【产品经理修炼之道】- 为什么你总在死磕,却解决不了问题?

我们都知道,不努力一定没法把事情做成。但这句话只说了一半,还有一半是,方向不对,方法不对,也没法做成。这篇文章,作者分享了三种思路,可以帮大家解决努力无用的困境问题。

关于解决问题,有一个怪圈,包括我在内好多人都遇到过,那就是:看上去很复杂的问题,总会有简洁有效的办法,我们在局中往往想不到,只有事后才恍然大悟。

我们的大脑倾向线性地解决问题,但是做到一半发现并不有效,又找不到更好的方法。

这篇文章从思维方式的角度,研究这个怪圈及背后的原因,相信会对你有价值。

先来看看这道小学数学题:

“Bonjour公司每天都会从美国纽约-法国勒阿弗尔两个港口向对方港口发一艘船,船走单程一次需要7天7夜。现在假设你从纽约出发,在到达勒阿弗尔的途中最多迎面遇见几艘船?”

这个小学奥数水平题目有一个专有名称–“纽约-勒阿弗尔问题”。

如果你的答案是8,想到这段时间刚好有8艘船从对面港口驶出,那你是有小学数学水平的。

但是正确答案应该是15,因为在你出发的那一刻,在海洋上已经有7艘船在过去7天出发了。

很多人在上学时会把这种错误归结为粗心大意,但往往后来会出现一种无力感,时不时就会粗心一回。

这时,你会感觉好像无论怎么做都避免不了出错。

这个问题之所以经典是因为它不单单是一个易错题,而且代表了一种思维方式 —跳出原有框架解决问题。

01

跳出框架的这种思维能力往往被解释成很多名词,比如慢变量,趋势,宏观环境等等,但简单来说其实就是.

为了有效地在边缘设备上部署自动视频分类的机器学习模型,并确保高效能与低延迟,你可以参考《边缘人工智能实战:嵌入式机器学习与现实问题解决》一书。本书深入探讨了如何将机器学习算法与边缘计算硬件相结合,以及如何针对特定应用场景优化模型部署。 参考资源链接:[边缘人工智能实战:嵌入式机器学习与现实问题解决](https://wenku.csdn.net/doc/5cecvpp8bf?spm=1055.2569.3001.10343) 在硬件选择上,考虑到视频处理需要较高的计算能力,推荐使用具有高性能计算能力的边缘设备,例如使用具有专门视频处理能力的GPU或FPGA。对于软件工具,选择如TensorFlow Lite或PyTorch Mobile这样专为边缘设备优化的机器学习框架,可以提高运行效率并降低延迟。 实施步骤包括: 1. 数据预处理:在将视频数据输入模型之前,需要进行压缩和格式转换,以减少资源消耗。 2. 特征提取:采用轻量级的卷积神经网络(CNN)模型来提取视频帧中的关键特征,以适应边缘设备的资源限制。 3. 模型优化:通过剪枝、量化和蒸馏等技术来压缩模型,减小模型体积,加快推理速度,保持性能的同时减少延迟。 4. 硬件加速:利用硬件加速功能,比如GPU加速或专用的神经网络处理单元(NPU),来进一步提升处理速度。 最后,根据部署环境进行测试,确保系统的响应时间满足实时处理的需求。对于视频分类等复杂应用,确保边缘设备的计算资源和存储空间足够,并进行充分的性能调优是至关重要的。通过以上步骤,结合本书提供的深度见解和最佳实践,你将能够成功在边缘设备上部署高效能、低延迟的视频分类机器学习模型。 参考资源链接:[边缘人工智能实战:嵌入式机器学习与现实问题解决](https://wenku.csdn.net/doc/5cecvpp8bf?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaoli8748_软件开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值