
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
NumPy - Arithmetic Universal Function (ufunc)
Arithmetic Universal Function (ufunc)
An arithmetic universal function (ufunc) in NumPy is a special type of function designed to perform basic arithmetic operations (like addition, subtraction, multiplication, and division) element-wise on arrays.
These functions are optimized for performance, allowing them to execute these operations much faster than regular Python loops.
For example, when you use numpy.add() function to add two arrays together, it applies the addition operation to each corresponding pair of elements in the arrays.
NumPy Arithmetic Addition
The numpy.add() function is used to perform element-wise addition of two arrays. It adds corresponding elements of the input arrays and returns a new array with the results.
Example
In the following example, we use numpy.add() function to add two arrays element-wise −
import numpy as np # Define two arrays a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) # Perform element-wise addition result = np.add(a, b) print(result)
Following is the output obtained −
[5 7 9]
NumPy Arithmetic Subtraction
The numpy.subtract() function is used to perform element-wise subtraction of two arrays. It subtracts the elements of the second array from the corresponding elements of the first array and returns a new array with the results.
Example
In the following example, we use numpy.subtract() function to subtract one array from another element-wise −
import numpy as np # Define two arrays a = np.array([10, 20, 30]) b = np.array([1, 2, 3]) # Perform element-wise subtraction result = np.subtract(a, b) print(result)
This will produce the following result −
[ 9 18 27]
NumPy Arithmetic Multiplication
The numpy.multiply() function is used to perform element-wise multiplication of two arrays. It multiplies corresponding elements of the input arrays and returns a new array with the results.
Example
In the following example, we use numpy.multiply() function to multiply two arrays element-wise −
import numpy as np # Define two arrays a = np.array([2, 3, 4]) b = np.array([5, 6, 7]) # Perform element-wise multiplication result = np.multiply(a, b) print(result)
Following is the output of the above code −
[10 18 28]
NumPy Arithmetic Division
The numpy.divide() function is used to perform element-wise division of two arrays. It divides the elements of the first array by the corresponding elements of the second array and returns a new array with the results.
Example
In the following example, we use numpy.divide() function to divide one array by another element-wise −
import numpy as np # Define two arrays a = np.array([10, 20, 30]) b = np.array([2, 4, 5]) # Perform element-wise division result = np.divide(a, b) print(result)
The output obtained is as shown below −
[5. 5. 6.]
Additional Arithmetic ufuncs
Besides the basic arithmetic operations, NumPy also provides other useful ufuncs for more complex mathematical operations, such as power, modulus, and trigonometric functions.
These ufuncs follow the same element-wise operation pattern and provide efficient ways to perform various calculations on arrays.
The numpy.power() Function
The numpy.power() function is used to raise elements of an array to the power of corresponding elements of another array.
Example
In the following example, we use numpy.power() function to raise one array to the power of another element-wise −
import numpy as np # Define two arrays a = np.array([2, 3, 4]) b = np.array([3, 2, 1]) # Perform element-wise power operation result = np.power(a, b) print(result)
After executing the above code, we get the following output −
[8 9 4]
The numpy.mod() Function
The numpy.mod() function is used to perform element-wise modulus operation, returning the remainder of the division of elements of the first array by corresponding elements of the second array.
Example
In the following example, we use numpy.mod() function to calculate the modulus of two arrays element-wise −
import numpy as np # Define two arrays a = np.array([10, 20, 30]) b = np.array([3, 4, 5]) # Perform element-wise modulus operation result = np.mod(a, b) print(result)
The result produced is as follows −
[1 0 0]