Graph Clustering和Community Detection(附代码) 图谱

34 篇文章 ¥19.90 ¥99.00
11 篇文章 ¥19.90 ¥99.00

本次我们聚焦算法的部分。这篇论文的算法之所以效果高于其他组别,核心思想就在于:1)从多个角度加权计算了用户之间的相似度;2)根据两两之间的相似度进行了Graph Clustering。最终的效果就是有相同偏好的用户被聚在了同一组,那么既然大家兴趣类似,你喜欢的自然大概率也是我喜欢的。

接下来我们就介绍一些关于Clustering的知识,尤其会详细介绍经典的算法,最后我们再推荐几篇相关的论文。

一、聚类的两种类型

对已知的“点”进行聚类,我们首先要判断这些“点”是建立在什么数学结构上的,一般来说如果这些点存在“类别”,那么用两种结构来描述都是自然的:

  • 欧氏空间:所有点都坐落在欧式空间里,两两之间的距离的定义是自然的,距离越小,“相似度”越高。
  • 图(Gr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南七小僧

打赏后,可以添加微信一对一咨询

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值