文章目录
AI对测试改进的方向总结
- 用户行为分析 & 个性化营销 & 量化用户体验指标 → 用户体验优化
- 可视化测试
- 自动发现和执行测试操作或生成测试脚本
- 消除不稳定测试
- 测试平台或测试中台
用户体验
用户行为分析
基于用户行为分析来得出页面的交互体验优化方向,举例:用户有哪些典型路径,在完成某个意图时的典型路径是否过长?某个页面上用户对各个控件的操作的频度是否和预期一致以及是否有利用和改善空间?
个性化营销
- 对客户进行多维度地分析:以用户的地域、性别、年龄等人文属性建立分析维度,提高营销的相关性;
- 对营销后的用户行为分析,来进一步决定营销策略,如频率等;
建立指标来量化评价用户体验
使用访问量、平均响应时间、业务功能问题数量等来综合量化用户体验指标;谷歌也有HEART模型;
用户体验指标可以通过用户属性(地域,性别,年龄等),业务模块等维度来细化后比较差异并得出改进计划;
辅助测试
可视化测试
基于图像处理技术和算法,机器学习等技术,可以对可视化界面直接进行智能识别和操作,对得到的可视化结果进行智能比较(不同于像素比较,稳定性更好)