【DeepSeek R1构建本地RAG知识库】数据结构化清洗-知识图谱制作、使用、dify集成


前言

在构建本地 RAG(Retrieval-Augmented Generation)系统的过程中,我们通常会把注意力集中在向量数据库和嵌入模型上。毕竟,在大多数教程中,数据被处理成向量后直接送入数据库进行相似度检索,看起来已经很高效了。

但这种“线性”的知识组织方式存在一个关键问题:它无法体现知识之间的关联性。

举个例子,如果用户问:“番茄炒蛋怎么做?”RAG 通常能通过语义匹配找到答案。但如果用户继续问:“有没有类似的快手菜?”或者“如果我不吃鸡蛋,有什么替代食谱?”这时候,纯向量检索就显得有些力不从心了——它缺乏对“食材”、“做法”、“类别”等实体之间关系的理解。

而这就轮到了**知识图谱(Knowledge Graph)**大展身手的时候。

为什么需要知识图谱?
知识图谱本质上是一种以“实体-关系-属性”为核心的结构化知识表示形式。它将信息组织成一张张“图”,使得机器可以理解不同知识点之间的逻辑关系:

菜名(如“番茄炒蛋”)与食材(如“番茄”、“鸡蛋”)之间是“包含”关系;
食材(如“鸡蛋”)与菜系(如“早餐”)之间是“属于”关系;
做法步骤之间则有“顺序”关系。
通过这种方式,知识图谱不仅能帮助 RAG 更准确地检索相关信息,还能支持推理、推荐、多跳问答等高级功能。

知识图谱 + RAG = 更强的知识理解能力


一、知识图谱入门

要理解知识图谱,我们要首先了解什么是知识?什么是图谱?很

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xd聊架构

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值