
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find Column with Minimum Missing Values in DataFrame using Python
Assume, you have a dataframe and the minimum number of missing value column is,
DataFrame is: Id Salary Age 0 1.0 20000.0 22.0 1 2.0 NaN 23.0 2 3.0 50000.0 NaN 3 NaN 40000.0 25.0 4 5.0 80000.0 NaN 5 6.0 NaN 25.0 6 7.0 350000.0 26.0 7 8.0 55000.0 27.0 8 9.0 60000.0 NaN 9 10.0 70000.0 24.0 lowest missing value column is: Id
To solve this, we will follow the steps given below −
Solution
Define a dataframe with three columns Id,Salary and Age
Set df.apply() inside lambda function to check the sum of null values from all rows
df = df.apply(lambda x: x.isnull().sum(),axis=0)
Finally, print the lowest value from the df using df.idxmin()
df.idxmin()
Example
Let’s see the below code to get a better understanding −
import pandas as pd import numpy as np df = pd.DataFrame({'Id':[1,2,3,np.nan,5,6,7,8,9,10], 'Salary':[20000,np.nan,50000,40000,80000,np.nan,350000,55000,60000,70000], 'Age': [22,23,np.nan,25,np.nan,25,26,27,np.nan,24] }) print("DataFrame is:\n",df) df = df.apply(lambda x: x.isnull().sum(),axis=0) print("lowest missing value column is:",df.idxmin())
Output
DataFrame is: Id Salary Age 0 1.0 20000.0 22.0 1 2.0 NaN 23.0 2 3.0 50000.0 NaN 3 NaN 40000.0 25.0 4 5.0 80000.0 NaN 5 6.0 NaN 25.0 6 7.0 350000.0 26.0 7 8.0 55000.0 27.0 8 9.0 60000.0 NaN 9 10.0 70000.0 24.0 lowest missing value column is: Id
Advertisements