
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Extract P-Values for Intercept and Independent Variables of a General Linear Model in R
General linear model does not assume that the variables under consideration are normally distributed, therefore, we can use other probability distributions to create a general linear model. We should actually say that if the data does not follow normal distribution then we can try different distributions using general linear model and check whether the model is appropriate or not. The p-values plays an important role in selecting the best model and we might want to extract them from the model object. This can be done by using coef function.
Example
Consider the below data frame −
> set.seed(123) > var1<-rnorm(20,0.5) > var2<-rnorm(20,1.5) > var3<-rnorm(20,2.5) > Response<-rpois(20,2) > df<-data.frame(var1,var2,var3,Response) > df
Output
var1 var2 var3 Response 1 -0.06047565 0.4321763 1.8052930 2 2 0.26982251 1.2820251 2.2920827 1 3 2.05870831 0.4739956 1.2346036 1 4 0.57050839 0.7711088 4.6689560 1 5 0.62928774 0.8749607 3.7079620 1 6 2.21506499 -0.1866933 1.3768914 6 7 0.96091621 2.3377870 2.0971152 1 8 -0.76506123 1.6533731 2.0333446 0 9 -0.18685285 0.3618631 3.2799651 1 10 0.05433803 2.7538149 2.4166309 3 11 1.72408180 1.9264642 2.7533185 2 12 0.85981383 1.2049285 2.4714532 4 13 0.90077145 2.3951257 2.4571295 2 14 0.61068272 2.3781335 3.8686023 3 15 -0.05584113 2.3215811 2.2742290 2 16 2.28691314 2.1886403 4.0164706 2 17 0.99785048 2.0539177 0.9512472 3 18 -1.46661716 1.4380883 3.0846137 3 19 1.20135590 1.1940373 2.6238542 5 20 0.02720859 1.1195290 2.7159416 2
> General_LM<-glm(Response~var1+var2+var3,df,family=poisson()) > summary(General_LM)
Output
Call: glm(formula = Response ~ var1 + var2 + var3, family = poisson(), data = df) Deviance Residuals: Min 1Q Median 3Q Max -1.8886 -0.6977 -0.1502 0.7453 1.4222 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.00642 0.50653 1.987 0.0469 * var1 0.18546 0.16256 1.141 0.2539 var2 -0.04053 0.18234 -0.222 0.8241 var3 -0.10772 0.16206 -0.665 0.5063 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 18.704 on 19 degrees of freedom Residual deviance: 16.376 on 16 degrees of freedom AIC: 74.43 Number of Fisher Scoring iterations: 5 > coef(summary(General_LM))[,4] (Intercept) var1 var2 var3 0.0469347 0.2539288 0.8241122 0.5062662
Advertisements