【DeepSeek R1构建本地RAG知识库】数据结构化清洗


前言

在构建一个本地RAG(Retrieval-Augmented Generation)系统时,我们常常将注意力放在模型本身——比如选择了哪个嵌入模型、用的是DeepSeek R1还是其他大语言模型。然而,真正决定知识库“聪明”程度的关键,并不在于模型有多强大,而在于喂给它的数据有多干净、多结构化。

想象一下你在厨房里做菜,面前是一堆杂乱无章的食材:西红柿和橙子混在一起,调料瓶上没有标签,蔬菜切得大小不一。即使你有米其林大厨级别的厨艺,也难以做出一道好菜。同样的道理也适用于RAG知识库:如果输入的数据是乱的、脏的、没有逻辑的,再强大的模型也难以给出高质量的回答。

为什么需要数据结构化?

以菜谱知识库为例,原始数据可能来自PDF文档、网页爬取甚至手写笔记,格式五花八门,内容重复冗余,信息缺失严重。这种非结构化的数据直接喂给向量数据库,会导致检索结果混乱、回答答非所问、甚至产生幻觉。

通过数据结构化清洗,我们可以做到:

  • 统一字段定义:确保每条菜谱都有明确的菜名、食材、步骤等结构;
  • 去重与归一化:消除“番茄炒蛋”、“西红柿炒鸡蛋”等同义词差异;
  • 合理分块处理:避免因文本过长导致语义稀释;
  • 打标签增强语义:为菜品添加“川菜”、“素食”、“快手菜”等标签,提升检索效率。

本文将带你一步步完成结构化之旅


一、数据结构化的核心目的

1.1 解决杂乱