题目列表
-
两数之和 简单难度,leetcode链接
-
字母异位词分组 简单难度,leetcode链接
-
128 最长连续序列 简单难度,leetcode链接
题目
(1)两数之和
题目
给定一个整数数组nums和一个整数目标值target,请你在该数组中找出和为目标值target的那两个整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9 输出:[0,1] 解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6 输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6 输出:[0,1]
思路
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
records = dict()
for index, value in enumerate(nums):
if target - value in records: # 遍历当前元素,并在map中寻找是否有匹配的key
return [records[target- value], index]
records[value] = index # 如果没找到匹配对,就把访问过的元素和下标加入到map中
return []
(2)字母异位词分组
题目
给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。
示例 1: 输入: strs = ["eat", "tea", "tan", "ate", "nat", "bat"] 输出: [["bat"],["nat","tan"],["ate","eat","tea"]] 解释: 在 strs 中没有字符串可以通过重新排列来形成 "bat"。 字符串 "nat" 和 "tan" 是字母异位词,因为它们可以重新排列以形成彼此。 字符串 "ate" ,"eat" 和 "tea" 是字母异位词,因为它们可以重新排列以形成彼此。
示例 2: 输入: strs = [""] 输出: [[""]]
示例 3: 输入: strs = ["a"] 输出: [["a"]]
提示: 1 <= strs.length <= 10(4) 0 <= strs[i].length <= 100 strs[i] 仅包含小写字母
思路
由于互为字母异位词的两个字符串包含的字母相同,因此两个字符串中的相同字母出现的次数一定是相同的,故可以将每个字母出现的次数使用字符串表示,作为哈希表的键。 由于字符串只包含小写字母,因此对于每个字符串,可以使用长度为 26 的数组记录每个字母出现的次数。需要注意的是,在使用数组作为哈希表的键时,不同语言的支持程度不同,因此不同语言的实现方式也不同。
时间复杂度:O(n(k+∣Σ∣)),其中 n 是 strs 中的字符串的数量,k 是 strs 中的字符串的的最大长度,Σ 是字符集,在本题中字符集为所有小写字母,∣Σ∣=26。需要遍历 n 个字符串,对于每个字符串,需要 O(k) 的时间计算每个字母出现的次数,O(∣Σ∣) 的时间生成哈希表的键,以及 O(1) 的时间更新哈希表,因此总时间复杂度是 O(n(k+∣Σ∣))。
空间复杂度:O(n(k+∣Σ∣)),其中 n 是 strs 中的字符串的数量,k 是 strs 中的字符串的最大长度,Σ 是字符集,在本题中字符集为所有小写字母,∣Σ∣=26。需要用哈希表存储全部字符串,而记录每个字符串中每个字母出现次数的数组需要的空间为 O(∣Σ∣),在渐进意义下小于 O(n(k+∣Σ∣)),可以忽略不计。
class Solution:
def groupAnagrams(self, strs: List[str]) -> List[List[str]]:
mp = collections.defaultdict(list)
for st in strs:
counts = [0] * 26
for ch in st:
counts[ord(ch) - ord("a")] += 1
# 需要将 list 转换成 tuple 才能进行哈希
mp[tuple(counts)].append(st)
return list(mp.values())
(3)最长连续序列
给定一个未排序的整数数组 nums
,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
请你设计并实现时间复杂度为 O(n)
的算法解决此问题。
示例 1:
输入:nums = [100,4,200,1,3,2] 输出:4 解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。
示例 2:
输入:nums = [0,3,7,2,5,8,4,6,0,1] 输出:9
示例 3:
输入:nums = [1,0,1,2] 输出:3
提示:
-
0 <= nums.length <= 10(5)
-
-10(9) <= nums[i] <= 10(9)
时间复杂度:O(n),其中 n 为数组的长度。
空间复杂度:O(n)。哈希表存储数组中所有的数需要 O(n) 的空间。
class Solution:
def longestConsecutive(self, nums: List[int]) -> int:
longest_streak = 0
num_set = set(nums)
for num in num_set:
if num - 1 not in num_set:
current_num = num
current_streak = 1
while current_num + 1 in num_set:
current_num += 1
current_streak += 1
longest_streak = max(longest_streak, current_streak)
return longest_streak
结尾
亲爱的读者朋友:感谢您在繁忙中驻足阅读本期内容!您的到来是对我们最大的支持❤️
正如古语所言:"当局者迷,旁观者清"。您独到的见解与客观评价,恰似一盏明灯💡,能帮助我们照亮内容盲区,让未来的创作更加贴近您的需求。
若此文给您带来启发或收获,不妨通过以下方式为彼此搭建一座桥梁: ✨ 点击右上角【点赞】图标,让好内容被更多人看见 ✨ 滑动屏幕【收藏】本篇,便于随时查阅回味 ✨ 在评论区留下您的真知灼见,让我们共同碰撞思维的火花
我始终秉持匠心精神,以键盘为犁铧深耕知识沃土💻,用每一次敲击传递专业价值,不断优化内容呈现形式,力求为您打造沉浸式的阅读盛宴📚。
有任何疑问或建议?评论区就是我们的连心桥!您的每一条留言我都将认真研读,并在24小时内回复解答📝。
愿我们携手同行,在知识的雨林中茁壮成长🌳,共享思想绽放的甘甜果实。下期相遇时,期待看到您智慧的评论与闪亮的点赞身影✨!
万分感谢🙏🙏您的点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~
自我介绍:一线互联网大厂资深算法研发(工作6年+),4年以上招聘面试官经验(一二面面试官,面试候选人400+),深谙岗位专业知识、技能雷达图,已累计辅导15+求职者顺利入职大中型互联网公司。熟练掌握大模型、NLP、搜索、推荐、数据挖掘算法和优化,提供面试辅导、专业知识入门到进阶辅导等定制化需求等服务,助力您顺利完成学习和求职之旅(有需要者可私信联系)
友友们,自己的知乎账号为“快乐星球”,定期更新技术文章,敬请关注!