前言
MCP(Model Context Protocol)全称模型上下文协议,是由 Anthropic 推出的一种开放标准,旨在统一大型语言模型(LLM)与外部数据源和工具之间的通信协议。
AI工具会朝着两个方向发展:
- 掌握更多的信息
- 控制更多的工具
在没有联网搜索之前,大模型的数据来源只有训练数据的时候以及推理我们告诉他的东西。所以后来的rag、知识库都是让AI掌握更多的信息,而MCP的出现是为了让大模型控制更多的工具,赋予更多能力。
MCP
在 MCP 出现之前,如果大模型需要访问外部数据的时候了,通常使用 Function Calling 的方式。Function Calling 是通过给模型预设函数描述(包括函数名、参数说明、返回值格式等),让模型在合适的时候返回一个符合结构的 JSON 格式,外部系统再解析这个 JSON,调用实际的后端函数。
但 Function Calling 的方式没有一个统一的开发规范,你开发的函数我不能用,我开发的函数你不能用,而且开发起来很麻烦,为了解决这个问题,MCP 出现了。
MCP就是AI大模型的标准化工具箱,大模型可以通过MCP调用外界的AI工具,而AI工具在开发的时候也需要遵循MCP协议。MCP 允许应用程序以标准化方式为 LLM 提供上下文,将提供上下文的问题与实际的 LLM 交互分开
我们本地的数据,例如