
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prim's Algorithm Simple Implementation for Adjacency Matrix in C++
Prim’s Algorithm is a greedy method that is used to find minimum spanning tree for a given weighted undirected graph.
Weighted graph is a graph that has all edges with weight values.
Undirected graph is a special type of graph in which all edges are bidirectional.
Minimum spanning tree is a subset that contains all edges and vertices but no cycle and has the least possible total edge weight.
In this article, we will learn about prim’s algorithm to find minimum spanning tree. Usually, the algorithm uses two arrays but in this solution, we will use only one.
Program to show the implementation of prim’s algorithm.
Example
#include <bits/stdc++.h> using namespace std; #define V 5 bool createsMST(int u, int v, vector<bool> inMST){ if (u == v) return false; if (inMST[u] == false && inMST[v] == false) return false; else if (inMST[u] == true && inMST[v] == true) return false; return true; } void printMinSpanningTree(int cost[][V]){ vector<bool> inMST(V, false); inMST[0] = true; int edgeNo = 0, MSTcost = 0; while (edgeNo < V - 1) { int min = INT_MAX, a = -1, b = -1; for (int i = 0; i < V; i++) { for (int j = 0; j < V; j++) { if (cost[i][j] < min) { if (createsMST(i, j, inMST)) { min = cost[i][j]; a = i; b = j; } } } } if (a != -1 && b != -1) { cout<<"Edge "<<edgeNo++<<" : ("<<a<<" , "<<b<<" ) : cost = "<<min<<endl; MSTcost += min; inMST[b] = inMST[a] = true; } } cout<<"Cost of Minimum spanning tree ="<<MSTcost; } int main() { int cost[][V] = { { INT_MAX, 12, INT_MAX, 25, INT_MAX }, { 12, INT_MAX, 11, 8, 12 }, { INT_MAX, 11, INT_MAX, INT_MAX, 17 }, { 25, 8, INT_MAX, INT_MAX, 15 }, { INT_MAX, 12, 17, 15, INT_MAX }, }; cout<<"The Minimum spanning tree for the given tree is :\n"; printMinSpanningTree(cost); return 0; }
Output
The Minimum spanning tree for the given tree is : Edge 0 : (0 , 1 ) : cost = 12 Edge 1 : (1 , 3 ) : cost = 8 Edge 2 : (1 , 2 ) : cost = 11 Edge 3 : (1 , 4 ) : cost = 12 Cost of Minimum spanning tree =43
Advertisements