堆排序+TopK问题——“数据结构与算法”

文章介绍了堆排序的实现细节,包括堆的初始化、销毁、插入数据、向上和向下调整等操作。讨论了两种建堆方法的效率差异,并提供了完整的堆排序代码示例。此外,还提到了TopK问题的解决方案,利用堆来高效地找出数据集中的前K个最大或最小元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各位CSDN的uu们你们好呀,好久不见,停更了很长一段时间吧,最近小雅兰会开始慢慢更新起来的,下面,就进入小雅兰今天的分享的知识点吧,让我们一起进入堆的世界!!!


堆排序——(1)

heap.h的内容:

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int HeapDataType;
typedef struct Heap
{
	HeapDataType* a;
	int size;
	int capacity;
}Heap;
//堆的初始化
void HeapInit(Heap* php);
//堆的销毁
void HeapDestroy(Heap* php);
//插入数据
void HeapPush(Heap* php, HeapDataType x);
//向上调整算法
void AdjustUp(HeapDataType* a, int child);
//删除堆顶数据
void HeapPop(Heap* php);
//向下调整算法
void AdjustDown(int* a, int n, int parent);
//判空
bool HeapEmpty(Heap* php);
//堆顶元素
HeapDataType HeapTop(Heap* php);
//元素个数
int HeapSize(Heap* php);

heap.c的内容:

#include"heap.h"
//堆的初始化
void HeapInit(Heap* php)
{
	assert(php);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}
//堆的销毁
void HeapDestroy(Heap* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}
//交换数据
void Swap(HeapDataType* p1, HeapDataType* p2)
{
	HeapDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
//向上调整算法
void AdjustUp(HeapDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		//小根堆
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
//插入数据
void HeapPush(Heap* php, HeapDataType x)
{
	assert(php);
	//扩容
	if (php->size == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HeapDataType* tmp = (HeapDataType*)realloc(php->a, newcapacity * sizeof(HeapDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a, php->size - 1);
}
//向下调整算法
//这边写int* 而不写HeapDataType* 是有意为之的 为以后堆排序作准备
void AdjustDown(int* a, int n, int parent)
{
	//默认左孩子小
	int child = parent * 2 + 1;
	while (child < n)//孩子在数组范围内
	{
		//选出左右孩子中小/大的那一个
		//有可能假设错了
		//左孩子不存在,一定没有右孩子——完全二叉树
		//左孩子存在,有可能没有右孩子
		if ( child + 1 < n && a[child + 1] < a[child])
		//	右孩子存在			右孩子<左孩子
		//不能这么写 if (la[child + 1] < a[chid] && child + 1 < n )
		//这样写会有越界的风险 因为是先访问了数组中的元素 再去比较右孩子是否存在
		{
			++child;
		}
		//child就是小的那个孩子
		//不关心到底是左孩子还是右孩子 小根堆:和小的孩子比较就可以了
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			child = parent * 2 + 1;//默认又算的是左孩子
		}
		else
		{
			break;
		}

	}
}
//判空
bool HeapEmpty(Heap* php)
{
	assert(php);
	if (php->size == 0)
	{
		return true;
	}
	else
	{
		return false;
	}
}
//删除堆顶数据
void HeapPop(Heap* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}
//堆顶元素
HeapDataType HeapTop(Heap* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	return php->a[0];
}
//元素个数
int HeapSize(Heap* php)
{
	assert(php);
	return php->size;
}

test.c的内容:

void HeapSort(int* a, int n)
{
	Heap hp;
	HeapInit(&hp);
	int i = 0;
	for (i = 0; i < n; i++)
	{
		HeapPush(&hp, a[i]);
	}
	while (!HeapEmpty(&hp))
	{
		int top = HeapTop(&hp);
		a[i++] = top;
		HeapPop(&hp);
	}
	HeapDestroy(&hp);
}
int main()
{
	int a[] = { 7,8,3,5,1,9,5,4 };
	int sz = sizeof(a) / sizeof(a[0]);
	HeapSort(a, sz);
	return 0;
}

这样的堆排序其实也是可以的

但是有弊端!!!

第一个:得先有一个堆,太麻烦了

第二个:空间复杂度太高了,还有拷贝数据

堆排序——(2)

首先还是得建堆!!!

第一种方法:向上调整建堆

//建堆——向上调整建堆
int i = 0;
for (i = 1; i < n; i++)
{
	AdjustUp(a, i);
}

如果升序建小堆:

 

所以升序要建大堆 

这边就是说排降序要建小堆 

void HeapSort(int* a, int n)
{
	//建堆——向上调整建堆
	int i = 0;
	for (i = 1; i < n; i++)
	{
		AdjustUp(a, i);
	}
	//升序——建大堆
	//降序——建小堆
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

 

第二种方法:向下调整建堆 

//建堆——向下调整建堆
int i = 0;
for (i = (n - 1 - 1) / 2; i >= 0; i--)
{
	AdjustDown(a, n, i);
}

完整堆排序代码:

void HeapSort(int* a, int n)
{
    //建堆——向下调整建堆
	int i = 0;
	for (i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	//升序——建大堆
	//降序——建小堆
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}


向下调整的时间复杂度 

 结点多,向下的调整次数少,结点少,向下的调整次数多 

 最后一层不需要调整,所以从倒数第二层开始计算

这里运用到了一个常见的数学方法——错位相减法

向上调整的时间复杂度

结点多,向上调整的次数多,结点少,向上调整的次数少

所以,向上调整建堆的效率和向下调整建堆的效率相比,向上调整要低得多

 

 


TopK问题

 TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能 数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

用数据集合中前K个元素来建堆

  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆 

用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

        将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

数据多的话,数据存放在磁盘文件中

void CreateNDate()
{
	// 造数据
	int n = 10000;
	srand(time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");
	if (fin == NULL)
	{
		perror("fopen error");
		return;
	}
	for (size_t i = 0; i < n; ++i)
	{
		int x = rand() % 1000000;
		fprintf(fin, "%d\n", x);
	}
	fclose(fin);
}
void PrintTopK(int k)
{
	const char* file = "data.txt";
	FILE* fout = fopen(file, "r");
	if (fout == NULL)
	{
		perror("fopen error");
		return;
	}
	int* kminheap = (int*)malloc(sizeof(int) * k);
	if (kminheap == NULL)
	{
		perror("malloc error");
		return;
	}
	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &kminheap[i]);
	}
	// 建小堆
	for (int i = (k - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(kminheap, k, i);
	}
	int val = 0;
	while (!feof(fout))
	{
		fscanf(fout, "%d", &val);
		if (val > kminheap[0])
		{
			kminheap[0] = val;
			AdjustDown(kminheap, k, 0);
		}
	}
	for (int i = 0; i < k; i++)
	{
		printf("%d ", kminheap[i]);
	}
	printf("\n");
}

好啦,小雅兰今天的学习内容就到这里啦,太摆烂了,还是要继续加油呀!!!

评论 57
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

答案说明所有。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值