这是一篇闲狗写给闲狗看的线性表攻略。
数组(Array)
数组对应于内存的一块连续的存储区域。
数组的插入删除操作都涉及后面元素的挪动。
数组支持随机访问,根据下标随机访问的时间复杂度为 O(1),插入和删除为 O(n)。
为什么大多数编程语言中,数组要从 0 开始编号,而不是从 1 开始呢?
“下标”最确切的定义应该是“偏移(offset)”。如果用 a 来表示数组的首地址,a[0]就是偏移为 0 的位置,也就是首地址,a[k]就表示偏移 k 个 type_size 的位置,所以计算 a[k]的内存地址只需要用这个公式:
a[k]_address = base_address + k * type_size
但是,如果数组从 1 开始计数,那我们计算数组元素 a[k]的内存地址就会变为:
a[k]_address = base_address + (k-1)*type_size
对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。
链表(Linked List)
链表:不需要一块连续的内存空间,它通过指针将一组零散的内存块串联起来使用。
我们把内存块称为链表的“结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址,叫作后继指针 next。
单链表(Linked List)
而且单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到 p->next=q。
把链表想象成一个队伍,队伍中的每个人都只知道自己后面的人是谁,所以当我们希望知道排在第 k 位的人是谁的时候,我们就需要从第一个人开始,一个一个地往下数。所以,链表随机访问的性能没有数组好,需要 O(n) 的时间复杂度。
双链表
双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。
比如要删除结点 q 时, 需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到 p->next=q,说明 p 是 q 的前驱结点。
但是对于双向链表来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作需要 O(n) 的时间复杂度,而双向链表只需要在 O(1) 的时间复杂度内就搞定了!
实际使用场景:Java 的 LinkedHashMap
双链表结点类型
template <class T> class Link {
public:
T data; // 用于保存结点元素的内容
Link<T> * next; // 指向后继结点的指针
Link<T> *prev; // 指向前驱结点的指针
// 给定值和前后指针的构造函数
Link(const T info, Link<T>* preValue = NULL, Link<T>* nextValue = NULL) {
data = info;
next = nextValue;
prev = preValue;
}
//给定前后指针的构造函数
Link(Link<T>* preValue = NULL, Link<T>* nextValue = NULL) {
next = nextValue;
prev = preValue;
}
}
插入结点
经理p将一些设备分配给新来的员工q,
q再将自己的一些信息告诉经理p
1(华文课后题)完成在双循环链表结点p之后插入s的操作为AD
A、p->next->prev=s; s->prev=p; s->next=p->next; p->next=s; (4,2,1,3)
B、p->next->prev=s; p->next=s; s->prev=p; s->next=p->next;(4,3,2,1)
解析:造成原来的p结点后来的next信息丢失
C、s->prev=p; s->next=p->next; p->next=s; p->next->prev=s;(2,1,3,4)
解析:先更改p->next成s再更改p->next->prev,会造成原来的p结点后来的next信息丢失
D、s->next=p->next; p->next->prev=s; s->prev=p; p->next=s;(1,4,2,3)
删除结点
1 (2016计算机联考真题)
循环链表
与单链表相比,循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。
静态链表
借助数组来描述线性表的链式存储结构,结点也有数据域data和指针域next。不同的是,这里的指针是结点的相对地址(数组下标),又称为游标。
与顺序表一样,静态链表也要预先分配一块连续的内存空间。
栈
栈的实现方式
顺序栈(Array-based Stack)
链式栈(Linked Stack)
共享栈
栈的应用-四则运算表达式求值
后缀表达式
后缀表达式:运算符号位于两个运算数之后。
用堆栈实现后缀表达式求值:
- 运算数:入栈
- 运算符:从栈中弹出最前的两个数,计算并将结果入栈
- 栈顶上的元素就是表达式的结果值
例:
漫画乱入,纯属娱乐。
中缀表达式
中缀表达式:运算符号位于两个运算数之间。
中缀表达式求值:将中缀表达式转换为后缀表达式,然后求值。
中缀表达式转换为后缀表达式:
- 从头到尾读取中缀表达式的每个对象
- 运算数:直接输出
- 左括号:压入堆栈
- 右括号:将栈顶的运算符弹出并输出,知道遇到左括号(出栈,括号不输出)
- 运算符:
- 若优先级大于栈顶运算符时,把它压栈
- 若优先级小于栈顶运算符时,将栈顶运算符弹出并输出,而它进栈
- 若各对象处理完毕,则把堆栈中存留的运算符一并输出
队列
队列的实现方式
顺序队列
例子:假设现在顺序队列Q分配了6个空间
(1) 开始时为空队,Q.front=Q.rear
(2) 元素a1进队,放入尾指针Q.rear(整型下标)的位置,Q.rear后移一位
(3) 元素a2进队,放入尾指针Q.rear(整型下标)的位置,Q.rear后移一位
(4) 元素a3,a4,a5分别按顺序进队,尾指针Q.rear依次后移
(5) 元素a1出队,头指针Q.front(整型下标)后移一位
(6) 元素a2出队,头指针Q.front(整型下标)后移一位
(7) 元素a6进队,放入尾指针rear(整型下标)的位置,rear后移一位
(8) 元素a7进队,此时尾指针Q.rear已经超过了数组的下标,无法再存储进队,但是我们发现前面明明有2个空间,却出现了队满的情况,这种情况称为"假溢出"。
那么如何解决该问题呢?
能否利用前面的空间继续存储入队呢?
循环队列
上面第(7)步元素a6进队之后,尾指针Q.rear要后移一个位置,此时已经超过了数组的下标,即Q.rear+1=Maxsize(最大空间数6),那么如果前面有空闲,Q.rear可以转向前面0的位置
然后元素a7进队,放入尾指针Q.rear(整型下标)的位置,Q.rear后移一位
元素a8进队,放入尾指针Q.rear(整型下标)的位置,Q.rear后移一位
这时候虽然队列空间存满了,但是出现了一个大问题,队满时Q.front=Q.rear,这和队空的条件一模一样,无法区分队空还是队满,如何解决呢?有两种办法:一是设置一个标志,标记队空和队满;另一种办法是浪费一个空间,当尾指针Q.rear的下一个位置Q.front是时,就认为是队满。如图所示:
上述到达尾部又向前存储的队列称为循环队列,为了避免"假溢出",我们通常采用循环队列。
循环队列无论入队还是出队,队尾、队头加1后都要取模运算,例如入队后队尾后移一位:Q.rear =(Q.rear+1)%Maxsize。
为什么要%Maxsize呢?
主要是为了处理临界状态,即Q.rear向后移动一个位置Q.rear+1后,很有可能超出了数组的下标,这时它的下一个位置其实是0,如果将一维数组画成环形图,如图所示:
上图中最大空间Maxsize,当Q.rear=Maxsize-1时,(Q.rear+1)%Maxsize=0,而且Q.front=0,正好满足队满的条件:(Q.rear+1) %Maxsize= Q.front,此时为队满。
因此无论是front还是rear向后移动一个位置时,都要加1与最大空间Maxsize取模运算,处理临界问题。
总结:
队空:Q.front=Q.rear; // Q.rear和Q.front指向同一个位置
队满: (Q.rear+1) %Maxsize=Q.front; // Q.rear向后移一位正好是Q.front
入队:
Q.base[Q.rear]=x; //将元素放入Q.rear所指空间
Q.rear =( Q.rear+1) %Maxsize; // Q.rear向后移一位
出队:
e= Q.base[Q.front]; //用变量记录Q.front所指元素
Q.front=(Q.front+1) %Maxsize // Q. front向后移一位
循环队列中包含的元素个数:
链式队列
2.2.4 双端队列
双端队列可以在队列任意一端入队和出队。将队列的两端分别称为前端和后端。
(1)输出受限的双端队列
允许在一端进行入队和出队,在另一端只允许入队。
(2)输入受限的双端队列
允许在一端进行入队和出队,在另一端只允许出队
漫画乱入,甭管我。
队列的应用
队列在计算机系统中的应用
本文参考自:
张铭《数据结构与算法》
程杰《大话数据结构》
陈越,何钦铭《数据结构》