cos 1 cos 1 cos sin 2 − − + =    2 cos 2 cos sin 2 =    tan cos sin = = , Shown. Show that x x x 2 2 sin 3 2 2 cos cos − = + Solution x x x 2 2 sin 3 2 2 cos cos − = + x x 2 cos cos2 + x x x 2 2 2 sin cos cos − + = x x x 2 2 2 sin sin 1 sin 1 − − + − = x 2 sin 3 2 − = , Hence shown Example 27 Example 28
  • 35. BARAKA LO1BANGUT1 35 | b a r a k a l o i b a n g u t i @ g m a i l . c o m EXERCISE 5 Prove the following identities 1. A A A cos 1 sin 2 tan + =       2.       +       = 2 tan 1 2 tan 2 sin 2    3.    tan cot 2 csc 2 = − 4.     2 sin sin 2 tan 2 2 tan 2 = − 5.      tan 2 cos cos 1 2 sin sin = + + + 6.    4 4 sin cos 2 cos − = 7.    tan 2 cot 2 cot = − 8. x x x x x sin cos sin cos 2 cos + = − 9. ( ) ( ) y x y y x y y x 2 sin sin 2 cos cos sin sin = − + − 10. ( ) y x y x y x cot tan cos cos cos + = − 11.    3 sin 4 sin 3 3 sin − = 12.    3 cos 4 cos 3 3 cos = + 13. ( ) 3 cot sin csc sin 2 2 2 + + = + A A A A 14. ( )     2 2 sin cos 3 sin 3 sin − = 15.    2 cot 2 tan cot = − 16. ( ) B A B A B A tan tan 1 sec sec sec − = +
  • 36. BARAKA LO1BANGUT1 36 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 17. If  = + 45 2 B A prove that A A A A B tan 2 tan 1 tan 2 tan 1 tan 2 2 + − − − = 18. If ( ) ( ) y x y x − = + cos 2 sin show that y y x tan 2 1 tan 2 tan − − = 19.    sin cos 1 2 tan − =       20. If 12 5 tan =  find (a)  2 tan (b)  3 tan 21. If  = + 45 B A show that B B B B A sin cos sin cos tan + − = SIMPLIFYING TRIGONOMETRIC IDENTITIES INVOLVING DOUBLE ANGLES Simplify A A 2 sin 1 2 sin 1 − + Solution A A 2 sin 1 2 sin 1 − + A A A A 2 sin 1 2 sin 1 2 sin 1 2 sin 1 + +  − + = ( ) A A 2 sin 1 2 sin 1 2 2 − + = ( ) A A A A 2 cos 2 sin 1 2 cos 2 sin 1 2 2 + = + = Example 29
  • 37. BARAKA LO1BANGUT1 37 | b a r a k a l o i b a n g u t i @ g m a i l . c o m A A A A 2 2 sin cos cos sin 2 1 − + = A A A A A A 2 2 2 2 sin cos cos sin 2 sin cos − + + = ( ) ( )( ) ( )( ) A A A A A A A A A A A A sin cos sin cos sin cos sin cos sin cos sin cos 2 2 2 − + + + = − + = A A A A A A tan 1 tan 1 sin cos sin cos − + = − + = Simplify x x sin 2 sin Solution x x x x cos 2 sin cos sin 2 = Simplify ( ) ( ) y y x y y x sin cos cos sin − + − Solution ( ) ( ) y y x y y x sin cos cos sin − + − Let A y x = − Example 30 Example 31 x x sin 2 sin
  • 38. BARAKA LO1BANGUT1 38 | b a r a k a l o i b a n g u t i @ g m a i l . c o m y A y A sin cos cos sin + = ( ) y A+ = sin but A y x = − ( ) y y x + − = sin x sin = EXERCISE 6 Simplify the following questions 1. A A cos 2 sin 2. A A 2 cos tan 2 3. A A 2 cos sin 2 2 + 4. A A sin 4 2 cos 3 + 5. x x x x sin cos 1 cos 1 sin + + + 6. x x x x 2 cos cos 3 1 2 sin sin 3 + + + 7. A A A cos 6 π sin 6 π sin =       − −       + 8. 2 cos 1 A − 9. A A cos 1 cos 1 − + 10. A A 2 tan cos2 +
  • 39. BARAKA LO1BANGUT1 39 | b a r a k a l o i b a n g u t i @ g m a i l . c o m SOLVING EQUATION INVOLVING DOUBLE ANGLE Solve 0 cos 2 sin 3 = + x x from     360 0 x Solution 0 cos 2 sin 3 = + x x 0 cos cos sin 6 = + x x x ( ) 0 1 sin 6 cos = + x x Case 1: 0 cos = x ( ) 0 cos 1 − = x  =90 x or  270 Case 2: 0 1 sin 6 = + x 6 1 sin − = x       = − 6 1 sin 1 x  = 59 . 189 x or  41 . 350 Therefore,  =90 x ,  59 . 189 ,  270 or  41 . 350 Solve 0 sin 2 sin = − x x Solution 0 sin 2 sin = − x x Example 32 Example 33
  • 40. BARAKA LO1BANGUT1 40 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 0 sin cos sin 2 = − x x x ( ) 0 1 cos 2 sin = − x x Case 1: 0 sin = x ( ) 0 sin 1 − = x  = 0 x ,  180 ,  360 Case 2: 0 1 cos 2 = − x 5 . 0 cos = x ( ) 5 . 0 cos 1 − = x  = 60 x or  300 The solution set is  = 0 x ,  60 ,  180 ,  300 and  360 Solve 1 cot 2 cot 3 = + x x from     − 180 180 x Solution 1 cot 2 cot 3 = + x x 1 tan 1 2 tan 1 3 = +       x x 1 tan 1 tan 2 tan 3 3 2 = + − x x x x x tan 2 2 tan 3 3 2 = + − 0 5 tan 2 tan 3 2 = − + x x Example 34
  • 41. BARAKA LO1BANGUT1 41 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( )( ) 0 1 tan 5 tan 3 = − + x x Case 1: 0 5 tan 3 = + x 3 5 tan − = x       − = − 3 5 tan 1 x   − = 96 . 120 , 04 . 59 x Case 2: 1 tan = x ( ) 1 tan 1 − = x  = 45 x The solution set is    − = 96 . 120 , 45 , 04 . 59 x EXERCISE 7 Solve the following from     360 0  1. 3 sin 2 cos + =   2. ( )  + = 10 sin 3 cos   3. 1 sin cos 2 sin 2 = +    4. 1 2 cos 2 2 cos 3 2 = +   5. 2 3 cot 3 cot 5 2 = −   6. 1 2 tan tan 2 2 + =   7. 1 2 cos 2 sin + =   8.   cot tan = 9. 4 2 sec4 =  10. 0 2 3 sin 5 3 sin 3 2 = + −  
  • 42. BARAKA LO1BANGUT1 42 | b a r a k a l o i b a n g u t i @ g m a i l . c o m SOLUTION OF EQUATIONS OF THE FORM c b a = + θ sin θ cos (a) From the half angle formula, we derive the so called t formula, ( ) ( ) 2 cos 2 sin 2 sin A A A = ( ) ( ) ( ) ( ) 2 sin 2 cos 2 cos 2 sin 2 sin 2 2 A A A A A + = ( ) ( ) 2 tan 1 2 tan 2 sin 2 A A A + = Let ( ) 2 tan A t = Therefore, 2 1 2 sin t t A + = (b) ( ) ( ) 2 sin 2 cos cos 2 2 A A A − = ( ) ( ) ( ) ( ) 2 sin 2 cos 2 sin 2 cos cos 2 2 2 2 A A A A A + − = ( ) ( ) 2 tan 1 2 tan 1 cos 2 2 A A A + − = Let ( ) 2 tan A t = Therefore, 2 2 1 1 cos t t A + − =
  • 43. BARAKA LO1BANGUT1 43 | b a r a k a l o i b a n g u t i @ g m a i l . c o m (c) ( ) ( ) 2 tan 1 2 tan 2 tan 2 A A A − = Let ( ) 2 tan A t = Then, 2 1 2 tan t t A − = Solve 0 1 sin cos 2 = − +   from     360 0  Solution 0 1 sin cos 2 = − +   0 1 1 2 1 1 2 2 2 2 = −       + +         + − t t t t ( ) 0 1 2 2 2 2 2 = + − + − t t t 0 1 2 3 2 = − − t t ( )( ) 0 1 3 1 = + − t t 1 = t or 3 1 − = t But ( ) 2 tan  = t Case 1: ( ) 1 2 tan =  ( ) 1 tan 2 1 − =      = 225 , 45 2    = 450 , 90  Case 2: ( ) 3 1 2 tan − =  ( ) 3 1 tan 2 1 − = −      = 341.57 , 57 . 161 2  Example 35
  • 44. BARAKA LO1BANGUT1 44 | b a r a k a l o i b a n g u t i @ g m a i l . c o m   = 683.14 , 14 . 323  The solution is   = 14 . 323 , 90  Note that, other solutions are out of range given. Solve equation 2 sin 4 cos 3 = +   from     360 0  Solution 2 sin 4 cos 3 = +   2 1 2 4 1 1 3 2 2 2 =       + +         + − t t t t 2 2 2 2 8 3 3 t t t + = + − 0 1 8 5 2 = − − t t 7165 . 1 = t or 1165 . 0 − = t ( ) 7165 . 1 2 tan =  ( ) 7165 . 1 tan 2 1 − =      = 239.77 , 77 . 59 2    = 479.54 , 54 . 119  ( ) 1165 . 0 2 tan − =  ( ) 1165 . 0 tan 2 1 − = −  Example 36
  • 45. BARAKA LO1BANGUT1 45 | b a r a k a l o i b a n g u t i @ g m a i l . c o m     = 36 . 353 , 36 . 173 2    = 706.72 , 72 . 346  The solution set is   = 72 . 346 , 54 . 119  Solve 1 sin cos 3 = +   form     360 0  Solution 1 sin cos 3 = +   1 1 2 1 1 3 2 2 2 =       + +         + − t t t t ( ) 2 2 1 2 1 3 t t t + = + − 0 2 3 1 3 2 2 = + − − − t t t ( ) 0 1 3 2 1 3 2 = − + + + − t t 1 = t or 2679 . 0 − = t ( ) 1 2 tan =  ( ) 1 tan 2 1 − =      = 225 , 45 2    = 450 , 90  Example 37
  • 46. BARAKA LO1BANGUT1 46 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( ) 2679 . 0 2 tan − =  ( ) 2679 . 0 tan 2 1 − = −      = 345 , 165 2    = 690 , 330    =  330 , 90  Solution of equations of the form c b a = + θ sin θ cos : (a) Expressing equation of the form c b a = + θ sin θ cos into the form ( ) α θ cos θ sin θ cos − = + R b a       sin sin cos cos sin cos R R b a + = +    cos cos cos R a =  cos R a = (1)    sin sin sin R b =  sin R b = (2)   2 2 2 2 2 2 sin cos R R b a + = + (Square and add equation 1 and 2) ( )   2 2 2 2 2 sin cos + = + R b a The value of R is 2 2 b a R + =   cos sin R R a b = (Divide equation 1 and 2)
  • 47. BARAKA LO1BANGUT1 47 | b a r a k a l o i b a n g u t i @ g m a i l . c o m a b =  tan Therefore,       = − a b 1 tan  (b) EXPRESSING EQUATION OF THE FORM c b a = + θ sin θ cos INTO THE FORM ( ) α θ sin θ sin θ cos + = + R b a ( )     + = + sin sin cos R b a       sin cos cos sin sin cos R R b a + = + Compare    sin cos cos R a =  sin R a = (1)    cos sin sin R b =  cos R b = (2)   2 2 2 2 2 2 cos sin R R b a + = + (Square and add equation 1 and 2) ( )   2 2 2 2 2 cos sin + = + R b a 2 2 2 2 2 b a R R b a + =  = + b a R R =   cos sin (Divide equation 1 by 2) b a =  tan
  • 48. BARAKA LO1BANGUT1 48 | b a r a k a l o i b a n g u t i @ g m a i l . c o m       = − b a 1 tan                + + = + − b a b a b a 1 2 2 tan cos sin cos    Express   sin 4 cos 3 + in the form ( )   − cos R Solution Compare and expand ( )   − cos R       sin sin cos cos sin 4 cos 3 R R + = +    cos cos cos 3 R =  cos 3 R = (1)    sin sin sin 4 R =  sin 4 R = (2)   2 2 2 2 2 2 sin cos 4 3 R R + = + 1. Express c b a = −   sin cos in the form ( )   − sin R 2. Express c b a = −   sin cos in the form ( )   + cos R Questions Example 38
  • 49. BARAKA LO1BANGUT1 49 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( )   2 2 2 sin cos 16 9 + = + R 2 25 R = 5  =  R   cos sin 3 4 R R = 3 4 tan =    =       = − 1 . 53 3 4 tan 1  Therefore, ( )  −  = + 1 . 53 cos 5 sin 4 cos 3    Express 39 cos 12 sin 5 = −   in the form ( )   − sin R Solution Compare and expand ( )     − = − sin cos 12 sin 5 R       sin cos cos sin cos 12 sin 5 R R − = −    cos sin sin 5 R =  cos 5 R = (1)    sin cos cos 12 R =  sin 12 R = (2)   2 2 2 2 2 2 sin cos 12 5 R R + = + ( )   2 2 2 sin cos 144 25 + = + R 2 169 R = 13  =  R Example 40
  • 50. BARAKA LO1BANGUT1 50 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 5 12 cos sin =   R R ( ) 4 . 2 tan 5 12 tan 1 − =  =     = 4 . 67  ( )  −  = − 4 . 67 sin 13 cos 12 sin 5    but 39 cos 12 sin 5 = −   ( ) 39 4 . 67 sin 13 =  −   ( ) 3 4 . 67 sin  =  −  Write 3 sin cos 2 = −   in the form ( )   + cos determine the maximum and minimum value. Solution Compare and expand ( )     + = − cos sin cos 2 R       sin sin cos cos sin cos 2 R R − = −    cos cos cos 2 R =  cos 2 R =    sin sin sin R =  sin 1 R = ( )   2 2 2 2 1 2 sin cos 1 2 R R + = + ( )   2 2 2 sin cos 1 2 + = + R Example 41
  • 51. BARAKA LO1BANGUT1 51 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 3 2 = R 3  =  R 2 1 tan cos sin = =    R R  =       = − 3 . 35 2 1 tan 1  ( ) 3 3 . 35 cos 3 sin cos 2 =  +  = −    ( ) 3 3 . 35 cos 3 =  +   Therefore, ( ) 3 3 3 . 35 cos  =  +  , Maximum is 3 3 = R and minimum is 3 3 − = R QUESTIONS (a) Express each of the following in the form ( )    sin R 1. 2 sin 3 cos = +   2. 5 cos 4 sin 3 = −   3. 1 sin 5 cos 4 = −   4. 3 sin 9 cos 10 = −   (b) Express each of the following in the form ( )    cos R 5.   sin cos 2 − 6. 5 sin 10 cos 7 = −   7. 9 sin cos 4 = +   8. 4 cos 2 sin 3 = +  
  • 52. BARAKA LO1BANGUT1 52 | b a r a k a l o i b a n g u t i @ g m a i l . c o m We now clearly know how to express the function c b a =    sin cos in the form of ( )    cos R or ( )    sin R . This concept is useful in solving trigonometric equation of the form c b a =    sin cos . Solve 2 sin 4 cos 3 = +   for  from     360 0  Solution ( )     − = + cos sin 4 cos 3 R       sin sin cos cos sin 4 cos 3 R R − = +    cos cos cos 3 R =  cos 3 R =    sin sin sin 4 R =  sin 4 R = 3 4 tan cos sin = =    R R  =       = − 1 . 53 3 4 tan 1    2 2 2 2 2 2 sin cos 4 3 R R + = + 5 25 2 =  = R R USING R-FORMULA TO SOLVE TRIGONOMETRIC EQUATION OF THE FORM c b a = + θ sin θ cos Example 41
  • 53. BARAKA LO1BANGUT1 53 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( ) 2 1 . 53 cos 5 sin 4 cos 3 =  − = +    ( ) 5 2 1 . 53 cos =  −  ( ) 4 . 0 cos 1 . 53 1 − =  −      =  − 6 . 293 , 4 . 66 1 . 53  Solution   = 7 . 346 , 5 . 119  Find the maximum and minimum value of   cos 4 sin 2 − and the corresponding values of  between  0 to  360 inclusive. Solution ( )     − = − sin cos 4 sin 2 R       sin cos cos sin cos 4 sin 2 R R − = −    cos sin sin 2 R =  cos 2 R =    sin cos cos 4 R =  sin 4 R = ( )   2 2 2 2 2 sin cos 4 2 + = + R 5 2 20 = = R The minimum value is 5 2 − and the maximum value is 5 2 Example 42
  • 54. BARAKA LO1BANGUT1 54 | b a r a k a l o i b a n g u t i @ g m a i l . c o m    tan cos sin 2 4 = = R R ( ) 2 tan 1 − =   =  4 . 63  ( )  − 4 . 63 sin 5 2  At maximum, ( ) 5 2 4 . 63 sin 5 2 =  −  ( ) 1 sin 4 . 63 1 − =  −   =  −  90 4 . 63   =  +  =  4 . 153 4 . 63 90  At minimum, ( ) 5 2 4 . 63 sin 5 2 − =  −  ( ) 1 sin 4 . 63 1 − =  − −   =   =  −  4 . 333 270 4 . 63   Therefore the solutions are ( )  4 . 153 , 5 2 and ( )  − 4 333 , 5 2 . Solve 1 sin 5 cos = +   from     360 0  Solution ( )     − = + cos sin 5 cos R       sin sin cos cos sin 5 cos R R + = +    cos cos cos R = 1 cos =   R    sin sin sin 5 R =  sin 5 R =  ( ) ( )   2 2 2 2 2 sin cos 5 1 + = + R 6 6 2 =  = R R Example 43
  • 55. BARAKA LO1BANGUT1 55 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 5 tan 5 cos sin =  =    R R ( )  = = − 9 . 65 5 tan 1  ( ) ( )  − = − 9 . 65 cos 6 cos    R ( ) 1 9 . 65 cos 6 =  −        =  − − 6 1 cos 9 . 65 1   =  − 9 . 65 9 . 65  The solution,   = 360 , 0  EXERCISE 8 (a) Solve each of the following using R-formula from  0 to  360 inclusive 1. 5 sin 2 cos 3 = +   2. 3 cos 2 sin 2 = +   3. 1 3 sin 3 cos = +   4. 7 2 cos 12 2 sin 5 = −   5. ( ) ( ) 2 sin 3 cos 2 1 2 1 = − x x 6. 7 sin 3 cos 2 = +   7. 1 sin 3 1 cos 4 1 = +   8. 0 2 2 sin 3 2 cos = + +   9. ( ) 3 sin 3 cos 2 2 = −   10. ( ) 10 2 sin 5 2 cos 3 = +   11. 4 cos sin =   12. 0 3 cos 3 sin =  
  • 56. BARAKA LO1BANGUT1 56 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 13. 6 cos 12 sin 5 = −   14. 2 1 cos sin = +   15. 2 sin 7 cos = −   16. 4 cos 7 sin 2 = +   17. 4 sec 2 tan 3 = −   18. 10 2 cos 15 cos sin 4 = +    19. 0 sin 2 cos = +   20. 1 cos sin 3 = +   (b) Find the maximum and minimum value of the expressions below and find the corresponding value of  21.   sin cos + 22.   sin 3 cos 2 + 23.   sin cos 2 − 24.   sin 5 cos − 25.   sin 3 cos 2 − 26.   sin 2 cos 3 −
  • 57. BARAKA LO1BANGUT1 57 | b a r a k a l o i b a n g u t i @ g m a i l . c o m The solution of trigonometric equations are divided into two major parts 1. Principal solution, are the solution which take an angle form  0 to  360 inclusively. 2. General solution, these are all possible solution of the trigonometric equations (a) If α θ sin sin = , then ( ) α 1 πn n − + = θ (b) If α θ cos cos = , then α πn θ  = 2 (c) If α θ tan tan = , then α πn+ = θ For all three cases above,   n (n is any integer) Find the general solution of 1 sin − =  Solution Given 1 sin − =  ( ) 1 sin 1 sin 1 − =  − = −   2 π 90 − =  − =  ( ) α 1 - πn θ n + = The general solution is ( )       − = 2 1   n - πn Find the general solution of 3 tan = x Solution GENERAL SOLUTION TO THE TRIGONOMETRIC EQUATIONS Example 44 Example 45
  • 58. BARAKA LO1BANGUT1 58 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 3 tan = x ( ) 3 tan 1 − = x 3  = x The general solution is 3 2    + = n , for Z n Find the general solution 2 1 4 sin =       +  x Solution 2 1 4 sin =       +  x       = + − 2 1 sin 4 1  x 4 4   = + x 0 = x The general solution is n   = Find the general solution of 2 sin 3 cos = + x x Solution Example 46 Example 47
  • 59. BARAKA LO1BANGUT1 59 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 2 sin 3 cos = + x x ( )  − = + x R x x cos sin 3 cos   sin sin cos cos sin 3 cos x R x R x x + = +  cos cos cos x R x = 1 cos =  R  sin sin sin 3 x R x = 3 sin =  R 2 2 3 1 + = R  10 = R ( ) 3 tan 3 tan 1 − =  = x   = 56 . 71  ( )  − = + 56 . 71 cos 10 sin 3 cos x x x ( ) 2 56 . 71 cos 10 =  − x ( ) 10 2 56 . 71 cos =  − x       =  − − 10 2 cos 56 . 71 1 x The general solution is   =  − 77 . 50 2 56 . 71 n x   + = 33 . 122 2 n x  or  − = 79 . 20 2 n x 
  • 60. BARAKA LO1BANGUT1 60 | b a r a k a l o i b a n g u t i @ g m a i l . c o m EXERCISE 9 Find the general solution of the following trigonometric equations 1. 2 1 sin − = x 2. 2 1 2 cos = x 3. 1 tan − = x 4. 2 1 3 sin − =       −  x 5.       =       + 3 tan 3 tan   x 6. 3 tan = x 7. 2 1 sin2 = x 8. 2 3 2 cos =       −  x 9. 2 3 4 cos − =       +  x 10. 2 sin 2 cos = + x x Consider the sine compound angles ( ) ( )    − = − + = + + B A B A B A B A B A B A sin cos cos sin sin sin cos cos sin sin ( ) ( ) B A B A B A cos sin 2 sin sin = − + + FACTOR FORMULA
  • 61. BARAKA LO1BANGUT1 61 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Let C B A = + and D B A = −    = − = +  D B A C B A Then 2 D C A + = and 2 D C B − = The equation become,       −       + = + 2 cos 2 sin 2 sin sin D C D C D C Also, from ( ) ( )    − = − + = + − B A B A B A B A B A B A sin cos cos sin sin sin cos cos sin sin ( ) ( ) B A B A B A sin cos 2 sin sin = − − + Substituting the values of B A+ and B A− ,       −       + = − 2 sin 2 cos 2 sin sin D C D C D C Consider the cosine compound angles ( ) ( )    + = − − = + + B A B A B A B A B A B A sin sin cos cos cos sin sin cos cos cos ( ) ( ) B A B A B A cos cos 2 cos cos = − + +       −       + = + 2 cos 2 cos 2 cos cos D C D C D C Also, from ( ) ( )    + = − − = + − B A B A B A B A B A B A sin sin cos cos cos sin sin cos cos cos ( ) ( ) B A B A B A sin sin 2 cos cos − = − − +
  • 62. BARAKA LO1BANGUT1 62 | b a r a k a l o i b a n g u t i @ g m a i l . c o m       −       + − = − 2 sin 2 sin 2 cos cos D C D C D C PROVING IDENTITIES INVOLVING FACTOR FORMULA Prove that       −       + = + − 2 tan 2 cot sin sin sin sin C B C B C B C B Solution       −       +       −       + = + − 2 cos 2 sin 2 2 sin 2 cos 2 sin sin sin sin C B C B C B C B C B C B FACTOR FORMULA SUMMARY Sine       −       + = + 2 cos 2 sin 2 sin sin D C D C D C and       −       + = − 2 sin 2 cos 2 sin sin D C D C D C Cosine       −       + = + 2 cos 2 cos 2 cos cos D C D C D C and       −       + − = − 2 sin 2 sin 2 cos cos D C D C D C Example 48
  • 63. BARAKA LO1BANGUT1 63 | b a r a k a l o i b a n g u t i @ g m a i l . c o m                   −       −                   +       + = 2 cos 2 sin 2 sin 2 cos C B C B C B C B       −       + = 2 tan 2 cot C B C B hence shown Prove that ( ) 1 cos 2 2 sin 3 sin 2 sin sin + = + + A A A A A Solution ( ) A A A 3 sin sin 2 sin + +       −       + + 2 3 cos 2 3 sin 2 2 sin A A A A A A A A cos 2 sin 2 2 sin + ( ) A A cos 2 1 2 sin + Prove that A A A A sin 3 cos 2 4 sin 2 sin − = − Solution A A A A sin 3 cos 2 4 sin 2 sin − = −       −       + = − 2 4 2 sin 2 4 2 cos 2 4 sin 2 sin A A A A A A ( ) ( ) A A − = sin 3 cos 2 A Asin 3 cos 2 − = Remember that ( ) ( ) A A cos cos = − Example 49 Example 50
  • 64. BARAKA LO1BANGUT1 64 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Show that       = + + − + 2 tan cos sin 1 cos sin 1 A A A A A (not concerned with factor formula) Solution ( ) ( ) A A A A A A A A sin cos 1 sin cos 1 cos sin 1 cos sin 1 + + + − = + + − +                   +             −       +                   +             +       − = 2 cos 2 sin 2 2 sin 2 cos 1 2 cos 2 sin 2 2 sin 2 cos 1 2 2 2 2 A A A A A A A A                   +                               +             = 2 cos 2 sin 2 2 cos 2 2 cos 2 sin 2 2 sin 2 2 2 A A A A A A                                                 = 2 cos 2 sin 2 cos 2 2 cos 2 sin 2 sin 2 A A A A A A       =             = 2 tan 2 cos 2 sin A A A Hence shown Example 51
  • 65. BARAKA LO1BANGUT1 65 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Prove that ( ) ( ) A A A cos 150 sin 150 sin = −  + +  Solution Left hand side ( ) ( ) A A A cos 150 sin 150 sin = −  + +  ( ) ( ) ( ) ( )       −  − +        −  + +  2 150 150 cos 2 150 150 sin 2 A A A A              = 2 2 cos 2 300 sin 2 A ( ) A cos 150 sin 2  = A A cos cos 2 1 2 =       = Hence shown. Prove that A A A A A tan 5 cos 3 cos 3 sin 5 sin = + − Solution Consider left hand side       −       +       −       + = + − 2 5 3 cos 2 5 3 cos 2 2 3 5 sin 2 3 5 cos 2 5 cos 3 cos 3 sin 5 sin A A A A A A A A A A A A ( ) ( ) ( ) ( ) A A A A A A A tan cos sin cos 4 cos sin 4 cos = = = Example 52 Example 53
  • 66. BARAKA LO1BANGUT1 66 | b a r a k a l o i b a n g u t i @ g m a i l . c o m If π C B A = + + , show that                   + = + + 2 sin 2 sin 2 sin 4 1 cos cos cos C B A C B A Solution Consider left hand side               −       +       −       + = + + 2 sin 2 cos 2 cos 2 cos 2 cos cos cos 2 2 C C B A B A C B A               − +       −       +  2 sin 2 1 2 cos 2 cos 2 2 C B A B A But 2 π 2 C B A − = +       − +       −       −  2 sin 2 1 2 cos 2 π cos 2 2 C B A C       −       −       − +  2 sin 2 2 cos 2 2 π cos 2 1 2 C B A C       −       −       +  2 sin 2 2 cos 2 sin 2 1 2 C B A C             −       −       +  2 sin 2 cos 2 sin 2 1 C B A C But       + − =  = + + 2 2 π 2 2 π 2 2 B A C C B A Example 54
  • 67. BARAKA LO1BANGUT1 67 | b a r a k a l o i b a n g u t i @ g m a i l . c o m                     + − −       −       +  2 2 π sin 2 cos 2 sin 2 1 B A B A C             + −       −       +  2 cos 2 cos 2 sin 2 1 B A B A C             −       −       +  2 sin 2 sin 2 2 sin 2 1 B A C                         +  2 sin 2 sin 2 2 sin 2 1 B A C                   +  2 sin 2 sin 2 sin 4 1 C B A SIMPLIFYING TRIGONOMETRIC IDENTITIES INVOLVING FACTOR FORMULA Simplify A A A A A A A A 4 sin 3 sin cos 2 cos 3 cos 6 sin cos 8 sin − − Solution ( ) ( )   ( ) ( )   ( ) ( )   ( ) ( )   A A A A A A A A A A A A A A A A 4 3 cos 4 3 cos 2 1 2 cos 2 cos 2 1 3 6 sin 3 6 sin 2 1 8 sin 8 sin 2 1 − − + + − + + − + + − − + + = A A A A A A A A cos 7 cos cos 3 cos 3 sin 9 sin 7 sin 9 sin − + + − − + = A A A A 3 cos 7 cos 3 sin 7 sin + − = Example 55
  • 68. BARAKA LO1BANGUT1 68 | b a r a k a l o i b a n g u t i @ g m a i l . c o m       −       +       −       + = 2 3 7 cos 2 3 7 cos 2 2 3 7 sin 2 3 7 cos 2 A A A A A A A A A A A 2 tan 2 cos 2 sin = = Simplify ( ) ( )2 2 sin sin cos cos B A B A + + + Solution ( ) ( )2 2 sin sin cos cos B A B A + + + ( ) ( )2 2 sin sin cos cos B A B A + + + 2 2 2 cos 2 sin 2 2 cos 2 cos 2               −       + +               −       + = B A B A B A B A       −       + +       −       + = 2 cos 2 sin 4 2 cos 2 cos 4 2 2 2 2 B A B A B A B A             + +       +       − = 2 sin 2 cos 2 cos 4 2 2 2 B A B A B A       − = 2 cos 4 2 B A Example 56
  • 69. BARAKA LO1BANGUT1 69 | b a r a k a l o i b a n g u t i @ g m a i l . c o m EXERCISE 10 1. Prove that ( ) ( ) ( ) ( ) A A A A A tan 2 sin 4 sin 2 cos 4 cos − = + − 2. Show that A A A A A 3 tan 2 cos 4 cos 2 sin 4 sin = + + 3. Show that ( ) ( ) B A B A B A B A + − = + − 2 1 2 1 tan tan sin sin sin sin 4. Show that  =  +  5 cos 2 40 sin 50 sin 5. Prove that ( ) B A B A B A + = + + 2 1 tan cos cos sin sin 6. Show that ( ) A A A A A 5 cos 3 cos cos 2 16 1 sin cos 2 3 − − = 7. Prove that ( ) ( ) ( ) ( ) ( ) ( ) A A A A A A 3 cos 2 cos cos 4 6 cos 4 cos 2 cos 1 = + + + 8. Show that ( )      cos 2 1 2 sin 3 sin 2 sin sin + = + + 9. Simplify         9 cos 7 cos 5 cos 3 cos 9 sin 7 sin 5 sin 3 sin + + + + + + 10. Simplify (a) A A A cos 2 sin 4 sin + (b) A A A 3 sin 2 2 9 cos 2 3 cos       −       11. Simplify A A A A 2 sin 5 cos 3 sin 7 sin − 12. Prove that 3 50 sin 70 sin 70 cos 50 cos =  −   −  13. Simplify  +   +  50 sin 70 sin 70 cos 50 cos
  • 70. BARAKA LO1BANGUT1 70 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Find the general solution of 0 5 sin 3 sin sin = + +    Solution 0 5 sin 3 sin sin = + +    ( ) 0 3 sin 5 sin sin = + +    0 3 sin 2 5 cos 2 5 sin 2 = +       −       +      0 3 sin 2 cos 3 sin 2 = +    ( ) 0 1 2 cos 2 3 sin = +   0 3 sin =  ( ) 0 sin 3 1 − =  ( )   n 1 πn 3 − + = πn 3 =  3 πn =   2 1 2 cos − =  ( ) 5 . 0 cos 2 1 − = −  3 2 120 2   =  =     = n 2 2 Example 57 SOLVING TRIGONOMETRIC INVOLVING FACTOR FORMULA
  • 71. BARAKA LO1BANGUT1 71 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 3     = n The general solution set is 3     = n or 3 πn =  Find the general solution of 0 5 sin sin = +   Solution Given 0 5 sin sin = +   0 2 5 cos 2 5 sin 2 5 sin sin =       −       + = +       0 2 cos 3 sin 2 = =   Case 1: 0 3 sin =  ( ) 0 sin 3 1 − = =    n = 3 The general solution is 3   n = Case 2: 0 2 cos =  ( ) 0 cos 2 1 − =  2 2   = 2 2 2     = n Example 58
  • 72. BARAKA LO1BANGUT1 72 | b a r a k a l o i b a n g u t i @ g m a i l . c o m The general solution set is 4     = n Find the general solution of ( ) ( ) 0 40 cos 20 cos =  − −  + x x Solution ( ) ( ) 0 40 cos 20 cos =  − −  + x x ( ) ( ) 0 2 60 sin 2 20 2 sin 2 40 cos 20 cos =               − − =  − −  + x x x ( ) 0 10 sin 2 1 2 =  −       − = x ( ) 0 10 sin =  − x ( ) 0 sin 10 1 − =  − x  n x =  −10 The general solution is 18   + = n x Find the general solution of ( ) ( ) 0 20 2 cos 70 2 cos =  − +  +   Solution ( ) ( ) 0 20 2 cos 70 2 cos =  − +  +   Example 59 Example 60
  • 73. BARAKA LO1BANGUT1 73 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( ) ( )               − − =  − +  + 2 90 sin 2 50 4 sin 2 40 2 cos 20 2 cos    ( ) 0 25 2 sin 45 sin 2 =  −  −  ( ) 0 25 2 sin =  −  ( ) 0 sin 25 2 1 − =  −    n =  −25 2  + = 25 2   n The general solution is 72 5 2    + = n EXERCISE 11 1. Given that x B A = + 2 sin 2 sin and y B A = + 2 cos 2 cos , show that ( ) B A y x + = tan . Prove that ( ) B A B A y y x x cos cos sin 2 4 2 2 + = + + and deduce an expression for B Atan tan in terms of x and y 2. Show that if y y + − = 1 1 sin then y =       − 2 4 tan   3. If 2 3 tan = A simplify A A A A A A 5 cos 3 cos cos 5 sin 3 sin sin + + + + 4. If p B A = +sin sin and q B A = + cos cos , show that (a) ( ) 2 2 2 sin q p pq B A + = +
  • 74. BARAKA LO1BANGUT1 74 | b a r a k a l o i b a n g u t i @ g m a i l . c o m (b) ( ) 2 2 2 2 cos p q p q B A + − = + (c) 2 2 3 8 tan tan p q pq B A − = + (d) ( )( ) 2 2 2 2 2 2 2 2 cos 2 cos q p q p p q B A + − + − = + 5. Find the general solution of each of the following (a) 0 cos 3 cos = +   (b)    6 cos 4 cos 2 cos = + (c) ( ) ( ) 0 10 3 sin 10 3 sin =  − +  +   (d) 0 5 cos cos = −   (e) 0 5 sin 3 sin sin = + +    (f) 0 cos cos 2 cos 2 5 2 3 2 1 = + +    An angle can be measured in degree or radians. Consider the diagrams below RADIANS AND SMALL ANGLES  r r L O Using ration theorem  = 360  c l But r c  2 =  = 360 2  r l  r l 2 360 =   = 180  r l  = 180 rad r 
  • 75. BARAKA LO1BANGUT1 75 | b a r a k a l o i b a n g u t i @ g m a i l . c o m  = = 180 rad r r l  The radian formula Express the following in radians (a)  45 (b)  60 (c)  70 Solution (a)  = 180 rad r  ( ) 4 180 45 45   =   =  (b) ( ) 3 180 60 60   =   =  (c) ( ) 18 7 180 70 70   =   =  Express the following in degree (a) 3 2 (b) 8  (c) 7 5 Solution  rad 180 deg  = (a)  =              = 120 3 2 180 deg   Example 61 Example 62
  • 76. BARAKA LO1BANGUT1 76 | b a r a k a l o i b a n g u t i @ g m a i l . c o m (b)  =              = 5 . 22 8 180 deg   (c) ' 34 128 7 5 180 deg  =              =   SMALL ANGLES Let refer the Maclaurin’s series for sine, cosine and tangent, through these series we deduce the approximations for small angles as 0 →  . Sine ... ! 7 ! 5 ! 3 sin 7 5 3 + − + − =      ( )         + − + − = → → ... ! 7 ! 5 ! 3 lim sin lim 7 5 3 0 0        Ignoring third and higher derivatives, we get ( )     → sin lim 0 Cosine ... ! 6 ! 4 ! 2 1 cos 6 4 2 + − + − =     ( )         + − + − = → → ... ! 6 ! 4 ! 2 1 lim cos lim 6 4 2 0 0       Ignoring the higher powers ( )     → sin lim 0
  • 77. BARAKA LO1BANGUT1 77 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( ) ! 2 1 cos lim 2 0    −  → Tangent ... 315 17 15 2 3 1 tan 7 5 3 + + + + =      ( )       + + + + = → → ... 315 17 15 2 3 1 lim tan lim 7 5 3 0 0        Ignoring the higher power ( )     → tan lim 0 Simplify    tan sin 4 cos 1− if  is small Solution ( ) 8 2 16 2 4 1 1 tan sin 4 cos 1 2 2 2 2 = =         − − = −        ( ) 2 1 cos lim 2 0    −  → ( )     → tan lim 0 Example 63
  • 78. BARAKA LO1BANGUT1 78 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Evaluate the following as 0 →  (a)    2 cos 1 tan − (b) ( )     sin sin sin + + Solution (a) ( ) 2 1 2 2 2 1 1 2 cos 1 tan lim 2 2 2 2 0 = =         − − =       − →         2 1 2 cos 1 tan lim 0        − →     (b) ( )                   + =       + + → sin sin cos cos sin sin sin sin lim 0                             − + = sin 2 1 cos 2 ( )        cos sin sin sin lim 0        + + → Example 64
  • 79. BARAKA LO1BANGUT1 79 | b a r a k a l o i b a n g u t i @ g m a i l . c o m
  • 80. BARAKA LO1BANGUT1 80 | b a r a k a l o i b a n g u t i @ g m a i l . c o m As other functions, in trigonometric functions we can also determine domain and range of a function. Were x being values which gives out an output of the function. Consider the function ( ) x x f cos = Domain of ( ) x x f cos = is the set of all real numbers (x is in radian) and range is any number in the intervals, 1 1   − y thus 1  y . The domain and range of cosine are the same for sine. For tangent, domain are all values except ( ) 2 1 2  + n , where n is any integer, range is a set of all real numbers. Graph of sine and cosine TRIGONOMETRIC FUNCTION x y sin = x y cos =
  • 81. BARAKA LO1BANGUT1 81 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Graph of tangent Asymptote Asymptotes, ( ) 2 π 1 2 + = n x
  • 82. BARAKA LO1BANGUT1 82 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Graph of secant Asymptotes, ( ) 2 π 1 2 + = n x Asymptote
  • 83. BARAKA LO1BANGUT1 83 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Graph of cosecant Asymptotes, π = x Asymptote
  • 84. BARAKA LO1BANGUT1 84 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Graph of cotangent Determine the domain and range of x y cos 2 3+ = hence sketch the graph. Solution Using the standard domain and range Range: 1 1   − y this is the standard range x y cos 2 3+ = 1 cos 1   − x Multiply by 2 through out 2 cos 2 2   − x Asymptote Asymptotes, π = x Example 65
  • 85. BARAKA LO1BANGUT1 85 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Add 3 both sides 3 2 cos 2 3 3 2 +  +  + − The range becomes 5 1 5 cos 2 3 1     +  y x The range set is 5 1   y Domain     = x x: Determine the domain and range of the function ( ) x x f 2 sin 4+ − = Solution Given, ( ) x x f 2 sin 4+ − = Domain     = x x: Graph of x y cos 2 3+ = Example 66
  • 86. BARAKA LO1BANGUT1 86 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Range Standard range, 1 1   − y ( ) x x f y 2 sin 4+ − = = 1 2 sin 1   − x Subtract 4 both sides 4 1 2 sin 4 4 4 −  + −  − − x 3 sin 4 5 −  + −  − x 3 5 −   − y Range   3 5 : −   − = y y ( ) x x f 2 sin 4+ − =
  • 87. BARAKA LO1BANGUT1 87 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Sketch the graph of ( ) x x x f cos sin + = Solution Table of values x -4 -3 -2 -1 0 1 2 3 4 y 0.10 -1.13 -1.33 -0.30 1.00 1.38 0.49 -0.85 -1.41 ( ) x x f sin = Example 67
  • 88. BARAKA LO1BANGUT1 88 | b a r a k a l o i b a n g u t i @ g m a i l . c o m PROVING EQUATION INVOLVING INVERSE OF TRIGONOMETRIC FUNCTIONS Prove that ( ) 3 tan 5 3 tan 2 3 tan 1 1 1 − − − =         +         Solution Given ( ) 3 tan 5 3 tan 2 3 tan 1 1 1 − − − =         +         Let 2 3 tan 2 3 tan 1 =          = − A A and 5 3 tan 5 3 tan 1 =          = − B B Therefore, ( ) 3 tan 1 − = + B A Introducing tan ( ) B A B A B A tan tan 1 tan tan tan − + = + ( )                 −         +         = + 5 3 2 3 1 5 3 2 3 tan B A ( ) 3 7 10 10 3 7 10 7 10 3 7 10 3 1 10 3 2 3 5 tan =  = = − + = + B A ( ) 3 tan = + B A Example 68
  • 89. BARAKA LO1BANGUT1 89 | b a r a k a l o i b a n g u t i @ g m a i l . c o m Then ( ) 3 tan 1 − = + B A But A and B are         = − 2 3 tan 1 A and         = − 5 3 tan 1 B Hence, ( ) 3 tan 5 3 tan 2 3 tan 1 1 1 − − − =         +         Prove that       =       +       − − − 65 63 sin 5 4 sin 13 5 sin 1 1 1 Solution Let 13 5 sin 13 5 sin 1 =  =       − A A and 5 4 sin 5 4 sin 1 =  =       − B B       = + − 65 63 sin 1 B A ( ) B A B A B A sin cos cos sin sin + = + ( ) B A B A B A sin sin 1 sin 1 sin sin 2 2 − + − = + ( )                       − +                 −       = + 5 4 13 5 1 5 4 1 13 5 sin 2 2 B A ( )             +             = + 13 12 5 4 5 3 13 5 sin B A ( ) 65 48 65 15 sin + = + B A Example 69
  • 90. BARAKA LO1BANGUT1 90 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( ) 65 63 sin = + B A       = + − 65 63 sin 1 B A But A =       − 13 5 sin 1 and B =       − 5 4 sin 1       =       +       − − − 65 63 sin 5 4 sin 13 5 sin 1 1 1 Hence shown. SOLVING EQUATIONS INVOLVING INVERSES OF TRIGONOMETRIC FUNCTIONS Solve for x from ( ) 2 2 cos cos 1 1  = + − − x x Solution ( ) 2 2 cos cos 1 1  = + − − x x Let x A x A =  = − cos cos 1 and ( ) 2 cos 2 cos 1 x B x B =  = − Then 2  = + B A ( )       = + 2 cos cos  B A ( ) 0 sin sin cos cos cos = − = + B A B A B A Example 70
  • 91. BARAKA LO1BANGUT1 91 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 0 cos 1 cos 1 cos cos 2 2 =       −       − − B A B A ( )( ) 0 2 1 1 2 2 2 =       −       − − x x x x ( )( ) 0 2 1 1 2 2 2 2 = − − − x x x ( )( ) 2 2 2 2 1 1 2 x x x − − = ( )( ) 2 2 4 2 1 1 2 x x x − − = 4 2 2 4 2 2 1 2 x x x x + − − = 0 1 3 2 = − x 3 3 3 1  =  = x Solve for x from 2 4 tan 2 tan 1 1  = + − − x x Solution 2 4 tan 2 tan 1 1  = + − − x x Let x A x A 2 tan 2 tan 1 =  = − and x B x B 4 tan 4 tan 1 =  = − 2  = + B A Example 71
  • 92. BARAKA LO1BANGUT1 92 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ( )       = + 2 tan tan  B A 3 tan tan 1 tan tan = − + B A B A ( )( ) 3 4 2 1 4 2 = − + x x x x 3 8 1 6 2 = − x x 2 3 8 3 6 x x − = 0 3 6 3 8 2 = − + x x The solution is 198 . 0 = x or 631 . 0 − = x
  • 93. BARAKA LO1BANGUT1 93 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 1. Draw the graph of x y cos 4 2+ = and state domain and range of y. 2. Evaluate the following (a)       − →     5 sin 1 2 cos lim 0 (b)       + →     2 5 tan 3 sin lim 0 (c)       + − + →     2 sin 1 cos 20 tan 7 21 lim 0 (d)       →    sin 4 lim 0 (e)       →    sin 2 tan lim 0 (f)       − →    2 cos 1 sin lim 0 (g)       + →     2 cos tan 3 sin lim 0 (h) ( )  + → 45 sin lim 0   (i) ( )  + → 30 cos lim 0   (j)       − + + →     cos 3 tan 3 5 sin 1 lim 0 3. Prove the following (a)       =       −       − − − 425 297 cos 25 7 cos 17 15 cos 1 1 1 (b)         − =       −       − − − 6 6 2 1 sin 3 1 cos 2 1 sin 1 1 1 MISCELLANEOUS EXERCISE
  • 94. BARAKA LO1BANGUT1 94 | b a r a k a l o i b a n g u t i @ g m a i l . c o m (c)       =       +       − − − 36 77 tan 8 15 cot 4 3 tan 1 1 1 (d)       =       −       − − − − 16 63 tan 13 5 cos 5 3 sin 1 1 1 (e)       − =       +       − − − 204 253 tan 13 12 cos 5 4 sin 2 1 1 1 (f)       =       +       − − − 2 1 12 tan 5 7 tan 5 3 tan 1 1 1 (g)       =       −       − − − 325 323 sin 13 12 cos 5 4 sin 2 1 1 1 4. Solve the following (a)  =       +       − − 45 3 1 tan 2 1 tan 1 1 (b) 2 5 3 tan 5 4 sin 1 1  =       +       − − (c) 4 7 1 tan 3 4 tan 1 1  =       −       − − (d) 4 7 1 tan 3 1 tan 2 1 1  =       +       − − (e) 3 4 1 tan 13 12 cos 1 1  =       +       − − 5. Find the general solution of the following (a) 0 1 sin 3 2 cos = + − x x (b) 2 cos 4 sin 3 = + x x (c) 2 1 cos sin = x x (d) ( ) 1 cos sin 2 1 = + x x (e) ( )( ) 0 1 sin 2 1 tan = + − x x 6. Prove the following
  • 95. BARAKA LO1BANGUT1 95 | b a r a k a l o i b a n g u t i @ g m a i l . c o m (a) x x cos 2 8 cos 2 2 2 2 = + + + (b)       = − − x x 1 cos sec 1 1 (c)       = − − x x 1 sin csc 1 1 (d)       = − − x x 1 tan cot 1 1 (e) x x x 2 2 2 sin 2 1 cot 1 1 cot − = + − (f) x x x x x x sec csc cos sin sin cos 2 2 − = − (g) A A A A cot 1 csc 1 csc cot − = − 7. If π = + + C B A show that C B A C B A cos cos cos 2 1 cos cos cos 2 2 2 − = + + 8. Simplify (a)   −  +  30 tan 15 tan 1 30 tan 15 tan (b)   +   40 cos 50 sin 50 cos 40 sin 9. Solve for x: ( ) ( )  + =  + 30 cos 30 sin x x from  0 to  360 inclusive 10. Prove that (a) x x x x x 2 cos cos 3 1 2 sin sin 3 tan + + + = (b) A A A A A sin cos sin cos 2 cos + = − 11. Solve for  between     − 180 180  from 1 6 tan 3 =  12. Draw the graph of (a) x y sin = from     180 0 x (b) x y tan = from 2 2     − x
  • 96. BARAKA LO1BANGUT1 96 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 13. Without using the table find the value of (a)  18 sin , (b)  18 cos (c)  18 tan Hint: let  =18 x ,  = 36 2x then  = 90 5x ] 14. Prove the identity (a) ( )       4 sin 2 sin cos 2 5 sin 3 sin 2 sin + = + + (b) Given that 1 sec tan 3 = −   find the possible value of   tan sec 3 + 15. If  = + 45 2 y x show that         − + − − = − x x x x y 2 2 1 tan tan 2 1 tan tan 2 1 tan 16. Evaluate               → x x x 1 sin lim 0 17. Simplify (a) ( ) x x 1 1 cos sin sin − − + (b)                 −       − − 2 3 tan 2 1 cos tan 1 1 18. Use t substitution, to solve 0 2 cos 4 sin 3 = − + x x for x between 0 and 2π inclusive. 19. Prove that for any triangle (a) ( ) A a c b C B 2 1 2 1 cos sin − = − (b) ( ) A C B a c b 2 1 2 1 csc cos − = + , where a, b and c are sides of the triangle. 20. Prove that (a) A A A A A A A A csc sec cot tan cot tan csc sec + + = − − (b) ( ) B B A A A A A 2 sin cos 2 cos sin sin cos + = − 21. Solve the trigonometric equation 0 1 tan sec2 = − +   for   2 0   22. Factorize     7 cos 5 cos 3 cos cos + − −
  • 97. BARAKA LO1BANGUT1 97 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 23. Prove that      cos 1 cos 2 sin 2 cos 3 cos 2 2 + − = + − 24. Show that A A A A A A A A A 5 tan 2 cos sin 6 cos 3 sin 2 sin sin 6 sin 3 sin = + + 25. Show that       2 2 2 2 sin sin 1 cos cos 1 sin 2 sin + − = + + 26. (a) Prove that cos2θ 1 sin2θ θ tan + = and hence obtain  15 tan and  2 1 67 tan as surds, in their simplest forms. (b) Prove that A A A sin 1 cos sin 2 1 2 1 −  = − determining for what range of angles A between 0 and 4π the positive sign is to be taken. 27. A line AP is drawn through the vertex A of a triangle ABC, so that P and C are on opposite sides of AB, and angle θ = BAP . By projecting the sides of the triangle ABC on AP, prove that ( ) ( ) θ cos θ cos θ cos + + − = A b B a c . Deduce from this result the two formulae, A b B a c cos cos + = and A b B a sin sin = . Further, by considering the special case B A= =  , deduce that 1 cos 2 2 cos 2 − = A A A.E.B 28. (a) Find the solution between  0 and  360 inclusive of the equations i)  = 171 tan 2 3 cot x ii) 3 sin 2 cos 3 3 sin = + + x x x (b) Find the solution in radians between 0 and 2π of the equation x x sin 3 cos = 29. From a point A of a straight level road which runs due north, a peak bears due west. A man walks along the road, starting from A and going at a steady speed. After 10 min. the elevation of the peak is  ; after a further 20 min. it is  . If the elevation of the peak from A is  , prove that    2 2 2 cot cot 9 cot 8 − = . If the man’s speed is 4m per hour and  ,
  • 98. BARAKA LO1BANGUT1 98 | b a r a k a l o i b a n g u t i @ g m a i l . c o m  are ' 18 17 and ' 24 10 respectively, calculate the height of the peak above the level of the road, to the nearest 50 m. 30. (a) Show that 3 tan = A if ( ) A A A A cos sin 2 cos sin − = + , hence solve ( ) 0 cos sin 2 cos sin = − − + A A A A for     360 0 A (b) A function f is defined by x x f sin 2 3 ) ( − = for     360 0 x find (i) The range of ) (x f (ii) Sketch the graph of ) (x f 31. When a motor-cyclist is travelling along a straight stretch of road from south to north at a steady speed of 30 km per hour, the wind appears to him to come from a direction E N  40 . When he returns along the same road at the same speed the wind appears to come from a direction E S  30 . Find, by drawing or otherwise the true magnitude and direction of the wind. 32. Prove that ( )( ) 1 2 sin 2 cos sin 3 cos 3 sin − + = − A A A A A , hence or otherwise, find the value of A such that     180 0 A for which ( ) ( ) A A A A cos sin 2 3 cos 3 sin 3 + = − . 33. In the quadrilateral ABCD, 13 = AB cm, 20 = BC cm, 48 = CD cm and DBC BAC  =  . Without using tables (a) Show that 13 5 cos = BAC (b) Show that 5 4 cos = ACB (c) Show that AD AB = (d) Calculate the area of the quadrilateral ABCD. 34. (a) Express   sin 2 cos 3 + in the form ( ) A R −  cos , where 0  R and     90 0 A , state the value of R (b) Solve the equation 5 . 3 sin 2 cos 3 = +   giving your answer in the interval     180 0  (c) Sketch the graph of   sin 2 cos 3 + = y for     180 0  35. (a) From a point P in a horizontal plane a man observes the summit S of a mountain to bear due north at an elevation  When the man has walked a distance 2a on a bearing  east of north to a point Q in the horizontal
  • 99. BARAKA LO1BANGUT1 99 | b a r a k a l o i b a n g u t i @ g m a i l . c o m plane he observes that the elevation of S from Q is again  . If h is the height of S above the horizontal plane containing P and Q show that  sec θ tan a h = (c) When the man has walked a further distance a in the same plane and in the same direction to a point R he observes that the elevation of S from R is  . Show that ( )    2 2 2 cot 1 cos 3 cot + = and that the distance RS is ( ) 3 sec sec 2 3 +   a 36. (a) Solve the equation 5 tan sec 2 2 = − x x for     360 0 x (b) Show that x x x x cos cos 1 tan sin 2 − = hence or otherwise solve 3 tan sin 2 = x x for     360 0 x 37. Prove that ( ) A A A 4 cos 1 8 1 cos sin 2 2 − = hence find     d 2 2 cos sin 38. Find all real values of x and y that satisfy the simultaneous equations      = + = + 259 tan 27 sin 64 35 tan 9 sin 16 2 2 y x y x where x, y are the measures of the angles expressed in degrees. 39. Prove that A A A 2 cosec 2 cot cot = − 40. Prove that  4 1 8 1 tan 2 7 1 tan 5 1 tan 2 1 1 1 =       +       +       − − − 41. (a) If ( ) ( )    2 tan 2 45 tan 45 tan = −  − +  (b) Prove that 2 2 2 cot 1 tan 1 cot 1 tan 1       − − = + + x x x x 42. (a) Prove that 4 π 239 1 tan 119 120 tan 239 1 tan 5 1 tan 4 1 1 1 1 =       −       =       −       − − − − (b) Using the expansion ... 5 1 3 1 tan 5 3 1 + + − = − x x x x evaluate π to five decimal places.
  • 100. BARAKA LO1BANGUT1 100 | b a r a k a l o i b a n g u t i @ g m a i l . c o m 43. Given that 2 3 = x cos and     360 0 x . Find without using calculator or table the value of x tan and x sin 44. (a) Prove that 4 π 239 1 tan 119 120 tan 239 1 tan 5 1 tan 4 1 1 1 1 =       −       =       −       − − − − (b) Using the expansion ... 5 1 3 1 tan 5 3 1 + + − = − x x x x evaluate π to five decimal places. 45. Let  sin = x or otherwise, show that i x x x x − = − − + − + + 2 2 2 2 1 1 1 1 46. (a) Solve for x if 0 1 2 2 4 = + + + x x x x cos sin cos sin (b) Find the least difference between the roots, in the first quadrant of the equation ( ) ( ) 0 1 2 3 2 4 2 = + + − x x x cos sin cos (c) Simplify         − − − − + + − x x x x sin sin sin sin cot 1 1 1 1 1 (d) Given  = + + − − − 180 1 1 1 z y x sin sin sin show that ( ) ( ) 2 2 2 2 2 2 2 4 4 4 2 4 x z z y y x xyz z y x + + = + + + (e) By expressing A A sin cos 2 + in the form of ( ) B A Q + sin where B is an acute angle, find the minimum and maximum values of the expression and hence find the values of A and B. (f) Show that ( ) B A C A C B C B A C B A C B A tan tan tan tan tan tan tan tan tan tan tan tan tan − − − − + + = + + 1 hence show that C B A C B A tan tan tan tan tan tan = + + if A, B and C are angles of the triangles. 47. (a) If ( ) 4 3 arcsin 2 = A , without using a calculator show that 2 1 cos sin  = − A A (b) Prove the following identities i)     cot cosec cos 1 cos 1 + = − +
  • 101. BARAKA LO1BANGUT1 101 | b a r a k a l o i b a n g u t i @ g m a i l . c o m ii) ( ) A A A A A cot cos 1 sin sin cos 1 2 = + − + (c) Express   sin 3 cos 2 + in the form of ( )   + sin R then find i) Maximum and minimum values ii) The value of  for which the maximum and minimum values occur. (d) If B A p cos cos − = and B A q sin sin − = , express ( ) B A − cos and ( ) B A + sin in terms of p and q.
  • 102. BARAKA LO1BANGUT1 102 | b a r a k a l o i b a n g u t i @ g m a i l . c o m TRIGONOMETRY 7 BARAKA LO1BANGUT1 Email: [email protected] Tel: +255 621842525