
Chapter 2

General Structure 2

This chapter discusses the fundamental principles governing the design of the Unicode
Standard and presents an overview of its main features. It includes discussion of text pro-
cesses, unification principles, allocation of codespace, character properties, writing direc-
tion, and a description of combining marks and how they are employed in Unicode
character encoding. This chapter also gives general requirements for creating a text-
processing system that conforms to the Unicode Standard. Formal requirements for
conformance appear in Chapter 3, Conformance. Character properties, both normative and
informative, are given in Chapter 4, Character Properties. A set of guidelines for implement-
ers is provided in Chapter 5, Implementation Guidelines.

2.1 Architectural Context
A character code standard such as the Unicode Standard enables the implementation of
useful processes operating on textual data. The interesting end products are not the charac-
ter codes but the text processes, because these directly serve the needs of a system’s users.
Character codes are like nuts and bolts—minor, but essential and ubiquitous components
used in many different ways in the construction of computer software systems. No single
design of a character set can be optimal for all uses, so the architecture of the Unicode Stan-
dard strikes a balance among several competing requirements.

Basic Text Processes

Most computer systems provide low-level functionality for a small number of basic text
processes from which more sophisticated text-processing capabilities are built. The follow-
ing text processes are supported by most computer systems to some degree:

• Rendering characters visible (including ligatures, contextual forms, and so on)

• Breaking lines while rendering (including hyphenation)

• Modifying appearance, such as point size, kerning, underlining, slant, and
weight (light, demi, bold, and so on)

• Determining units such as “word” and “sentence”

• Interacting with users in processes such as selecting and highlighting text

• Modifying keyboard input and editing stored text through insertion and dele-
tion

• Comparing text in operations such as determining the sort order of two strings,
or filtering or matching strings

• Analyzing text content in operations such as spell-checking, hyphenation, and
parsing morphology (that is, determining word roots, stems, and affixes)
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 9

2.1 Architectural Context General Structure
• Treating text as bulk data for operations such as compressing and decompress-
ing, truncating, transmitting, and receiving

Text Elements, Code Values, and Text Processes

One of the more profound challenges in designing a worldwide character encoding stems
from the fact that, for each text process, written languages differ in what is considered a
fundamental unit of text, or a text element.

For example, in traditional German orthography, the letter combination “ck” is a text ele-
ment for the process of hyphenation (where it appears as “k-k”), but not for the process of
sorting; in Spanish, the combination “ll” may be a text element for the traditional process
of sorting (where it is sorted between “l” and “m”), but not for the process of rendering;
and in English, the objects “A” and “a” are usually distinct text elements for the process of
rendering, but generally not distinct for the process of searching text. The text elements in
a given language depend upon the specific text process; a text element for spell-checking
may have different boundaries from a text element for sorting purposes.

A character encoding standard provides the fundamental units of encoding (that is, the
abstract characters), which must exist in a unique relationship to the assigned numerical
code values. These code values are the smallest addressable units of stored text.

An important class of text elements is called a grapheme, which typically corresponds to
what a user thinks of as a “character.” Figure 2-1 illustrates the relationship between
abstract characters and graphemes.

The design of the character encoding must provide precisely the set of code values that
allows programmers to design applications capable of implementing a variety of text pro-
cesses in the desired languages. These code values may not map directly to any particular
set of text elements that is used by one of these processes.

Figure 2-1. Text Elements and Characters

Grapheme:

Characters

Word:

Text Elements

(Spanish)

cat c a t

· á ççS

ch c h

C ü

�

�

÷

10 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.1 Architectural Context
Text Processes and Encoding

In the case of English text using an encoding scheme such as ASCII, the relationships
between the encoding and the basic text processes built on it are seemingly straightforward:
characters are generally rendered visible one by one in distinct rectangles from left to right
in linear order. Thus one character code inside the computer corresponds to one logical
character in a process such as simple English rendering.

When designing an international and multilingual text encoding such as the Unicode Stan-
dard, the relationship between the encoding and implementation of basic text processes
must be considered explicitly, for several reasons:

• Many assumptions about character rendering that hold true for English fail for
other writing systems. Unlike in English, characters in other writing systems are
not necessarily rendered visible one by one in rectangles from left to right. In
many cases, character positioning is quite complex and does not proceed in a
linear fashion. See Section 8.2, Arabic, in Chapter 8, Middle Eastern Scripts, and
Section 9.1, Devanagari, in Chapter 9, South and Southeast Asian Scripts, for
detailed examples of this situation.

• It is not always obvious that one set of text characters is an optimal encoding
for a given language. For example, two approaches exist for the encoding of
accented characters commonly used in French or Swedish: ISO/IEC 8859
defines letters such as “ä” and “ö” as individual characters, whereas ISO 5426
represents them by composition instead. In the Swedish language, both are
considered distinct letters of the alphabet, following the letter “z”. In French,
the diaeresis on a vowel merely marks it as being pronounced in isolation. In
practice, both approaches can be used to implement either language.

• No encoding can support all basic text processes equally well. As a result, some
trade-offs are necessary. For example, ASCII defines separate codes for upper-
case and lowercase letters. This choice causes some text processes, such as ren-
dering, to be carried out more easily, but other processes, such as comparison,
to become more difficult. A different encoding design for English, such as case-
shift control codes, would have the opposite effect. In designing a new encoding
scheme for complex scripts, such trade-offs must be evaluated and decisions
made explicitly, rather than unconsciously.

For these reasons, design of the Unicode Standard is not specific to the design of particular
basic text-processing algorithms. Instead, it provides an encoding that can be used with a
wide variety of algorithms. In particular, sorting and string comparison algorithms cannot
assume that the assignment of Unicode character code numbers provides an alphabetical
ordering for lexicographic string comparison. Culturally expected sorting orders require
arbitrarily complex sorting algorithms. The expected sort sequence for the same characters
differs across languages; thus, in general, no single acceptable lexicographic ordering exists.
(See Section 5.17, Sorting and Searching, for implementation guidelines.)

Text processes supporting many languages are often more complex than they are for
English. The character encoding design of the Unicode Standard strives to minimize this
additional complexity, enabling modern computer systems to interchange, render, and
manipulate text in a user’s own script and language—and possibly in other languages as
well.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 11

2.2 Unicode Design Principles General Structure
2.2 Unicode Design Principles
The design of the Unicode Standard reflects the 10 fundamental principles stated in
Table 2-1. Not all of these principles can be satisfied simultaneously. The design strikes a
balance between maintaining consistency for the sake of simplicity and efficiency and
maintaining compatibility for interchange with existing standards.

Sixteen-Bit Character Codes

Plain Unicode text consists of sequences of 16-bit Unicode character codes. Sequences of
16-bit codes are easy to parse and allow for efficient sorting, searching, display, and editing
of text. From the full range of 65,536 code values, 63,486 are available to represent charac-
ters with single 16-bit code values, and 2,048 code values are available to represent an addi-
tional 1,048,544 characters through paired 16-bit code values. These paired code values, or
surrogates, will allow implementations access to additional characters in the future. None of
these surrogate pairs has been assigned in this version of the standard.

The unrestricted range of 256 byte values is used for either of the two bytes that compose a
Unicode 16-bit code value. An 8-bit-oriented process that expects certain ranges of byte
values to be reserved may fail if unexpectedly presented with Unicode’s 16-bit character
codes. For compatibility with existing environments, a lossless transformation for convert-
ing 16-bit Unicode values into a form appropriate for 8-bit environments has been defined;
it is called UTF-8.

UTF-8 (Unicode Transformation Format-8) is the standard method for transforming Uni-
code values into a sequence of 8-bit codes. It is intended to be used where 8-bit codes are
needed and/or when the ASCII range of values need to be preserved—for example, when
transmitting data through byte-oriented protocols or when using byte-oriented APIs.

For further information on transformation formats of Unicode, see Section 2.3, Encoding
Forms, and Appendix C.3, UCS Transformation Formats, in this book. Also see ISO/IEC
10646 Transformation Formats. For a format to be used on EBCDIC-based systems, see
Unicode Technical Report #16, “UTF-EBCDIC,” on the CD-ROM or the up-to-date ver-
sion on the Unicode Web site.

Table 2-1. The 10 Unicode Design Principles

Principle Statement

Sixteen-bit character codes Unicode character codes have a width of 16 bits.

Efficiency Unicode text is simple to parse and process.

Characters, not glyphs The Unicode Standard encodes characters, not glyphs.

Semantics Characters have well-defined semantics.

Plain text The Unicode Standard encodes plain text.

Logical order The default for memory representation is logical order.

Unification The Unicode Standard unifies duplicate characters within scripts
across languages.

Dynamic composition Accented forms can be dynamically composed.

Equivalent sequence Static precomposed forms have an equivalent dynamically composed
sequence of characters.

Convertibility Accurate convertibility is guaranteed between the Unicode Standard
and other widely accepted standards.
12 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.2 Unicode Design Principles
Efficiency

The Unicode Standard is designed to make efficient implementation possible. There are no
escape characters or shift states in the Unicode character encoding scheme. Each character
code has the same status as any other character code; all codes are equally accessible.

All encoding forms are self-synchronizing. When randomly accessing a string, a program
can find the boundary of a character with limited backup. In UTF-16, if a pointer points to
a low-surrogate, a single backup is required. In UTF-8, if a pointer points to a byte starting
with 10xxxxxx (in binary), one to three backups are required to find the beginning of the
character.

By convention, characters of a script are grouped together as far as is practical. Not only is
this practice convenient for looking up characters in the code charts, but it makes imple-
mentations more compact. The common punctuation characters are shared.

Formatting characters are given specific and unambiguous function in the Unicode Stan-
dard. This design simplifies the support of subsets. To keep implementations simple and
efficient, stateful controls and formatting characters are avoided wherever possible.

Characters, Not Glyphs

The Unicode Standard draws a distinction between characters, which are the smallest com-
ponents of written language that have semantic value, and glyphs, which represent the
shapes that characters can have when they are rendered or displayed. Various relationships
may exist between character and glyph: a single glyph may correspond to a single character,
or to a number of characters, or multiple glyphs may result from a single character. The
distinction between characters and glyphs is illustrated in Figure 2-2.

Unicode characters represent primarily, but not exclusively, the letters, punctuation, and
other signs that constitute natural language text and technical notation. Characters are rep-
resented by code values that reside only in a memory representation, as strings in memory,
or on disk. The Unicode Standard deals only with character codes.

In contrast to characters, glyphs appear on the screen or paper as particular representations
of one or more characters. A repertoire of glyphs makes up a font. Glyph shape and meth-
ods of identifying and selecting glyphs are the responsibility of individual font vendors and
of appropriate standards and are not part of the Unicode Standard.

For certain scripts, such as Arabic and the various Indic scripts, the number of glyphs
needed to display a given script may be significantly larger than the number of characters
encoding the basic units of that script. The number of glyphs may also depend on the
orthographic style supported by the font. For example, an Arabic font intended to support
the Nastaliq style of Arabic script may possess many thousands of glyphs. However, the

Figure 2-2. Characters Versus Glyphs

Glyphs Unicode Characters

+

U+0041 LATIN CAPITAL LETTER A

U+0066 LATIN SMALL LETTER F
U+0069 LATIN SMALL LETTER I

U+0061 LATIN SMALL LETTER A

U+0647 ARABIC LETTER HEH

fi fi

a f j a b h a d

A e i _ ` g A c

k l n m
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 13

2.2 Unicode Design Principles General Structure
character encoding employs the same few dozen letters regardless of the font style used to
depict the character data in context.

A font and its associated rendering process define an arbitrary mapping from Unicode val-
ues to glyphs. Some of the glyphs in a font may be independent forms for individual char-
acters; others may be rendering forms that do not directly correspond to any single
character.

The process of mapping from characters in the memory representation to glyphs is one
aspect of text rendering. The final appearance of rendered text may also depend on context
(neighboring characters in the memory representation), variations in typographic design
of the fonts used, and formatting information (point size, superscript, subscript, and so
on). The results on screen or paper can differ considerably from the prototypical shape of a
letter or character, as shown in Figure 2-3.

For all scripts, an archetypical relation exists between character code sequences and result-
ing glyphic appearance. For the Latin script, this relationship is simple and well known; for
several other scripts, it is documented in this standard. However, in all cases, fine typogra-
phy requires a more elaborate set of rules than given here. The Unicode Standard docu-
ments the default relationship between character sequences and glyphic appearance solely
for the purpose of ensuring that the same text content is always stored with the same, and
therefore interchangeable, sequence of character codes.

Figure 2-3. Unicode Character Code to Rendered Glyphs

①
②
③
④
⑤
⑥

Text Character Sequence

ÌüÒ
①

②

③ ④

⑤

⑥

êç

Text
Rendering

Process

Font
(Glyph Source)

Ò
@ê
Ú
@ ÷
Ì
ç@

0000 1001 0010 1010

0000 1001 0100 0010

0000 1001 0011 0000

0000 1001 0100 1101

0000 1001 0010 0100

0000 1001 0011 0100
14 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.2 Unicode Design Principles
Semantics

Characters have well-defined semantics. Character property tables are provided for use in
parsing, sorting, and other algorithms requiring semantic knowledge about the code
points. See Section 5.15, Locating Text Element Boundaries, Section 5.16, Identifiers, and
Section 5.17, Sorting and Searching, for suggested implementations. The properties identi-
fied by the Unicode Standard include numeric, spacing, combination, and directionality
properties (see Chapter 4, Character Properties). Additional properties may be defined as
needed from time to time. By itself, neither the character name nor its location in the code
table designates its properties. For an exception, see Section 4.1, Case—Normative.

Plain Text

Plain text is a pure sequence of character codes; plain Unicode-encoded text is therefore a
sequence of Unicode character codes. In contrast, fancy text, also known as rich text, is any
text representation consisting of plain text plus added information such as a language iden-
tifier, font size, color, hypertext links, and so on. For example, the text of this book, a mul-
tifont text as formatted by a desktop publishing system, is fancy text.

Many kinds of data structures can be built into fancy text. For example, in fancy text con-
taining ideographs an application may store the phonetic readings of ideographs some-
where in the fancy text structure.

The simplicity of plain text gives it a natural role as a major structural element of fancy text.
SGML, HTML, XML, or TEX are examples of fancy text fully represented as plain text
streams, interspersing plain text data with sequences of characters that represent the addi-
tional data structures. Many popular word processing packages rely on a buffer of plain text
to represent the content and to implement links to a parallel store of formatting data.

The relative functional roles of both plain and fancy text are well established:

• Plain text is the underlying content stream to which formatting can be applied.

• Plain text is public, standardized, and universally readable.

• Fancy text representation may be implementation-specific or proprietary.

Although some fancy text formats have been standardized or made public, the majority of
fancy text designs are vehicles for particular implementations and are not necessarily read-
able by other implementations. Given that fancy text equals plain text plus added informa-
tion, the extra information in fancy text can always be stripped away to reveal the “pure”
text underneath. This operation is often employed, for example, in word processing sys-
tems that use both their own private fancy format and plain text file format as a universal,
if limited, means of exchange. Thus, by default, plain text represents the basic, interchange-
able content of text.

Standards for markup language, such as XML and HTML, use plain text for the entire file.
They use special conventions embedded within the plain text file such as “<p>” to distin-
guish the markup from the “real” content. XML, in particular, uses Unicode as a base-level
encoding: “All XML processors must be able to read entities in either UTF-8 or UTF-16.”—
W3C Recommendation: Extensible Markup Language (XML) 1.0, §4.3.3. Files not using
these character sets in XML must have an encoding declaration to indicate any other char-
acter set.

Because plain text represents character content, it has no inherent appearance. It requires a
rendering process to make it visible. If the same plain text sequence is given to disparate
rendering processes, there is no expectation that rendered text in each instance should have
the same appearance. Instead, the disparate rendering processes are simply required to
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 15

2.2 Unicode Design Principles General Structure
make the text legible according to the intended reading. Therefore, the relationship
between appearance and content of plain text may be stated as follows:

Plain text must contain enough information to permit the text to be rendered legibly,
and nothing more.

The Unicode Standard encodes plain text. The distinction between data encoded in the
Unicode Standard and other forms of data in the same data stream is the function of a
higher-level protocol and is not specified by the Unicode Standard itself. The 64 control
code positions of ISO/IEC 6429 (commonly used with ISO/IEC 646 and ISO/IEC 8859) are
retained for compatibility and may be used to implement such protocols. (See Section 2.8,
Controls and Control Sequences.)

Logical Order

For all scripts, Unicode text is stored in logical order in the memory representation, roughly
corresponding to the order in which text is typed in via the keyboard. In some circum-
stances, the order of characters differs from this logical order when the text is displayed or
printed. Where needed to ensure consistent legibility, the Unicode Standard defines the
conversion of Unicode text from the memory representation to readable (displayed) text.
The distinction between logical order and display order for reading is shown in Figure 2-4.

When the text in Figure 2-4 is ordered for display, the glyph that represents the first charac-
ter of the English text appears at the left. The logical start character of the Hebrew text,
however, is represented by the Hebrew glyph closest to the right margin. The succeeding
Hebrew glyphs are laid out to the left.

Logical order applies even when characters of different dominant direction are mixed: left-
to-right (Greek, Cyrillic, Latin) with right-to-left (Arabic, Hebrew), or with vertical script.
Properties of directionality inherent in characters generally determine the correct display
order of text. This inherent directionality is occasionally insufficient to render plain text
legibly, however. This situation can arise when scripts of different directionality are mixed.
For this reason, the Unicode Standard includes characters to specify changes in direction.
Chapter 3, Conformance, provides rules for the correct presentation of text containing left-
to-right and right-to-left scripts.

For the most part, logical order corresponds to phonetic order. The only current exceptions
are the Thai and Lao scripts, which employ visual ordering; in these two scripts, users tra-
ditionally type in visual order rather than phonetic order.

Characters such as the short i in Devanagari are displayed before the characters that they
logically follow in the memory representation. (See Section 9.1, Devanagari, for further
explanation.)

Combining marks (accent marks in the Greek, Cyrillic, and Latin scripts, vowel marks in
Arabic and Devanagari, and so on) do not appear linearly in the final rendered text. In a
Unicode character code string, all such characters follow the base character that they

Figure 2-4. Bidirectional Ordering
16 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.2 Unicode Design Principles
modify (for example, Roman “ã” is stored as “a” followed by combining “��” when not
stored in a precomposed form).

Unification

The Unicode Standard avoids duplicate encoding of characters by unifying them within
scripts across languages; characters that are equivalent in form are given a single code.
Common letters, punctuation marks, symbols, and diacritics are given one code each,
regardless of language, as are common Chinese/Japanese/Korean (CJK) ideographs. (See
Section 10.1, Han.)

Care has been taken not to make artificial distinctions among characters. Users may
become confused when they see an Å on the screen but their search dialog does not find it.
The reason that this situation occurs is that what they see on the screen is not an Å (A-
ring)—it is an Å (Ångström). This phenomenon is called visual ambiguity.

It is quite normal for many characters to have different usages, such as comma “,” for either
thousands-separator (English) or decimal-separator (French). The Unicode Standard
avoids duplication of characters due to specific usage in different languages; rather, it
duplicates characters only to support compatibility with base standards.

The Unicode Standard does not attempt to encode features such as language, font, size,
positioning, glyphs, and so forth. For example, it does not preserve language as a part of
character encoding: just as French i grecque, German ypsilon, and English wye are all repre-
sented by the same character code, U+0057 “Y”, so too are Chinese zi, Japanese ji, and
Korean ja all represented as the same character code, U+5B57 .

In determining whether to unify variant ideograph forms across standards, the Unicode
Standard follows the principles described in Section 10.1, Han. Where these principles
determine that two forms constitute a trivial (wazukana) difference, the Unicode Standard
assigns a single code. Otherwise, separate codes are assigned.

Compatibility Characters. Compatibility characters are those that would not have been
encoded (except for compatibility) because they are in some sense variants of characters
that have already been coded. The prime examples are the glyph variants in the Compati-
bility Area: halfwidth characters, Arabic contextual form glyphs, Arabic ligatures, and
so on.

The Compatibility Area contains a large number of compatibility characters, but the Uni-
code Standard also contains many compatibility characters that do not appear in the Com-
patibility Area. Examples include Roman numerals, such as the IV “character.” It is
important to be able to identify which characters are compatibility characters so that Uni-
code-based systems can treat them in a uniform way.

Identifying one character as a compatibility variant of another character implies that gen-
erally the first can be remapped to the other without the loss of any information other than
formatting. Such remapping cannot always take place because many of the compatibility
characters are in place just to allow systems to maintain one-to-one mappings to existing
code sets. In such cases, a remapping would lose information that is felt to be important in
the original set. Compatibility mappings are called out in Section 14.1, Character Names
List. Because replacing a character by its compatibly equivalent character or character
sequence may change the information in the text, implementation must proceed with cau-
tion. A good use of these mappings may not be in transcoding, but rather in providing the
correct equivalence for searching and sorting.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 17

2.2 Unicode Design Principles General Structure
Dynamic Composition

The Unicode Standard allows for the dynamic composition of accented forms and Hangul
syllables. Combining characters used to create composite forms are productive. Because
the process of character composition is open-ended, new forms with modifying marks may
be created from a combination of base characters followed by combining characters. For
example, the diaeresis, “¨”, may be combined with all vowels and a number of consonants
in languages using the Latin script and several other scripts.

Equivalent Sequence

Some text elements can be encoded either as static precomposed forms or by dynamic
composition. Common precomposed forms such as U+00DC “Ü”   

   are included for compatibility with current standards. For static pre-
composed forms, the standard provides a mapping to the canonically equivalent dynami-
cally composed sequence of characters. (See also Section 3.6, Decomposition.)

In many cases, different sequences of Unicode characters are considered equivalent. For
example, a precomposed character may be represented as a composed character sequence
(see Figure 2-5 and Figure 2-10).

In such cases, the Unicode Standard does not prescribe one particular sequence; all of the
sequences in the examples are equivalent. Systems may choose to normalize Unicode text to
one particular sequence, such as by normalizing composed character sequences into pre-
composed characters, or vice versa. Therefore, any distinctions made between nonidentical
equivalent sequences by applications or users are not guaranteed to be interchangeable.
(For implementation guidelines, see Section 5.7, Normalization.)

Convertibility

Character identity is preserved for interchange with a number of different base standards,
including national, international, and vendor standards. Where variant forms (or even the
same form) are given separate codes within one base standard, they are also kept separate
within the Unicode Standard. This choice guarantees the existence of a mapping between
the Unicode Standard and base standards.

Accurate convertibility is guaranteed between the Unicode Standard and other standards in
wide usage as of May 1993. In general, a single code value in another standard will corre-
spond to a single code value in the Unicode Standard. Sometimes, however, a single code
value in another standard corresponds to a sequence of code values in the Unicode Stan-
dard, or vice versa. Conversion between Unicode text and text in other character codes
must in general be done by explicit table-mapping processes. (See also Section 5.1,
Transcoding to Other Standards.)

Figure 2-5. Equivalent Sequences

B + Ä B + A +
L + J + ALJ + A

@̈

18 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.3 Encoding Forms
2.3 Encoding Forms
The Unicode Standard character encoding model includes a repertoire of characters, their
mapping to a set of integers, and their encoding forms. Character encoding forms specify the
representation of characters as actual data in a computer. The Unicode Standard uses two
encoding forms: 16-bit and 8-bit. For a formal definition of these encoding forms, see
Section 3.8, Transformations.

Figure 2-6 illustrates the relationship between abstract characters, encoded characters, and
character encoding schemes. In Figure 2-6:

• The solid arrows connect encoded characters with the abstract characters that
they represent and encode.

• The dotted arrow illustrates a hypothetical private-use variant of the A-ring
character (the value F000016 is the Unicode scalar value for a surrogate pair
<U+DB80,U+DC00> in the Private Use Area).

• The hollow arrow shows where an encoded character sequence represents an
abstract character, but does not directly encode it.

• The serialization column shows two of the possible serializations of the
encoded characters.

UTF-16

The default encoding form of the Unicode Standard is 16-bit: characters are assigned a
unique 16-bit value, except that characters encoded by surrogates consist of a pair of 16-bit
values. The Unicode 16-bit encoding form is identical to the ISO/IEC 10646 transforma-
tion format UTF-16. In UTF-16, characters mapped up to 65535 are encoded as single 16-
bit values; characters mapped above 65535 are encoded as pairs of 16-bit values (surro-
gates). Surrogates are defined in Section 3.7, Surrogates.

Figure 2-6. Character Encoding Schemes

Abstract Encoded

¡

A

�

Serialized

UTF-16BE UTF- 8

00 61 03 0A

DB 80 DC 00 F3 B0 80 80

61 CC 8A

E2 84 AB

00 C5

21 2B

C3 85

212B

C5

F0000

61 30A
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 19

2.3 Encoding Forms General Structure
By using surrogates, UTF-16 provides a coded representation for more than 1 million
graphic characters in a form that is compatible with 16-bit characters. This scheme permits
the coexistence of a very large number of characters in systems that define characters as 16-
bit entities. Surrogates were designed to be a simple and efficient extension mechanism that
works well with older implementations and avoids many of the problems of multibyte
encodings. See Section 5.4, Handling Surrogate Pairs, for more information about surrogate
characters.

UTF-8

To meet the requirements of byte-oriented, ASCII-based systems, a second encoding form
is specified by the Unicode Standard: UTF-8. It is a variable-length encoding that preserves
ASCII transparency. UTF-8 usage is fully conformant with the Unicode Standard and ISO/
IEC 10646.

Existing software and practices in information technology frequently depend on character
data being represented as a sequence of bytes. To use Unicode character data in such sys-
tems, Unicode character values and pairs of surrogates must be transformed into a
sequence of one or more bytes that represent the same information, but which are
restricted in their numerical range.

UTF-8 is a variable-length encoding of byte sequences, where the high bits indicate the part
of the sequence to which a byte belongs. Table 3-1 on page 47 shows how the bits in a Uni-
code value (or a surrogate pair) are distributed among the bytes in the UTF-8 encoding.
Any byte sequence that does not follow this pattern is an ill-formed byte sequence. See
Section 3.8, Transformations, for a definition of ill-formed byte sequences. The UTF-8
encoding form maintains transparency for all of the ASCII code values (0..127). Further-
more, the values 0..127 do not appear in any byte of a transformed result except as the
direct representation of these ASCII values. The ASCII range (U+0000..U+007F) is repre-
sented by single bytes; many of the non-ideographic scripts are represented by two bytes;
the remaining Unicode scalar values are represented as three bytes; and surrogate pairs
require four bytes.

Other important characteristics of UTF-8 are as follows:

• It is efficient to convert to and from 16-bit Unicode text.

• The first byte indicates the number of bytes to follow in a multibyte sequence,
allowing for efficient forward parsing.

• It is efficient to find the start of a character when beginning from an arbitrary
location in a byte stream. Programs need to search at most four bytes back-
ward, and it is a simple task to recognize an initial byte.

• UTF-8 is reasonably compact in terms of the number of bytes used for encod-
ing.

• A binary sort of UTF-8 strings gives the same ordering as a binary sort of Uni-
code scalar values.

• If surrogates are not used, a binary sort of UTF-8 strings gives the same order-
ing as the binary sort of their UTF-16 counterparts.

Sample code for transforming Unicode data (UTF-16) into UTF-8 is provided on the CD-
ROM.
20 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.4 Unicode Allocation
Character Encoding Schemes

A character encoding scheme consists of an encoding form plus byte serialization. Thus
there are four character encoding schemes in Unicode: UTF-8, UTF-16, UTF-16LE, and
UTF-16BE. Often, encoding forms and character encoding schemes have the same name.

The names of the Unicode encoding forms are the same as those used in other contexts.
Notably, the IANA maintains a registry of charset names used on the Internet, which
includes the same names as the encoding forms used here. Although the encoding forms
here and the descriptions of the charsets registered with IANA are very similar, some
important differences may arise in terms of the requirements for each. For more informa-
tion, please see Unicode Technical Report #17, “Character Encoding Model,” on the CD-
ROM or the up-to-date version on the Unicode Web site.

2.4 Unicode Allocation
All code values in the Unicode Standard are equally accessible electronically; the exact
assignment of character codes is of minor consequence for information processing. Never-
theless, for the convenience of people who will use them, the codes are grouped by linguis-
tic and functional categories. Such grouping offers the additional benefit of supporting
various space-saving techniques in actual implementations.

Allocation Areas

Figure 2-7 provides an overview of the Unicode codespace allocation. For convenience, the
Unicode Standard codespace is divided into several areas, which are then subdivided into
character blocks:

• The General Scripts Area, consisting of alphabetic and syllabic scripts that have
relatively small character sets, such as Latin, Cyrillic, Greek, Hebrew, Arabic,
Devanagari, and Thai

• The Symbols Area, including a large variety of symbols and dingbats, for punc-
tuation, mathematics, chemistry, technical, and other specialized usage

• The CJK Phonetics and Symbols Area, including punctuation, symbols, radicals,
and phonetics for Chinese, Japanese, and Korean

• The CJK Ideographs Area, consisting of 27,484 unified CJK ideographs

• The Yi Syllables Area, consisting of 1,165 syllables and 50 Yi radicals

• The Hangul Syllables Area, consisting of 11,172 precomposed Korean Hangul
syllables

• The Surrogates Area, consisting of 1,024 low-half surrogates and 1,024 high-half
surrogates that are used in the surrogate extension method to access more than
1 million codes for future expansion

• The Private Use Area, containing 6,400 code positions used for defining user- or
vendor-specific characters

• The Compatibility and Specials Area, containing many of the characters from
widely used corporate and national standards that have other representations
in Unicode encoding, as well as several special-use characters

The allocation of characters into areas reflects the evolution of the Unicode Standard and is
not intended to define the usage of characters in implementations. For example, many
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 21

2.4 Unicode Allocation General Structure
characters are included in the standard solely for reasons of compatibility with other stan-
dards but are not coded in the Compatibility Area; there are many general-purpose sym-
bols and punctuation in the CJK Phonetics and Symbols Area, while the Hangul conjoining
jamo are in the General Scripts Area.

A Private Use Area gives the Unicode Standard the necessary flexibility and matches wide-
spread practice in existing standards. Successful interchange requires agreement between
sender and receiver regarding interpretation of private-use codes.

Figure 2-7. Unicode Allocation

U+0000

U+1000

U+2000

U+3000

U+4000

U+5000

U+6000

U+7000

U+8000

U+9000

U+A000

U+B000

U+C000

U+D000

U+E000

U+F000

General
Scripts

Symbols

CJK Misc.

CJKV
Ideographs

Yi

Hangul

Surrogates

Private Use

Compatibility

U+0000

U+0100

U+0200

U+0300

U+0400

U+0500

U+0600

U+0700

U+0800

U+0900

U+0A00

U+0B00

U+0C00

U+0D00

U+0E00

U+0F00

U+1000

U+1100

U+1200

U+1300

U+1400

U+1500

U+1600

U+1700

U+1800

U+1900

U+1A00

U+1B00

U+1C00

U+1D00

U+1E00

U+1F00

U+2000

Latin

Greek

Cyrillic

Armenian/Hebrew

Arabic

Syriac/Thaana

Devanagari/Bengali

Gurmukhi/Gujarati

Oriya/Tamil

Telugu/Kannada

Malayalam/Sinhala

Thai/Lao

Tibetan

Myanmar/Georgian

Hangul Jamo

Ethiopic

Cherokee

Canadian Aboriginal
Syllabics

Ogham/Runic

Khmer

Mongolian

Extended Latin

Extended Greek

Primary Private Use Compatibility Reserved
22 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.4 Unicode Allocation
Codespace Assignment for Graphic Characters

The predominant characteristics of codespace assignment in the Unicode Standard are as
follows:

• Where there is a single accepted standard for a script, the Unicode Standard
generally follows it for the relative order of characters within that script.

• The first 256 codes follow precisely the arrangement of ISO/IEC 8859-1 (Latin
1), of which 7-bit ASCII (ISO/IEC 646 IRV) accounts for the first 128 code
positions.

• Characters with common characteristics are located together contiguously. For
example, the primary Arabic character block was modeled after ISO/IEC 8859-
6. The Arabic script characters used in Persian, Urdu, and other languages, but
not included in ISO/IEC 8859-6, are allocated after the primary Arabic charac-
ter block. Right-to-left scripts are grouped together.

• To the extent possible, scripts do not cross 128-byte boundaries or 1,024-byte
boundaries.

• Codes that represent letters, punctuation, symbols, and diacritics that are gen-
erally shared by multiple languages or scripts are grouped together in several
locations.

• The Unicode Standard makes no pretense to correlate character code allocation
with language-dependent collation or case.

• Unified CJK ideographs are laid out in two sections, each of which is arranged
according to the Han ideograph arrangement defined in Section 10.1, Han. This
ordering is roughly based on a radical-stroke count order.

Nongraphic Characters, Reserved and Unassigned Codes

All code points except those mentioned below are reserved for graphic characters. Code
points unassigned in this version of the Unicode Standard are available for assignment in
later versions of the Unicode Standard to characters of any script.

• Sixty-five codes (U+0000..U+001F and U+007F..U+009F) are reserved specifi-
cally as control codes. Of the control codes, null (U+0000) can be used as a
string terminator as in the C language, tab (U+0009) retains its customary
meaning, and the others may be interpreted according to ISO/IEC 6429. (See
Section 2.8, Controls and Control Sequences, and Section 13.1, Control Codes.)

• Two codes are not used to encode characters: U+FFFF is reserved for internal
use (as a sentinel) and should not be transmitted or stored as part of plain text.
U+FFFE is also reserved; its presence indicates byte-swapped Unicode data.
(See Section 13.6, Specials.)

• A contiguous area of codes has been set aside for private use. Characters in this
area will never be defined by the Unicode Standard. These codes can be freely
used for characters of any purpose, but successful interchange requires an
agreement between sender and receiver on their interpretation.

• In addition, 2,048 codes have been allocated for surrogates, which are used in
the extension mechanism.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 23

2.5 Writing Direction General Structure
2.5 Writing Direction
Individual writing systems have different conventions for arranging characters into lines on
a page or screen. Such conventions are referred to as a script’s directionality. For example, in
the Latin script, characters run horizontally from left to right to form lines, and lines run
from top to bottom.

In Semitic scripts such as Hebrew and Arabic, characters are arranged from right to left
into lines, although digits run the other way, making the scripts inherently bidirectional.
Left-to-right and right-to-left scripts are frequently used together. In such a case, arranging
characters into lines becomes more complex. The Unicode Standard defines an algorithm
to determine the layout of a line. See Section 3.12, Bidirectional Behavior, for more informa-
tion.

East Asian scripts are frequently written in vertical lines that run from top to bottom. Lines
are arranged from right to left, except for Mongolian. Most characters have the same shape
and orientation when displayed horizontally or vertically, but many punctuation characters
change their shape when displayed vertically. In a vertical context, letters and words from
other scripts are generally rotated through 90-degree angles so that they, too, read from top
to bottom. That is, letters from left-to-right scripts will be rotated clockwise and letters
from right-to-left scripts will be rotated counterclockwise.

In contrast to the bidirectional case, the choice to lay out text either vertically or horizon-
tally is treated as a formatting style. Therefore, the Unicode Standard does not provide
directionality controls to specify that choice.

Other script directionalities are found in historical writing systems. For example, some
ancient Numidian texts are written bottom to top, and Egyptian hieroglyphics can be writ-
ten with varying directions for individual lines.

Early Greek used a system called boustrophedon (literally, “ox-turning”). In boustrophedon
writing, characters are arranged into horizontal lines, but the individual lines alternate
between running right to left and running left to right, the way an ox goes back and forth
when plowing a field. The letter images are mirrored in accordance with the direction of
each individual line.

Boustrophedon writing is of interest almost exclusively to scholars intent on reproducing
the exact visual content of ancient texts. The Unicode Standard does not provide direct
support for boustrophedon. Fixed texts can, however, be written in boustrophedon by
using hard line breaks and directionality overrides.

2.6 Combining Characters
Combining Characters. Characters intended to be positioned relative to an associated base
character are depicted in the character code charts above, below, or through a dotted circle.
They are also annotated in the names list or in the character property lists as “combining”
or “nonspacing” characters. When rendered, the glyphs that depict these characters are
intended to be positioned relative to the glyph depicting the preceding base character in
some combination. The Unicode Standard distinguishes two types of combining charac-
ters: spacing and nonspacing. Nonspacing combining characters do not occupy a spacing
position by themselves. In rendering, the combination of a base character and a nonspacing
character may have a different advance width than the base character by itself. For example,
an “�” may be slightly wider than a plain “i”. The spacing or nonspacing properties of a
combining character are defined in the Unicode Character Database.
24 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.6 Combining Characters
Diacritics. Diacritics are the principal class of nonspacing combining characters used with
European alphabets. In the Unicode Standard, the term “diacritic” is defined very broadly
to include accents as well as other nonspacing marks.

All diacritics can be applied to any base character and are available for use with any script.
A separate block is provided for symbol diacritics, generally intended to be used with sym-
bol base characters. The blocks contain additional combining characters for particular
scripts with which they are primarily used. As with other characters, the allocation of a
combining character to one block or another identifies only its primary usage; it is not
intended to define or limit the range of characters to which it may be applied. In the Uni-
code Standard, all sequences of character codes are permitted.

Other Combining Characters. Some scripts, such as Hebrew, Arabic, and the scripts of
India and Southeast Asia, have spacing or nonspacing combining characters. Many of these
combining marks encode vowel letters; as such, they are not generally referred to as “dia-
critics.”

Sequence of Base Characters and Diacritics

In the Unicode Standard, all combining characters are to be used in sequence following the
base characters to which they apply. The sequence of Unicode characters U+0061 “a” 

   + U+0308 “� �”   + U+0075 “u”   

 unambiguously encodes “äu” not “aü”.

The ordering convention used by the Unicode Standard is consistent with the logical order
of combining characters in Semitic and Indic scripts, the great majority of which (logically
or phonetically) follow the base characters with respect to which they are positioned. This
convention conforms to the way modern font technology handles the rendering of non-
spacing graphical forms (glyphs) so that mapping from character memory representation
order to font rendering order is simplified. It is different from the convention used in the
bibliographic standard ISO 5426.

A sequence of a base character plus one or more combining characters generally has the
same properties as the base character. For example, “A” followed by “ �” has the same prop-
erties as “Â”. In some contexts, enclosing diacritics confer a symbol property to the charac-
ters they enclose. This idea is discussed more fully in Section 3.10, Canonical Ordering
Behavior, but see also Section 3.12, Bidirectional Behavior.

In the charts for Indic scripts, some vowels are depicted to the left of dotted circles (see
Figure 2-8). This special case must be carefully distinguished from that of general combin-
ing diacritical mark characters. Such vowel signs are rendered to the left of a consonant let-
ter or consonant cluster, even though their logical order in the Unicode encoding follows
the consonant letter. The coding of these vowels in pronunciation order and not in visual
order is consistent with the ISCII standard.

Multiple Combining Characters

In some instances, more than one diacritical mark is applied to a single base character (see
Figure 2-9). The Unicode Standard does not restrict the number of combining characters

Figure 2-8. Indic Vowel Signs

Ó + ç @ çÓ
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 25

2.6 Combining Characters General Structure
that may follow a base character. The following discussion summarizes the treatment of
multiple combining characters. (For the formal algorithm, see Chapter 3, Conformance.)

If the combining characters can interact typographically—for example, a U+0304 -

  and a U+0308  —then the order of graphic display is
determined by the order of coded characters (see Figure 2-10). The diacritics or other com-
bining characters are positioned from the base character’s glyph outward. Combining char-
acters placed above a base character will be stacked vertically, starting with the first
encountered in the logical store and continuing for as many marks above as are required by
the character codes following the base character. For combining characters placed below a
base character, the situation is reversed, with the combining characters starting from the
base character and stacking downward.

An example of multiple combining characters above the base character is found in Thai,
where a consonant letter can have above it one of the vowels U+0E34 through U+0E37 and,
above that, one of four tone marks U+0E48 through U+0E4B. The order of character codes
that produces this graphic display is base consonant character + vowel character + tone mark
character.

Some specific combining characters override the default stacking behavior by being posi-
tioned horizontally rather than stacking or by ligature with an adjacent nonspacing mark
(see Figure 2-11). When positioned horizontally, the order of codes is reflected by

Figure 2-9. Stacking Sequences
2

Figure 2-10. Interacting Combining Characters

Characters Glyphs

@¬ ÷@a
.
@

ö

@

ö

ä.÷

LATIN SMALL LETTER A WITH TILDE
LATIN SMALL LETTER A + COMBINING TILDE

LATIN SMALL LETTER A + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING TILDE

LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE
LATIN SMALL LETTER A WITH CIRCUMFLEX + COMBINING ACUTE
LATIN SMALL LETTER A + COMBINING CIRCUMFLEX + COMBINING ACUTE

LATIN SMALL LETTER A ACUTE + COMBINING CIRCUMFLEX
LATIN SMALL LETTER A + COMBINING ACUTE + COMBINING CIRCUMFLEX

LATIN SMALL LETTER A + COMBINING DOT ABOVE + COMBINING DOT BELOW

aá

�.

aá.

�«

ö�

�

26 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.6 Combining Characters
positioning in the predominant direction of the script with which the codes are used. For
example, in a left-to-right script, horizontal accents would be coded left to right. In
Figure 2-11, the top example is correct and the bottom example is incorrect.

Prominent characters that show such override behavior are associated with specific scripts
or alphabets. For example, when used with the Greek script, the “breathing marks”
U+0313    (psili) and U+0314   

 (dasia) require that, when used together with a following acute or grave accent, they
be rendered side-by-side above their base letter rather than the accent marks being stacked
above the breathing marks. The order of codes here is base character code + breathing mark
code + accent mark code. This example demonstrates the script-dependent nature of ren-
dering combining diacritical marks.

Multiple Base Characters

When the glyphs representing two base characters merge to form a ligature, then the com-
bining characters must be rendered correctly in relation to the ligated glyph (see
Figure 2-12). Internally, the software must distinguish between the nonspacing marks that
apply to positions relative to the first part of the ligature glyph and those that apply to the
second. (For a discussion of general methods of positioning nonspacing marks, see
Section 5.13, Strategies for Handling Nonspacing Marks.)

Multiple base characters do not commonly occur in most scripts. However, in some scripts,
such as Arabic, this situation occurs quite often when vowel marks are used. It arises
because of the large number of ligatures in Arabic, where each element of a ligature is a
consonant, which in turn can have a vowel mark attached to it. Ligatures can even occur
with three or more characters merging; vowel marks may be attached to each part.

Spacing Clones of European Diacritical Marks

By convention, diacritical marks used by the Unicode Standard may be exhibited in (appar-
ent) isolation by applying them to U+0020  or to U+00A0   . This tac-
tic might be employed, for example, when talking about the diacritical mark itself as a
mark, rather than using it in its normal way in text. The Unicode Standard separately
encodes clones of many common European diacritical marks that are spacing characters,
largely to provide compatibility with existing character set standards. These related charac-
ters are cross-referenced in the names list in Chapter 14, Code Charts.

Figure 2-11. Nondefault Stacking

Figure 2-12. Multiple Base Characters

GREEK SMALL LETTER ALPHA
+ + COMBINING COMMA ABOVE (psili)
+ + COMBINING ACUTE ACCENT (oxia)αÕ«

αÕ«
GREEK SMALL LETTER ALPHA
+ COMBINING ACUTE ACCENT (oxia)
+ COMBINING COMMA ABOVE (psili)

This is
correct

This is
incorrect

fi.̃.@i÷@f
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 27

2.7 Special Character and Noncharacter Values General Structure
2.7 Special Character and Noncharacter Values
The Unicode Standard includes a small number of important characters with special
behavior; some of them are introduced in this section. It is important that implementa-
tions treat these characters properly. For a list of these and similar characters, see
Section 3.9, Special Character Properties; for more information about such characters, see
Section 13.1, Control Codes, Section 13.2, Layout Controls, and Section 13.6, Specials.

Byte Order Mark (BOM)

The canonical encoding form of Unicode plain text as a sequence of 16-bit codes is sensitive
to the byte ordering that is used when serializing text into a sequence of bytes, such as when
writing to a file or transferring across a network. Some processors place the least significant
byte in the initial position; others place the most significant byte in the initial position. Ide-
ally, all implementations of the Unicode Standard would follow only one set of byte order
rules, but this scheme would force one class of processors to swap the byte order on reading
and writing plain text files, even when the file never leaves the system on which it was
created.

To have an efficient way to indicate which byte order is used in a text, the Unicode Standard
contains two code values, U+FEFF   -  (byte order mark) and
U+FFFE (not a character code), which are the byte-ordered mirror images of one another.
The byte order mark is not a control character that selects the byte order of the text; rather,
its function is to notify recipients as to which byte ordering is used in a file.

Unicode Signature. An initial BOM may also serve as an implicit marker to identify a file as
containing Unicode text. The sequence FE16 FF16 (or its byte-reversed counterpart, FF16
FE16) is exceedingly rare at the outset of text files that use other character encodings. It is
therefore not likely to be confused with real text data. The same is true for both single-byte
and multibyte encodings.

Data streams (or files) that begin with U+FEFF byte order mark are likely to contain Uni-
code values. It is recommended that applications sending or receiving untyped data
streams of coded characters use this signature. If other signaling methods are used, signa-
tures should not be employed.

Conformance to the Unicode Standard does not requires the use of the BOM as such a sig-
nature. See Section 13.6, Specials, for more information on byte order mark and its use as an
encoding signature.

Special Noncharacter Values

U+FFFF and U+FFFE. These code values are not used to represent Unicode characters.
U+FFFF is reserved for private program use as a sentinel or other signal. (Notice that
U+FFFF is a 16-bit representation of –1 in two’s-complement notation.) Programs receiv-
ing this code are not required to interpret it in any way. It is good practice, however, to rec-
ognize this code as a noncharacter value and to take appropriate action, such as by
indicating possible corruption of the text. U+FFFE is similar in all respects to U+FFFF,
except that it is also the mirror image of U+FEFF   -  (byte order
mark). The presence of U+FFFE constitutes a strong hint that the text in question is byte-
reversed. See Section 13.6, Specials.
28 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.8 Controls and Control Sequences
Separators

Line and Paragraph Separators. For historical reasons, carriage return and line feed are
not used consistently across different systems. The Unicode Standard provides (and
encourages the use of) the line and paragraph separator characters to provide clear informa-
tion about where line and paragraph boundaries occur. Paragraph separation is also
required for use with the bidirectional algorithm (see Chapter 3, Conformance). As these
entities are separator codes, it is not necessary to start the first line or paragraph or to end
the last line or paragraph with them. Also see Section 13.2, Layout Controls.

Interaction with CR/LF. The Unicode Standard does not prescribe specific semantics for
U+000D   (CR) and U+000A   (LF). These codes are provided
to represent any CR or LF characters employed by a higher-level protocol or retained in text
translated from other standards. It is left to each application to interpret these codes, to
decide whether to require their use, and to determine whether CR/LF pairs or single codes
are needed. See also Section 5.9, Line Handling, and Unicode Technical Report #13, “Uni-
code Newline Guidelines,” on the CD-ROM or the up-to-date version on the Unicode Web
site.

Layout and Format Control Characters

The Unicode Standard defines several characters that are used to control joining behavior,
bidirectional ordering control, and alternative formats for display. These characters are
explicitly defined as not affecting line-breaking behavior. Unlike space characters or other
delimiters, they do not serve to indicate word, line, or other unit boundaries. Their specific
use in layout and formatting is described in Section 13.2, Layout Controls.

The Replacement Character

U+FFFD   is the general substitute character in the Unicode
Standard. It can be substituted for any “unknown” character in another encoding that can-
not be mapped in terms of known Unicode values (see Section 5.3, Unknown and Missing
Characters, and Section 13.6, Specials).

2.8 Controls and Control Sequences

Control Characters

The Unicode Standard provides 65 code values for the representation of control characters.
These ranges are U+0000..U+001F and U+007F..U+009F, which correspond to the 8-bit
controls 0016 to 1F16 (C0 controls) and 7F16 to 9F16 (delete and C1 controls). For example,
the 8-bit version of horizontal tab (HT) is at 0916; the Unicode Standard encodes tab at
U+0009. When converting control codes from existing 8-bit text, they are merely zero-
extended to the full 16 bits of Unicode characters.

Programs that conform to the Unicode Standard may treat these 16-bit control codes in
exactly the same way as they treat their 7- and 8-bit equivalents in other protocols, such as
ISO/IEC 2022 and ISO/IEC 6429. Such usage constitutes a higher-level protocol and is
beyond the scope of the Unicode Standard. Similarly, the use of ISO/IEC 6429:1992 control
sequences (extended to 16 bits) for controlling bidirectional formatting is a legitimate
higher-level protocol layered on top of the plain text of the Unicode Standard. As with all
higher-level protocols, both the sender and the receiver must agree upon a common proto-
col beforehand.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 29

2.9 Conforming to the Unicode Standard General Structure
Escape Sequences. In converting text containing escape sequences to the Unicode character
encoding, text must be converted to the equivalent Unicode characters. Converting escape
sequences into Unicode characters on a character-by-character basis (for instance, ESC–A
turns into U+001B , U+0041    ) allows the reverse conver-
sion to be performed without forcing the conversion program to recognize the escape
sequence as such.

Control Code Sequences Encoding Additional Information about Text. If a system uses
sequences beginning with control codes to embed additional information about text (such
as formatting attributes or structure), then such sequences form a higher-level protocol
outside the scope of the Unicode Standard. Such higher-level protocols are not specified by
the Unicode Standard; their existence cannot be assumed without a separate agreement
between the parties interchanging such data.

Representing Control Sequences

Control sequences can be represented in the Unicode encoding design but must then be
represented in terms of 16-bit characters. For example, suppose that an application allows
embedded font information to be transmitted by means of an 8-bit sequence. In the follow-
ing, the notation ^A refers to the C0 control code 0116, ^B refers to the C0 control code
0216, and so on:

^ATimes^B = 01,54,69,6D,65,73,02

Then the corresponding sequence of Unicode character codes would be

^ATimes^B = 0001,0054,0069,006D,0065,0073,0002

That is, each Unicode character code is a 16-bit zero-extended code value of the corre-
sponding 8-bit code value.

Where the embedded data are not interpreted as a sequence of characters by the protocol,
the information could be encoded as follows:

^ATimes^B = 0001,5469,6D65,7300,0002

The data could never be encoded as

^ATimes^B = 0154,696D,6573,0200

because in the Unicode character encoding this sequence represents four characters—
     (U+0154), two Han characters (U+696D and U+6573,
respectively), and        (U+0200). None of these
characters is a control character. If a control sequence contains embedded binary data, then
the data bytes do not necessarily need to be zero-extended because the control sequence
constitutes a higher protocol. However, doing so allows code conversion algorithms to suc-
ceed even in the absence of explicit knowledge of employed control sequences.

2.9 Conforming to the Unicode Standard
Chapter 3, Conformance, specifies the set of unambiguous criteria to which a Unicode-
conformant implementation must adhere so that it can interoperate with other confor-
mant implementations. The following section gives examples of conformance and non-
conformance to complement the formal statement of conformance.

An implementation that conforms to the Unicode Standard has the following characteris-
tics:
30 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.9 Conforming to the Unicode Standard
• It treats characters as 16-bit units.

U+2020 (that is, 202016) is the single Unicode character  ‘†’, not
two ASCII spaces.

• It interprets characters according to the identities, properties, and rules defined
for them in this standard.

U+2423 is ‘�’  , not ‘�’ hiragana small i (which is the meaning
of the bytes 242316 in JIS).

U+00D4 ‘ô’ is equivalent to U+004F ‘o’ followed by U+0302 ‘��’, but not
equivalent to U+0302 followed by U+004F.

U+05D0 ‘�’ followed by U+05D1 ‘�’ looks like ‘��’, not ‘��’ when dis-
played.

When an implementation supports Arabic or Hebrew characters and
displays those characters, they must be ordered according to the bidirec-
tional algorithm described in Section 3.12, Bidirectional Behavior.

When an implementation supports Arabic, Devanagari, Tamil, or other
shaping characters and displays those characters, at a minimum the
characters are shaped according to the appropriate character block
descriptions given in Section 8.2, Arabic, Section 9.1, Devanagari, or
Section 9.6, Tamil. (More sophisticated shaping can be used if available.)

• It does not use unassigned codes.

U+2073 is unassigned and not usable for ‘3’ (superscript 3) or any other
character.

• It does not corrupt unknown characters.

U+2029 is   and should not be dropped by appli-
cations that do not yet support it.

U+03A1 “P”     should not be changed to
U+00A1 (first byte dropped), U+0050 (mapped to Latin letter P),
U+A103 (bytes reversed), or anything other than U+03A1.

However, it is acceptable for a conforming implementation:

• To support only a subset of the Unicode characters.

An application might not provide mathematical symbols or the Thai
script, for example.

• To transform data knowingly.

Uppercase conversion: ‘a’ transformed to ‘A’

Romaji to kana: ‘kyo’ transformed to ��

U+247D ‘(10)’ decomposed to 0028 0031 0030 0029

• To build higher-level protocols on the character set.

Compression of characters

Use of rich text file formats

• To define characters in the Private Use Area.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 31

2.10 Referencing Versions of the Unicode Standard General Structure
Examples of characters that might be encoded in the Private Use Area
include supplementary ideographic characters (gaiji) or existing corpo-
rate logo characters.

• To not support the bidirectional algorithm or character shaping in implemen-
tations that do not support complex scripts, such as Arabic and Devanagari.

• To not support the bidirectional algorithm or character shaping in implemen-
tations that do not display characters, such as on servers or in programs that
simply parse or transcode text, such as an XML parser.

Code conversion from other standards to the Unicode Standard will be considered confor-
mant if the matching table produces accurate conversions in both directions.

Characters Not Used in a Subset

The Unicode Standard does not require that an application be capable of interpreting and
rendering all Unicode characters so as to be conformant. Many systems will have fonts only
for some scripts, but not for others; sorting and other text-processing rules may be imple-
mented only for a limited set of languages. As a result, an implementation is able to inter-
pret a subset of characters.

The Unicode Standard provides no formalized method for identifying this subset. Further-
more, this subset is typically different for different aspects of an implementation. For
example, an application may be able to read, write, and store any 16-bit character, and to
sort one subset according to the rules of one or more languages (and the rest arbitrarily),
but have access only to fonts for a single script. The same implementation may be able to
render additional scripts as soon as additional fonts are installed in its environment. There-
fore, the subset of interpretable characters is typically not a static concept.

Conformance to the Unicode Standard implies that whenever text purports to be unmodi-
fied, uninterpretable characters must not be removed or altered. (See also Section 3.1, Con-
formance Requirements.)

2.10 Referencing Versions of the Unicode Standard
For most character encodings, the character repertoire is fixed (and often small). Once the
repertoire is decided upon, it is never changed. Addition of a new abstract character to a
given repertoire is conceived of as creating a new repertoire, which then will be given its
own catalog number, constituting a new object.

For the Unicode Standard, on the other hand, the repertoire is inherently open. Because
Unicode is a universal encoding, any abstract character that could ever be encoded is
potentially a member of the actual set to be encoded, regardless of whether the character is
currently known.

Each new version of the Unicode Standard replaces the previous one and makes it obsolete,
but implementations—and more significantly, data—are not updated instantly. In general,
major and minor version changes include new characters, which do not create particular
problems with old data. The Unicode Technical Committee will neither remove nor move
characters, but characters may be deprecated. This approach does not remove them from
the standard or from existing data. The code point will never be used for a different charac-
ter, but its use is strongly discouraged.

Implementations should be prepared to be forward-compatible with respect to Unicode
versions. That is, they should accept text that may be expressed in future versions of this
32 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

General Structure 2.10 Referencing Versions of the Unicode Standard
standard, recognizing that new characters may be assigned in those versions. Thus they
should handle incoming unassigned code points as they do unsupported characters. (See
Section 5.3, Unknown and Missing Characters.)

A version change may also involve changes to the properties of existing characters. When
this situation occurs, modifications are made to UnicodeData.txt and other relevant con-
tributing data files, and a new update version is issued for the standard. Changes to the data
files may alter program behavior that depends on them.

Version Numbering. Version numbers for the standard consist of three fields: the major
version, the minor version, and the update version. The differences among them are as fol-
lows:

• Major—significant additions to the standard, published as a book.

• Minor—character additions or more significant normative changes, published
as a technical report on the Unicode Web site.

• Update—any other changes to normative or important informative portions of
the standard that could change program behavior. These changes are reflected
in a new UnicodeData.txt file and other contributing data files of the Unicode
Character Database.

For additional information on the current and past versions of the Unicode standard, see
http://www.unicode.org/unicode/standard/versions/ on the Unicode Web site.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 33

This PDF file is an excerpt from The Unicode Standard, Version 3.0, issued by the Unicode Consor-
tium and published by Addison-Wesley. The material has been modified slightly for this online edi-
tion, however the PDF files have not been modified to reflect the corrections found on the Updates
and Errata page (see http://www.unicode.org/unicode/uni2errata/UnicodeErrata.html). More recent
versions of the Unicode standard exist (see http://www.unicode.org/unicode/standard/versions/).

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital letters. However, not all words
in initial capital letters are trademark designations.

The authors and publisher have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode®, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The
recipient agrees to determine applicability of information provided.

Dai Kan-Wa Jiten used as the source of reference Kanji codes was written by Tetsuji Morohashi and
published by Taishukan Shoten.

ISBN 0-201-61633-5

Copyright © 1991-2000 by Unicode, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or other-
wise, without the prior written permission of the publisher or Unicode, Inc.

This book is set in Minion, designed by Rob Slimbach at Adobe Systems, Inc. It was typeset using
FrameMaker 5.5 running under Windows NT. ASMUS, Inc. created custom software for chart layout.
The Han radical-stroke index was typeset by Apple Computer, Inc. The following companies and
organizations supplied fonts:

Apple Computer, Inc.
Atelier Fluxus Virus
Beijing Zhong Yi (Zheng Code) Electronics Company
DecoType, Inc.
IBM Corporation
Monotype Typography, Inc.
Microsoft Corporation
Peking University Founder Group Corporation
Production First Software

Additional fonts were supplied by individuals as listed in the Acknowledgments.

The Unicode® Consortium is a registered trademark, and Unicode™ is a trademark of Unicode, Inc.
The Unicode logo is a trademark of Unicode, Inc., and may be registered in some jurisdictions.

All other company and product names are trademarks or registered trademarks of the company or
manufacturer, respectively.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information please contact:

Corporate, Government, and Special Sales
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867

Visit A-W on the Web: http://www.awl.com/cseng/

First printing, January 2000.

http://www.unicode.org/unicode/uni2errata/UnicodeErrata.html
http://www.unicode.org/unicode/standard/versions/
http://www.awl.com/cseng/

	Chapter 2
	General Structure
	2.1 Architectural Context
	Basic Text Processes
	Text Elements, Code Values, and Text Processes
	Figure 2�1. Text Elements and Characters
	Text Processes and Encoding

	2.2 Unicode Design Principles
	Sixteen-Bit Character Codes
	Efficiency
	Characters, Not Glyphs
	Figure 2�2. Characters Versus Glyphs
	Figure 2�3. Unicode Character Code to Rendered Glyphs
	Semantics
	Plain Text
	Logical Order

	Figure 2�4. Bidirectional Ordering
	Unification
	Compatibility Characters

	Dynamic Composition
	Equivalent Sequence

	Figure 2�5. Equivalent Sequences
	Convertibility

	2.3 Encoding Forms
	Figure 2�6. Character Encoding Schemes
	UTF-16
	UTF-8
	Character Encoding Schemes

	2.4 Unicode Allocation
	Allocation Areas
	Figure 2�7. Unicode Allocation
	Codespace Assignment for Graphic Characters
	Nongraphic Characters, Reserved and Unassigned Codes

	2.5 Writing Direction
	2.6 Combining Characters
	Combining Characters
	Diacritics
	Other Combining Characters
	Sequence of Base Characters and Diacritics
	Figure 2�8. Indic Vowel Signs
	Multiple Combining Characters

	Figure 2�9. Stacking Sequences

	2
	Figure 2�10. Interacting Combining Characters
	Figure 2�11. Nondefault Stacking
	Multiple Base Characters

	Figure 2�12. Multiple Base Characters
	Spacing Clones of European Diacritical Marks

	2.7 Special Character and Noncharacter Values
	Byte Order Mark (BOM)
	Unicode Signature

	Special Noncharacter Values
	U+FFFF and U+FFFE

	Separators
	Line and Paragraph Separators
	Interaction with CR/LF

	Layout and Format Control Characters
	The Replacement Character

	2.8 Controls and Control Sequences
	Control Characters
	Escape Sequences
	Control Code Sequences Encoding Additional Information about Text

	Representing Control Sequences

	2.9 Conforming to the Unicode Standard
	Characters Not Used in a Subset

	2.10 Referencing Versions of the Unicode Standard
	Version Numbering

