文章目录
一、前言
1.1 项目开发背景
近年来,公共卫生安全事件频发,尤其是全球性传染病的爆发,使得非接触式体温监测成为公共场所(如机场、车站、医院、学校、写字楼)防控筛查的第一道关键防线。传统的额温枪需要人工逐一操作,效率低下且存在交叉感染风险,而大型固定式红外热成像测温仪成本高昂,部署不够灵活。市场亟需一种兼具高精度、高效率、低成本及智能化特性的体温筛查解决方案。
同时,人工智能与嵌入式技术的快速发展为创新应用提供了坚实基础。基于视觉的人脸检测技术已相当成熟,OpenCV库提供了高效可靠的实现;另一方面,以STM32为代表的高性价比微控制器,配合MLX90614等红外测温传感器,能精准获取体温数据。如何将两者优势结合,构建一个轻量级、智能化且便于部署的体温监测系统,成为技术落地的重点方向。
本项目正是在此背景下提出的综合解决方案。系统创造性地将STM32单片机作为前端数据采集单元,负责通过MLX90614传感器精准获取人体红外温度;同时利用广泛普及的Windows计算机作为上位机平台,借助其强大的计算能力和摄像头资源,通过OpenCV实时识别人脸区域,实现“一人一脸”的精准定位测温。两者通过稳定可靠的串口通信协议协同工作,在保证测量准确性的同时显著降低了硬件成本。
该测温仪特别适用于中小型场所的快速部署需求,例如社区门诊、学校入口、小型企业前台等场景。其核心价值在于:通过人脸检测技术确保测温目标唯一性,避免环境热源干扰;利用上位机的图形界面实现温度数据的可视化展示与历史记录;结合语音与颜色变化的双重报警机制,大幅提升异常体温识别的即时性和可靠性,为常态化疫情防控提供实用化的技术工具