What is the Time Reversal Operation on Signals?



What is Time Reversal of a Signal?

The time reversal of a signal is folding of the signal about the time origin (or t = 0). The time reversal or folding of a signal is also called as the reflection of the signal about the time origin (or t = 0). Time reversal of a signal is a useful operation on signals in convolution.

Time Reversal of a Continuous-Time Signal

The time reversal of a continuous time signal x(t) is the rotation of the signal by 180° about the vertical axis. Mathematically, for the continuous time signal x(t), the time reversal is given as,

?(?) = ?(−?)

An arbitrary continuous-time signal x(t) and its time reversal x(-t) are shown in Figure-1.

Time Reversal of a Discrete-Time Sequence

For a discrete time sequence x(n), the time reversal is given by,

?(?) = ?(−?)

An arbitrary discrete-time signal x(n) and its time reversal x(-n) are shown in Figure-2.

Numerical Example

Sketch the following signals −

  • ?(?) = 3?(−?)
  • ?(?) = 2?(−?)

Solution

  • Given signal is,

    ?(?) = 3?(−?)

    The given signal [3?(−?)] can be obtained by first drawing the step signal 3?(?) and then time reversing the signal 3?(?) about the time origin (i.e., t = 0) to obtain the signal 3?(−?) as shown in Figure-3.

  • Given signal is,

    ?(?) = 2?(−?)

    The given signal [2?(−?)] can be obtained by first drawing the ramp signal 2?(?) as shown in Figure-4. Then time reversing or folding the signal 2?(?) about the time origin (i.e., t = 0) to obtain [2?(−?)] as shown in Figure-4.

Updated on: 2021-11-10T11:51:04+05:30

8K+ Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements