机器学习笔记之狄利克雷过程——基本介绍
引言
从本节开始,将介绍狄利克雷过程。
回顾:高斯混合模型
高斯混合模型( Gaussian Mixture Model,GMM \text{Gaussian Mixture Model,GMM} Gaussian Mixture Model,GMM)是针对无监督学习中聚类任务的混合模型。
基于 N N N个样本的样本集合 X = { x ( i ) } i = 1 N \mathcal X = \{x^{(i)}\}_{i=1}^N X={
x(i)}i=1N,关于模型参数 θ \theta θ的学习过程,使用的底层逻辑是极大似然估计( Maximum Likelihood Estimate,MLE \text{Maximum Likelihood Estimate,MLE} Maximum Likelihood Estimate,MLE):
arg max θ [ log P ( X ) ] = arg max θ [ ∑ i = 1 N log ∑ k = 1 K α k ⋅ N ( x ( i ) ∣ μ k , Σ k ) ] \mathop{\arg\max}\limits_{\theta} \left[\log \mathcal P(\mathcal X)\right] = \mathop{\arg\max}\limits_{\theta} \left[\sum_{i=1}^N \log \sum_{k=1}^{\mathcal K} \alpha_{k} \cdot \mathcal N(x^{(i)} \mid \mu_k,\Sigma_{k})\right] θargmax[logP(X)]=θargmax[i=1∑Nlogk=1∑Kαk⋅N(x(i)∣μk,Σk)]
它的模型参数 θ \theta θ具体包含三个部分:
当然,
α \alpha α一共包含
K \mathcal K K个离散信息,但如果求解出
α 1 , ⋯ , α K − 1 \alpha_1,\cdots,\alpha_{\mathcal K-1} α1,⋯,αK−1,那么最后一个
α K = 1 − ( α 1 + ⋯ + α K − 1 ) \alpha_{\mathcal K} = 1 - (\alpha_1 + \cdots + \alpha_{\mathcal K - 1}) αK=1−(α