
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Scipy linalg Norm in Python
The norm() function of the scipy.linalg package is used to return one of eight different matrix norms or one of an infinite number of vector norms.
Syntax
scipy.linalg.norm(x)
Where x is an input array or a square matrix.
Example 1
Let us consider the following example −
# Importing the required libraries from scipy from scipy import linalg import numpy as np # Define the input array x = np.array([7 , 4]) print("Input array:
", x) # Calculate the L2 norm r = linalg.norm(x) # Calculate the L1 norm s = linalg.norm(x, 3) # Display the norm values print("Norm Value of r :", r) print("Norm Value of s :", s)
Output
The above program will generate the following output −
Input array: [7 4] Norm Value of r : 8.06225774829855 Norm Value of s : 7.410795055420619
Example 2
Let us take another example −
# Importing the required libraries from scipy from scipy import linalg import numpy as np # Define the input array x = np.array([[ 6, 7, 8], [9, -1, -2]]) print("Input Array :
", x) # Calculate the L2 norm p = linalg.norm(x) # Calculate the L1 norm q = linalg.norm(x, axis=1) # Display the norm values print("Norm Values of P :", p) print("Norm Values of Q :", q)
Output
It will produce the following output −
Input Array : [[ 6 7 8] [ 9 -1 -2]] Norm Values of P : 15.329709716755891 Norm Values of Q : [12.20655562 9.2736185 ]
Advertisements