机器学习笔记之狄利克雷过程(一)基本介绍

机器学习笔记之狄利克雷过程——基本介绍

引言

从本节开始,将介绍狄利克雷过程

回顾:高斯混合模型

高斯混合模型( Gaussian Mixture Model,GMM \text{Gaussian Mixture Model,GMM} Gaussian Mixture Model,GMM)是针对无监督学习中聚类任务的混合模型。
基于 N N N个样本的样本集合 X = { x ( i ) } i = 1 N \mathcal X = \{x^{(i)}\}_{i=1}^N X={ x(i)}i=1N,关于模型参数 θ \theta θ的学习过程,使用的底层逻辑极大似然估计( Maximum Likelihood Estimate,MLE \text{Maximum Likelihood Estimate,MLE} Maximum Likelihood Estimate,MLE):
arg ⁡ max ⁡ θ [ log ⁡ P ( X ) ] = arg ⁡ max ⁡ θ [ ∑ i = 1 N log ⁡ ∑ k = 1 K α k ⋅ N ( x ( i ) ∣ μ k , Σ k ) ] \mathop{\arg\max}\limits_{\theta} \left[\log \mathcal P(\mathcal X)\right] = \mathop{\arg\max}\limits_{\theta} \left[\sum_{i=1}^N \log \sum_{k=1}^{\mathcal K} \alpha_{k} \cdot \mathcal N(x^{(i)} \mid \mu_k,\Sigma_{k})\right] θargmax[logP(X)]=θargmax[i=1Nlogk=1KαkN(x(i)μk,Σk)]
它的模型参数 θ \theta θ具体包含三个部分:
当然, α \alpha α一共包含 K \mathcal K K个离散信息,但如果求解出 α 1 , ⋯   , α K − 1 \alpha_1,\cdots,\alpha_{\mathcal K-1} α1,,αK1,那么最后一个 α K = 1 − ( α 1 + ⋯ + α K − 1 ) \alpha_{\mathcal K} = 1 - (\alpha_1 + \cdots + \alpha_{\mathcal K - 1}) αK=1(α

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值