【ICLR 2023】详细解读DreamFusion:用二维diffusion models完成三维生成任务

ICLR 2023中的DreamFusion展示了如何利用预训练的2D文本到图像扩散模型完成3D文本到3D任务。文章介绍了该方法无需大型3D数据集,通过概率密度蒸馏损失优化随机初始化的3D模型,如NeRF。此外,还详述了NeRF的工作原理、省略雅克比项的优化、损失函数和文本信息引入等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion Models专栏文章汇总:入门与实战

前言:ICLR 2023的第一轮rebuttal已经放榜,这次的ICLR出现了非常多的diffusion models论文,很多工作都非常有创意,值得详细解读。这篇要介绍的是google研究院出品的DreamFusion,这个工作取得了所有审稿人的accept肯定,无论是论文还是实验效果都非常优秀,能够出色地使用现在的预训练2D text-to-image完成3D text-to-3D任务。

目录

最高的diffusion models得分

​编辑

贡献概述

text-to-3D任务困难在哪?

作者核心贡献

方法详解

NERF

整体流程

省略雅克比项

损失函数

文本信息引入

论文和代码地址

个人感悟


最高的diffusion models得分

有人统计过这次ICLR 2023投稿的主题,diffusion models高居榜首,成为最热门的话题。第一轮的rebuttal中,diffusion models的得分最高的就是这篇文章:

【腾讯文档】ICLR 2023 Scores (updated Nov. 4 at 10 pm ET)  statistics
https://d

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值