Faster-R-CNN算法由两大模块组成:1.PRN候选框提取模块 2.Fast R-CNN检测模块。其中,RPN是全卷积神经网络,用于提取候选框;Fast R-CNN基于RPN提取的proposal检测并识别proposal中的目标。
在学习Faster-RCNN (py-faster-rcnn demo) 的基础上 用自己的数据训练 这里选择的是CT肺数据,关于数据处理方面的问题参照这篇博客 caffe finetune predict and detect the lung nodule
以及做成Faster RCNN格式的数据 参照这篇博客将自己的数据做成Faster RCNN的格式(VOC2007格式)
修改参数这里主要介绍一下怎么修改Faster RCNN中的一些参数。
1.py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt修改
layer { name: ‘data’ type: ‘Python’ top: ‘data’ top: ‘roi
使用faster_rcnn训练自己的数据
最新推荐文章于 2025-03-31 22:03:40 发布