
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Randomize an Already Created Vector in R
Some vectors are randomly created and some are not randomly created in R but we can do randomization for both of these types of vectors. Randomization ensures unbiasedness therefore it is necessary especially when the vector is created with an objective that tends to change the result of the analysis. The randomization in R can be simply done with the help of sample function.
Randomization of vectors that are not randomly created −
> x1<-1:30 > x1 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 [26] 26 27 28 29 30 > sample(x1) [1] 18 24 20 2 26 15 14 9 13 1 16 27 30 29 6 22 3 12 5 10 19 8 17 21 7 [26] 25 11 23 28 4 > x2<-letters[1:26] > x2 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" [20] "t" "u" "v" "w" "x" "y" "z" > sample(x2) [1] "s" "f" "z" "w" "k" "c" "e" "m" "b" "t" "x" "d" "v" "y" "r" "g" "i" "o" "p" [20] "h" "u" "n" "j" "a" "l" "q" > x3<-rep(c(1,2,3,4,5),each=10) > x3 [1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 [39] 4 4 5 5 5 5 5 5 5 5 5 5 > sample(x3) [1] 5 4 2 1 1 4 3 3 2 1 3 5 4 5 5 1 2 1 3 5 2 1 3 4 5 3 1 2 4 3 4 5 2 4 3 5 2 2 [39] 5 4 1 2 5 1 3 1 3 4 2 4
Randomization of vectors that are randomly created −
> x4<-rnorm(20,0.5) > x4 [1] 0.46076000 1.18973936 0.52800216 -0.24327321 0.68879230 -1.30495863 [7] 1.96555486 0.65325334 2.67261167 0.97550953 -0.20994643 1.11072635 [13] -0.43409763 -0.75363340 0.79144624 0.05670813 0.50110535 0.57434132 [19] -0.08952095 -0.06866873 > sample(x4) [1] -0.75363340 0.50110535 0.52800216 0.57434132 1.96555486 -0.06866873 [7] -0.08952095 0.79144624 1.11072635 0.46076000 2.67261167 1.18973936 [13] 0.65325334 -1.30495863 -0.20994643 0.97550953 -0.43409763 -0.24327321 [19] 0.05670813 0.68879230 > x5<-rpois(30,2) > x5 [1] 5 3 1 2 5 5 1 1 1 1 2 4 2 1 0 2 3 1 0 1 2 1 3 3 2 2 2 1 2 4 > sample(x5) [1] 3 5 1 3 1 5 3 1 5 2 4 1 2 2 2 2 1 2 1 1 1 2 0 3 1 4 2 2 1 0 > x6<-runif(30,2,5) > x6 [1] 3.119190 2.143877 2.415885 2.964476 2.464495 2.396685 2.663918 2.679142 [9] 2.394250 4.944690 2.981041 3.520818 4.044328 2.297507 2.356708 2.151319 [17] 4.787762 4.021137 2.284574 3.477788 3.384656 3.125650 4.973298 2.529052 [25] 4.440306 2.205340 3.201349 2.423433 2.579930 4.524055 > sample(x6) [1] 4.044328 2.394250 4.440306 2.663918 2.423433 2.297507 2.464495 3.201349 [9] 3.477788 3.125650 4.944690 2.679142 3.119190 2.205340 2.356708 3.520818 [17] 4.524055 2.151319 3.384656 2.143877 4.787762 4.021137 2.579930 2.964476 [25] 4.973298 2.529052 2.284574 2.981041 2.396685 2.415885 > x7<-rep(c("Apple","Guava","Banana","Kiwi","Mango","Orange"),times=10) > x7 [1] "Apple" "Guava" "Banana" "Kiwi" "Mango" "Orange" "Apple" "Guava" [9] "Banana" "Kiwi" "Mango" "Orange" "Apple" "Guava" "Banana" "Kiwi" [17] "Mango" "Orange" "Apple" "Guava" "Banana" "Kiwi" "Mango" "Orange" [25] "Apple" "Guava" "Banana" "Kiwi" "Mango" "Orange" "Apple" "Guava" [33] "Banana" "Kiwi" "Mango" "Orange" "Apple" "Guava" "Banana" "Kiwi" [41] "Mango" "Orange" "Apple" "Guava" "Banana" "Kiwi" "Mango" "Orange" [49] "Apple" "Guava" "Banana" "Kiwi" "Mango" "Orange" "Apple" "Guava" [57] "Banana" "Kiwi" "Mango" "Orange" > sample(x7) [1] "Apple" "Guava" "Banana" "Guava" "Mango" "Mango" "Guava" "Orange" [9] "Banana" "Guava" "Guava" "Orange" "Banana" "Apple" "Banana" "Apple" [17] "Banana" "Guava" "Kiwi" "Orange" "Mango" "Mango" "Guava" "Banana" [25] "Kiwi" "Kiwi" "Mango" "Mango" "Banana" "Apple" "Orange" "Orange" [33] "Apple" "Apple" "Guava" "Apple" "Kiwi" "Apple" "Kiwi" "Kiwi" [41] "Kiwi" "Orange" "Orange" "Banana" "Guava" "Apple" "Orange" "Mango" [49] "Kiwi" "Mango" "Mango" "Orange" "Mango" "Orange" "Kiwi" "Guava" [57] "Banana" "Kiwi" "Apple" "Banana"
Advertisements