
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Plot Multiple Data Columns in a DataFrame using Python Pandas
To plot multiple columns, we will be plotting a Bar Graph. Use the plot() method and set the kind parameter to bar for Bar Graph. Let us first import the required libraries −
import pandas as pd import matplotlib.pyplot as mp
Following is our data with Team Records −
data = [["Australia", 2500, 2021],["Bangladesh", 1000, 2021],["England", 2000, 2021],["India", 3000, 2021],["Srilanka", 1500, 2021]]
Set the data as Pandas DataFrame and add columns −
dataFrame = pd.DataFrame(data, columns=["Team","Rank_Points", "Year"])
Plot multiple columns in a bar graph. We have set the “kind” parameter as “bar” for this −
dataFrame.plot(x="Team", y=["Rank_Points","Year" ], kind="bar", figsize=(10, 9))
Example
Following is the code −
import pandas as pd import matplotlib.pyplot as mp # our data data = [["Australia", 2500, 2021],["Bangladesh", 1000, 2021],["England", 2000, 2021],["India", 3000, 2021],["Srilanka", 1500, 2021]] # dataframe dataFrame = pd.DataFrame(data, columns=["Team","Rank_Points", "Year"]) # plotting multiple columns in a bar Graph dataFrame.plot(x="Team", y=["Rank_Points","Year" ], kind="bar", figsize=(10, 9)) # displaying bar graph mp.show()
Output
This will produce the following output −
Advertisements