
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Minkowski Distance in Python
The Minkowski distance is a metric and in a normed vector space, the result is Minkowski inequality. Minkowski distance is used for distance similarity of vector.
scipy.spatial.distance.minkowski
>>> from scipy.spatial import distance >>> distance.minkowski([1, 0, 0], [0, 1, 0], 1) 2.0 >>> distance.minkowski([1, 0, 0], [0, 1, 0], 2) 1.4142135623730951 >>> distance.minkowski([1, 0, 0], [0, 1, 0], 3) 1.2599210498948732 >>> distance.minkowski([1, 1, 0], [0, 1, 0], 1) 1.0 >>> distance.minkowski([1, 1, 0], [0, 1, 0], 2) 1.0 >>> distance.minkowski([1, 1, 0], [0, 1, 0], 3) 1.0
Example code
from math import * from decimal import Decimal def my_p_root(value, root): my_root_value = 1 / float(root) return round (Decimal(value) ** Decimal(my_root_value), 3) def my_minkowski_distance(x, y, p_value): return (my_p_root(sum(pow(abs(a-b), p_value) for a, b in zip(x, y)), p_value)) # Driver Code vector1 = [0, 2, 3, 4] vector2 = [2, 4, 3, 7] my_position = 5 print("The Distance is::",my_minkowski_distance(vector1, vector2, my_position))
Output
The Distance is:: 3.144
Advertisements